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Abstract
Why are some individuals better at recognizing faces? Uncovering the neural mechanisms supporting face recognition ability has proven 
elusive. To tackle this challenge, we used a multimodal data-driven approach combining neuroimaging, computational modeling, and 
behavioral tests. We recorded the high-density electroencephalographic brain activity of individuals with extraordinary face 
recognition abilities—super-recognizers—and typical recognizers in response to diverse visual stimuli. Using multivariate pattern 
analyses, we decoded face recognition abilities from 1 s of brain activity with up to 80% accuracy. To better understand the 
mechanisms subtending this decoding, we compared representations in the brains of our participants with those in artificial neural 
network models of vision and semantics, as well as with those involved in human judgments of shape and meaning similarity. 
Compared to typical recognizers, we found stronger associations between early brain representations of super-recognizers and 
midlevel representations of vision models as well as shape similarity judgments. Moreover, we found stronger associations between 
late brain representations of super-recognizers and representations of the artificial semantic model as well as meaning similarity 
judgments. Overall, these results indicate that important individual variations in brain processing, including neural computations 
extending beyond purely visual processes, support differences in face recognition abilities. They provide the first empirical evidence 
for an association between semantic computations and face recognition abilities. We believe that such multimodal data-driven 
approaches will likely play a critical role in further revealing the complex nature of idiosyncratic face recognition in the human brain.

Significance Statement

The ability to robustly recognise faces is crucial to our success as social beings. Yet, we still know very little about the brain mecha
nisms allowing some individuals to excel at face recognition. This study builds on a sizeable neural dataset measuring the brain ac
tivity of individuals with extraordinary face recognition abilities—super-recognizers—to tackle this challenge. Using state-of-the-art 
computational methods, we show robust prediction of face recognition abilities in single individuals from a mere second of brain ac
tivity and reveal specific brain computations supporting individual differences in face recognition ability. Doing so, we provide direct 
empirical evidence for an association between semantic computations and face recognition abilities in the human brain—a key com
ponent of prominent face recognition models.
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Introduction
The ability to robustly recognize the faces of our colleagues, friends, 
and family members is paramount to our success as social beings. 
Our brains complete this feat with apparent ease and speed, in a ser
ies of computations unfolding within tens of milliseconds in a wide 
brain network comprising the inferior occipital gyrus, the fusiform 
gyrus, the superior temporal sulcus, and more anterior areas such 
as the anterior temporal lobe (1–3). Accumulating neuropsychologic
al and behavioral evidence indicates that not all individuals, 
however, are equally competent at recognizing faces in their sur
roundings (4). Developmental prosopagnosics show a great difficulty 
at this task despite an absence of brain injury (5). In contrast, super- 

recognizers exhibit remarkable abilities for processing facial identity 
and can recognize individuals even after little exposure several years 
before (6–8). The specific nature of the neural processes responsible 
for these individual differences remains largely unknown. So far, in
dividual differences studies have used univariate techniques to in
vestigate face-specific aspects of brain processing. This revealed 
that contrasts between responses to faces compared to nonfaces, 
measured by the N170 event-related potential component or by 
the blood oxygen level dependent signals in regions of interest, are 
modulated by ability (9–15). However, univariate and contrast ap
proaches are limited in their capacity to reveal the precise nature 
of the underlying brain computations (16–19).
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Here, we tackled this challenge with a data-driven approach. 
We examined the functional differences between the brains of 
super-recognizers and typical recognizers using decoding and rep
resentational similarity analyses (RSAs (18, 20–23)) applied to 
high-density electrophysiological (EEG) signals and artificial neur
al network models. We recruited 33 participants, including 16 
super-recognizers, i.e. individuals better than the 98th percentile 
on a battery of face recognition tests (8) (Fig. 1a). We measured 
EEG in more than 100,000 trials while participants performed a 
one-back task. The objects depicted in the stimuli belonged to 
multiple visual categories including face images of different 
sexes, emotions, and identities, as well as images of man-made 
and nonface natural objects (e.g. a computer, a plant), animals 
(e.g. a giraffe, a monkey), and scenes (e.g. a city, a dining room; 
Fig. 1b).

Results
Behavioral results
All participants’ face recognition ability was assessed using the 
Cambridge Face Memory Test long form (CFMT+ (8)). Scores on 
the CFMT+ ranged from 50 to 85 in the typical recognizers group 
(MTRs = 70.00; SD = 9.09), and from 92 to 100 in the experimental 
super-recognizers group (MSRs = 95.38, SD = 2.68; difference be
tween groups: t(31) = 10.6958, P < 0.00001 see Fig. 1a). The main 
experimental task was a one-back task (Fig. 1b). Accuracy was sig
nificantly greater for the super-recognizers (MSRs = 0.8649, SD =  
0.0626) than for the typical recognizers (MTRs = 0.7591, SD = 0.096; 
t(30) = 3.6131, P = 0.0011). This was also true when analyzing 
separately face (MSRs = 0.8677, SD = 0.0590; MTRs = 0.7385, 
SD = 0.1048; t(30) = 4.2180, P = 0.00020) and nonface trials 
(MSRs = 0.8619, SD = 0.0750; MTRs = 0.7798, SD = 0.1000; t(30) =  
2.6000, P = 0.0143). Furthermore, accuracy in the one-back task 
was positively correlated with scores on the CFMT+ (r = 0.68, P <  
0.001; response time was marginally associated with CFMT+, r =  
0.37, P = 0.04). We observed a significant difference in response times 
between the two groups for face stimuli (MSRs = 0.6222 ms, SD =  
0.1386 ms; MTRs = 0.6817 ms, SD = 0.0660 ms; P = 0.0258) but not for 
nonface stimuli (MSRs = 0.6262 ms, SD = 0.1401 ms; MTRs =  
0.6739 ms, SD = 0.0643 ms; P = 0.0801).

Discriminating super-recognizers and typical 
recognizers from 1 s of brain activity
With this sizable and category-rich dataset, we first attempted to 
classify a participant as either a super- or a typical recognizer 
based solely on their brain activity. More specifically, we trained 
Fisher linear discriminants to predict group membership from 
single, 1-s trials of EEG patterns (in a moving searchlight of five 
neighboring electrodes; Fig. 2b). We observed up to ∼80% cross- 
validated decoding performance, peaking over electrodes in 
the right hemisphere. This performance is impressive given that 
the noise ceiling imposed on our classification by the test–retest 
reliability of the CFMT+ (8, 27), the gold-standard test used to 
identify super-recognizer individuals, is ∼93% (SD = 2.28%; see 
methods). To reveal the time course of these functional differen
ces, we applied the same decoding procedure to each 4-ms inter
val of EEG recordings. Group-membership predictions attained 
statistical significance (P < 0.001, permutation tests, Fig. 2a) from 
about 65 ms to at least 1 s after stimulus onset, peaking around 
135 ms, within the N170 window (28, 29).

Notably, similar results were obtained following the presenta
tion of both face and nonface visual stimuli (Fig. 2a; see also 

Fig. S1). This did not result from face representations stored in 
short-term memory from one-back trials. Indeed, we repeated 
our decoding analysis for nonface trials either preceded by face 
trials or by nonface trials, and found significant decoding of group 
membership in both cases (Fig. S1). In addition, we successfully 
cross-decoded group membership from a model trained on face 
EEG activity and applied to nonface EEG activity (see Fig. S2). 
The decoding of group membership could be based on various fea
tures. Some of these features are directly related to brain repre
sentations for object and face recognition, and these aspects are 
further explored in subsequent sections of this article. On the oth
er hand, there could be additional contributing features that are 
not directly linked to object and face recognition. For instance, dif
ferences in motor responses between the two subject groups 
might explain these results to some extent. However, excluding 
the 10% of trials with a motor response did not affect decoding ac
curacy (Fig. S2). Additionally, the decoding model might have re
lied on potential noise differences between the two subject 
groups. Nevertheless, our analysis did not reveal any evidence 
supporting such differences in the cross-participant similarity of 
the representational dissimilarity matrices (RDMs) for both 
groups (see the Linking neural representations with computation
al models of vision section; Fig. S3).

Predicting individual recognition ability from  
1 s of brain activity
An ongoing debate in individual differences research is whether 
the observed effects emerge from qualitative or quantitative 
changes in the supporting brain mechanisms (30–38). The decod
ing results presented up to this point might give the impression 
that face recognition ability is supported by qualitative differen
ces in brain mechanisms. However, these results were obtained 
with dichotomous classification models applied, by design, to 
the brains of individuals from a bimodal distribution of ability 
scores (35).

To better assess the nature of the relationship between neural 
representations and ability in the general population, we thus per
formed a decoding analysis on the typical recognizers only, using 
a continuous regression model. Specifically, we used cross- 
validated fractional ridge regression (39) to predict individual 
CFMT+ face recognition ability scores from single-trial EEG data. 
This showed essentially similar results to the previous dichotomic 
decoding results: performance was above statistical threshold 
(P < 0.01, False Discovery Rate corrected) from about 80 ms to at 
least 1 s, peaking around 135 ms following stimulus onset for 
both face and nonface stimuli (Fig. 2c, peak-rhoface = 0.4149 at 
133 ms, peak-rhononface = 0.4899 at 141 ms). This accurate decod
ing of individual scores from EEG patterns is compatible with a 
quantitative account of variations in brain mechanisms across in
dividuals differing in face recognition abilities. Altogether, these 
decoding results provide evidence for important, quantitative and 
temporally extended variations in the brain activity supporting 
face recognition abilities. This extended decoding suggests effects 
of individual ability across multiple successive processing stages.

Linking neural representations 
with computational models of vision
Decoding time courses, however, offer limited insights on the level of 
brain computations (40, 41). To better characterize the visual brain 
computations covarying with face recognition ability, we compared, 
using representational similarity analysis (20–22, 42), the brain rep
resentations of our participants to that of convolutional neural 
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networks (CNNs) trained to categorize objects (43–45). These CNNs 
process visual features of gradually higher complexity and abstrac
tion along their layers (45), from low-level (e.g. orientation, edges) to 
high-level features (e.g. objects and object parts).

The brain representations were characterized by computing 
RDMs for each participant and for each 4-ms time interval. 
These brain RDMs were derived using the cross-validated decod
ing performance of a linear discriminant model, where brain ac
tivity was decoded for every pair of stimuli at a given time 
interval (46, 47); see Fig. S4 for the group-average RDMs and 
time course of key categorical distinctions. The visual model rep
resentations were characterized by computing RDMs from the 
layers of the CNNs, using Pearson correlations of the unit activa
tions across all pairs of stimuli. Compared to typical participants, 
we found that the brain RDMs of super-recognizers showed larger 
mutual information (48) with the layer RDMs of CNNs that re
present midlevel features (e.g. combinations of edges, contour, 
shape, texture (45, 49)) between 133 and 165 ms (Fig. 3a, P < 0.05, 
cluster-test; see also Fig. S5 for similar results with unconstrained 
analyses; supplementary analyses on specific category conditions 
in the RDMs are shown in Fig. S6). These results indicate that mid
level representations of an object-trained CNN matched the rep
resentations of super-recognizers more closely than those of 
typical participants. We replicated these results using a face- 
trained CNN, e.g. (51–53), VGGface (54), which possess midlevel 
representations similar to those of object-trained CNN (see 
Fig. S7; P < 0.05, cluster-test). The stronger association between 
brain representational geometries of the super-recognizers with 
computational models of vision could be explained by a marked 
difference in signal to noise between the two groups of partici
pants. To control for this potential confound, we computed the 
cross-participant similarity of the RDMs in both groups (see 
Fig. S3). If the signal to noise was larger in the super-recognizers, 
we would expect larger cross-participant similarity of the RDMs; 
however, we observed no significant difference between the two 
groups.

Linking neural representations with 
computational model of semantics
The finding that ability decoding was significant as late as 1 s after 
stimulus onset hints that brain computations beyond what is typ
ically construed as pure visual processing also differ as a function 
of face recognition ability. To test this hypothesis, we asked five 

new participants to write captions describing the images pre
sented during our experiment (e.g. “A city seen through a forest.”), 
and used a deep averaging network (Google Universal Sentence 
Encoder, GUSE (50)) to transform these captions into embeddings 
(points in a caption space). GUSE has been trained to predict se
mantic textual similarity from human judgments, and its embed
dings generalize to an array of other semantic judgment tasks (50). 
We then compared the RDMs computed from this semantic model 
to the brain RDMs of both typical- and super-recognizers. 
Importantly, both this comparison, and the one comparing brain 
and visual models, excluded the information shared between 
the semantic and visual models (but see Fig. S8 for similar 
results with unconstrained analyses). We found larger mutual in
formation with these semantic representations in the brains of 
super-recognizers than in those of typical recognizers in a 
late window between 598 and 727 ms (Fig. 3c, P < 0.05, 
cluster-test). Supplementary analyses on specific stimulus cat
egories of the RDMs (Fig. S9) suggest that these results emerged 
mainly from the face vs. face and face vs. nonface stimuli pair 
conditions.

Linking neural representations with behavioral 
representations for shape and semantic similarity 
judgments
Our findings so far suggest that midlevel visual and semantic 
brain processes both support individual differences in face recog
nition abilities. We looked for further support for these conclu
sions using RDMs derived from a behavioral experiment. A 
group of 32 new human participants were submitted to two mul
tiple arrangement tasks (55–57) in which they were asked to evalu
ate the shape similarities of all pairs of the 49 visual stimuli used 
in the main experiment, and the meaning similarities of all pairs 
of the 49 mean sentence captions produced by five human partic
ipants to describe these images and used for the semantic model 
(see the Linking neural representations with computational mod
el of semantics section). More specifically, participants arranged 
the images/sentences inside a white circular arena according to 
the task instructions using simple drag and drop operations (see 
Fig. 4). We computed the mutual information between the mean 
RDMs extracted from each of these tasks and the time-resolved 
brain RDMs of super- and typical recognizers as well as the same 
while excluding the information shared with the other task. 
Results indicated only a trend for shape representations being 

a b

Fig. 1. Experimental procedure. a) The histogram shows the Cambridge Face Memory Test long form (CFMT+ (8)) scores of super-recognizers (yellow 
bars), typical recognizers (black bars), and an additional 332 neurotypical observers from three independent studies for comparison (24–26). b) 
Participants engaged in a one-back task while their brain activity was recorded with high-density electroencephalography. The objects depicted in the 
stimuli belonged to various categories, such as faces, objects, and scenes. Note that the face drawings shown here are an anonymized substitute to the 
experimental face stimuli presented to our participants.
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enhanced around midlatencies in super-recognizers relative to typ
ical recognizers which did not survive cluster correction (P < 0.01, 
uncorrected; PMI = 0.1259; PCMI = 0.2098; cluster-corrected; see 
Fig. 4). Meaning representations were enhanced in late latencies in 
super-recognizers compared to typical recognizers (sentence mean
ing: 635–787 ms, P < 0.05, cluster-corrected; see Fig. 4). These results 
confirm that semantic representations at relatively late latencies 
and, to a lesser degree, shape representations at midlatencies are en
hanced in the brains of super-recognizers.

Discussion
Using a data-driven approach combining neuroimaging, compu
tational models, and behavioral tests, we characterized the com

putations modulated by variations in face recognition ability in 

the human brain. We recorded high-density electroencephalo

graphic (EEG) responses to face and nonface stimuli in super- 

recognizers and typical recognizers. Using multivariate analysis, 

we reliably decoded group membership as well as recognition 
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Fig. 2. Decoding interindividual recognition ability variations from EEG activity. a) Trial-by-trial group-membership predictions (super-recognizer or 
typical recognizer) were computed from EEG patterns, for each 4-ms interval, while participants processed face (blue trace) or nonface stimuli (gray 
trace). Significant decoding performance occurred as early as 65 ms, peaked in the N170 window, and lasted for the remainder of the EEG epochs (P < 0.001). b) 
Topographies were obtained using searchlight decoding analyses, either concatenating all time points (left topographies) or for selected time windows (right 
topographies). Concatenating all time points resulted in peak classification performance of 77.3% over right occipitotemporal electrodes for face and 77.5% 
over right occipitotemporal electrodes for nonface conditions. In the N170 window, we observed a peak classification performance of 74.8% over right-temporal 
electrodes for face, and 72.1% over left-temporal electrodes for nonface conditions. c) We decoded the CFMT+ scores of the typical recognizers using fractional 
ridge regression. This yielded similar results with significant decoding as early as 75 ms, peaking around the N170 time window (peak-rhoface = 0.4149, 
peak-rhononface = 0.4899), and lasted for the remainder of the EEG epochs (P < 0.01, 1K permutations, 10 repetitions).
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abilities of single individuals from a single second of brain activity. 
We then characterized the neural computations underlying these 
individual differences by comparing human brain activity 
with representations from artificial neural network models of vi
sion and semantics using representational similarity analysis. 
Furthermore, we compared the brain activity with similarity 

judgments derived from additional human participants engaged 
in two tasks. In the first task, participants judged our visual stim
uli on the similarity of their shape, while in the second task, par
ticipants judged sentence captions describing these stimuli on the 
similarity of their meaning. These sets of comparisons revealed 
two main findings. First, we found higher similarity between early 

Fig. 3. Comparison of super- and typical-recognizer brain representations with those of artificial neural networks of visual and semantic processing. a) 
RDMs were computed from CNNs (43, 44) of vision, human brain activity, and a deep neural network of caption classification and sentence semantics (50). 
To characterize the CNN RDMs, we computed the pairwise similarity between unit activation patterns for each image independently in each CNN layer. 
The caption-level RDMs were derived from human caption descriptions of the images transformed into sentence embeddings. Brain RDMs were 
computed using cross-validated decoding performance between the EEG topographies from each pair of stimuli at every 4 ms time point. Mutual 
information (48) between the model RDMs and the brain RDMs was assessed, for every participant, at each 4 ms step from stimulus onset. b) Mutual 
information between brain RDMs and AlexNet RDMs (removing shared mutual information between brain and semantic model) is shown for typical- 
(gray solid curve) and super-recognizers (pink solid curve). We found greater similarity with midlevel visual representations (layers 4 and 5 shown, but 
similar results were found for midlayers of VGG16, another popular CNN model; see Fig. S5) in the brains of super-recognizers (black line indicates 
significant contrasts, P < 0.05, cluster-corrected) between 133 and 165 ms. Similar results were observed when comparing brains and CNN models 
without removing the shared mutual information between brains and the semantic (caption-level) model (Fig. S5). c) Mutual information with the 
semantic model (excluding shared mutual information between brain and AlexNet) differed for typical- and super-recognizers in a later time window 
centered around 650 ms (cyan curve; super > typical, P < 0.05, cluster-corrected). Again, similar results were observed when comparing brains and the 
semantic model without removing the shared mutual information between the brain and CNN model (see Fig. S8).
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brain representations of super-recognizers and midlevel re
presentations of vision models as well as, to a lesser degree, 
shape similarity judgments. Second, this approach revealed 
higher similarity between late brain representations of super- 
recognizers and representations of an artificial semantic model 
as well as sentence caption similarity judgments. To our knowl
edge, this is the first demonstration of a link between face rec
ognition ability and brain computations beyond high-level 
vision. Overall, these findings revealed specific computations 

supporting our individual ability to recognize faces and suggest 
widespread variations in brain processes related to this crucial 
ability.

We achieved robust decoding of face recognition ability when 
examining EEG responses to face and nonface stimuli. This is con
sistent with several neuropsychological (33, 58–62) and brain im
aging findings (12, 32, 63, 64) showing face and nonface 
processing effects in individuals across the spectrum of face rec
ognition ability (19, 65), but see Refs. (13, 66–68).

a

b

Fig. 4. Linking neural representations with behavioral representations for shape, function, and semantic similarity judgments. a) Mutual information 
between brain RDMs and the mean RDM built from shape similarity judgments (first column) and sentence meaning similarity judgments (second 
column) is shown for typical- (gray curves) and super-recognizers (coloured curves). Greater similarity with shape information in the brains of 
super-recognizers (P < 0.01, uncorrected; P-correctedMI = 0.1259) and greater similarity with sentence meaning information for super-recognizers 
(P < 0.01, uncorrected; P-correctedMI = 0.0819) only reached significance before cluster corrections. The shaded areas of all curves represent the SE. b) 
Conditional mutual information between brain RDMs and the mean RDM built from similarity judgments of shape and of sentence caption meaning 
(removing shared mutual information between brain and sentence caption meaning RDM for shape similarity, and vice versa) is shown in typical- and 
super-recognizers. We found greater similarity with sentence meaning in the brains of super-recognizers between 635 and 787 ms (black line indicates 
significant contrasts, P < 0.05, cluster-corrected), in agreement with our comparisons with the artificial semantic model (Fig. 3c). Greater similarity with 
shape information in the brains of super-recognizers only reached significance before cluster corrections (P < 01, uncorrected; P-correctedCMI = 0.2098).
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The decoding we observed for face and nonface stimuli peaked 
at right occipitotemporal electrodes, in the temporal window 
around the N170 component (28). At that time, the representa
tions in the brains of our participants differed most with respect 
to the mid-layer representations of artificial models of vision. 
These layers have been previously linked to processing in human 
inferotemporal cortex (45, 69–71) and functionally to midlevel fea
ture representations such as combinations of edges and parts of 
objects (45, 49). Such associations with the N170, however, do 
not mean that this component is exclusively involved in these 
midlevel processes. Rather, it suggests that other visual computa
tions, including the high-level visual computations usually asso
ciated with the N170, do not differ substantially between 
super-recognizers and typical recognizers. The fact that these 
midlevel features are mostly shared between face and nonface 
stimuli could explain at least partly the high decoding perform
ance observed for both classes of stimuli. They suggest that a mid
level visual processing is enhanced in super-recognizers leading 
to improved processing of faces and objects.

Crucially, we found that face recognition ability is also associ
ated with semantic computations that extend beyond basic-level 
visual categorization in a late time window around the P600 com
ponent (72–74). Recent studies using computational techniques 
have shown that word representations derived from models of 
natural language processing explain significant variance in the 
visual ventral stream (18, 75–77). The current study goes beyond 
this recent work in two ways. First, our use of human sentence de
scription and sentence encoders to characterise semantic 
(caption-level) computations provides a more abstract description 
of brain representations. Second, and most importantly, our work 
revealed a link between semantic brain computations and indi
vidual differences in face recognition ability. An association be
tween semantic processes and face recognition ability had been 
posited in models of face recognition (1, 78) but, to our knowledge, 
it had never been shown empirically before.

Overall, thus, our findings suggest important differences in per
ceptual and semantic representations in individuals with out
standing ability to recognize faces. The higher similarity with 
computational models of vision indicates that super-recognizers 
have more efficient midlevel representations. These enhanced 
representations suggest that part-based information about faces 
and objects, putatively emerging from midlevel occipitotemporal 
regions (79), is richer in individuals with strong face recognition 
abilities (24). Furthermore, our findings show that the more simi
lar the brain representations of an individual are to task- 
optimized computational models of semantics, the better they 
are at recognizing faces. These enhanced late semantic represen
tations, for example, might emerge from enhanced subordinate- 
level information about objects and faces (80, 81).

Our approach of decoding group membership to reveal electro
physiological differences between super-recognizers and typical 
recognizers, followed by representational similarity analysis 
with computational models of vision and language, enabled re
vealing potential mechanisms underlying enhanced recognition 
ability. Other possible differences between our participants might 
also contribute to our ability to decode their brain signals. 
Differences in top-down (i.e. attention) mechanisms, better ability 
to memorise images more generally, or both, could also lead to en
hanced representations. Interestingly, we could decode from both 
face and nonface categories, and across categories (training with 
face trials and testing on nonface trials) suggesting that the mech
anisms subtending the enhanced abilities of super-recognizers 
are not restricted to faces (4, 59).

Furthermore, while our decoding approach indicates that im
portant differences in brain processing emerge from early (80 ms) 
to late (∼1 s) processing windows, our RSA modeling approach 
only explained part of these processing windows. Specifically, 
while broad visual (∼150 ms) and semantic representations 
(∼600 ms) were found to differ in super-recognizers using this 
computational approach, it still remains to be shown what specif
ic representations are critical in differentiating the best face 
recognizers during other windows of processing (e.g. mid-late pro
cessing around 400 ms).

Conclusion
Our results offer a stepping stone for a better understanding of 
face recognition idiosyncrasies in the human brain. Indeed, with 
the development of novel and better artificial models simulating 
an increasing variety of cognitive processes, and with the techno
logical advances allowing the processing of increasingly larger 
neuroimaging datasets, the approach described here provides a 
new and promising way to tackle the link between individual dif
ferences in human behavior and specific computations in the 
brain. In addition, this decoding approach may provide quick 
and accurate alternatives to standardized behavioral tests assess
ing face recognition ability, for example in the context of security 
settings that benefit from strong face processing skills among 
their personnel (such as police agencies, border patrol, etc.). It 
could also be used in a closed-loop training procedure designed 
to improve face recognition ability (82).

Methods
Participants
A total of 33 participants were recruited for this study. The first 
group consisted of 16 individuals with exceptional ability in face 
recognition—super-recognizers. The second group was composed 
of 17 neurotypical controls. These sample sizes were chosen ac
cording to the effect sizes described in previous multivariate ob
ject recognition studies (46, 47, 57). The data from one 
super-recognizer were excluded due to faulty EEG recordings. 
No participant had a history of psychiatric diagnostic or neuro
logical disorder. All had normal or corrected to normal vision. 
This study was approved by the Ethics and Research Committee 
of the University of Birmingham, and informed consent was ob
tained from all participants.

Sixteen previously known super-recognizers were tested in the 
current study (30–44 years old, 10 female). Eight of these (SR1–SR8) 
were identified by Prof. Josh P. Davis from the University 
of Greenwich using an online test battery comprising a total of 
six face cognition tasks (6) and tested at the University of 
Birmingham. The remaining eight (SR9 to SR16) were identified us
ing three challenging face cognition tests (7) and were tested at the 
University of Fribourg. The behavioral test scores for all partici
pants are provided in Tables S1 and S2. Across SR cohorts, the 
Cambridge Face Memory Test long form (CFMT+ (8)) was used as 
the measure of face identity processing ability. A score greater 
than 90 (i.e. 2 SD above average) is typically considered the thresh
old for super-recognition (8, 59, 83). Our 16 super-recognizers all 
scored above 92 (M = 95.31; SD = 2.68). A score of 92 corresponds 
to the 99th percentile according to our estimation from a group 
of 332 participants from the general population recruited in three 
independent studies (24–26).

An additional 17 typical recognizers (20–37 years old, 11 fe
male) were recruited and tested on campus at the University of 
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Fribourg (n = 10) and the University of Birmingham (n = 7). Their 
CFMT+ scores ranged from 50 to 85 (M = 70.00; SD = 9.08). 
Neither the average nor the distribution of this sample differed 
significantly from those of the 332 participants from the general 
population mentioned above (see Fig. 1a; t(346) = 1.3065, P =  
0.1922; two-sample Kolmogorov–Smirnov test; D(346) = 0.2545, 
P = 0.2372).

Tasks
CFMT+ 
All participants were administered the CFMT long form, or 
CFMT + (8). In the CFMT+, participants are required to memorize 
a series of face identities, and to subsequently identify the newly 
learned faces among three faces. It includes a total of 102 trials of 
increasing difficulty. The duration of this test is about 15 min. EEG 
was not recorded while participants completed this test.

One-back task
Stimuli
The stimuli used in this study consisted of 49 images of faces, an
imals (e.g. giraffe, monkey, puppy), plants, objects (e.g. car, com
puter monitor, flower, banana), and scenes (e.g. city landscape, 
kitchen, bedroom). The 24 faces (13 identities, 8 males, and 8 neu
tral, 8 happy, 8 fearful expressions) were sampled from the 
Radboud Face dataset (84). The main facial features were aligned 
across faces using Procrustes transformations. Each face image 
was revealed through an ellipsoid mask that excluded nonfacial 
cues. The nonface images were sampled from the stimulus set 
of Kiani et al. (85). All stimuli were converted to 250 × 250 pixels 
(8 × 8° of visual angle) grayscale images. The mean luminance 
and the luminance SD of these stimuli were equalized using the 
SHINE toolbox (86).

Procedure
We measured high-density electroencephalographic (EEG; sam
pling rate = 1,024 Hz; 128-channel BioSemi ActiveTwo headset) 
activity while participants performed ∼3,200 trials of a one-back 
task in two recording sessions separated by at least one day and 
by a maximum of 2 weeks (Fig. 1b). Participants were asked to 
press a computer keyboard key on trials where the current image 
was identical to the previous one. Repetitions occurred with a 0.1 
probability. They were asked to respond as quickly and accurately 
as possible. Feedback was done in the form of a change in color of 
the fixation point (red or green) after a repetition trial (which hap
pened on a 0.1 probability basis). This was done to help partici
pants pay attention during the task. Target trials were not 
excluded from the analyses. A trial unravelled as follows: a white 
fixation point was presented on a gray background for 500 ms 
(with a jitter of ± 50 ms); followed by a stimulus presented on a 
gray background for 600 ms; and, finally, by a white fixation point 
on a gray background for 500 ms. Participants had a maximum of 
1,100 ms following stimulus onset to respond. This interval, as 
well as the 200 ms preceding stimulus onset, constituted the 
epoch selected for our EEG analyses. In total, our participants 
completed 105,600 one-back trials which constituted ∼32 h of 
EEG epochs.

Shape and sentence meaning multiple arrangement tasks
Thirty-two new neurotypical participants took part in two mul
tiple arrangement tasks (22, 87) in counterbalanced orders. In 
two of the tasks, they were asked to evaluate the shape or function 
similarities of the 49 stimuli used in the main experiment while, in 

the other task, they were instructed to judge the meaning similar
ities of sentence captions describing these stimuli (see the 
Semantic caption-level deep averaging neural network RDM sec
tion for more information about these sentence captions).

More specifically, participants were asked to arrange stimuli or 
sentence captions on a computer screen inside a white circular 
arena by using computer mouse drag and drop operations. 
During the shape/function (vs. meaning) multiple arrangement 
task, they were instructed to place the displayed visual stimuli 
(vs. sentence captions) in such a way that their pairwise distances 
match their shape/function (vs. meaning) similarities as much as 
possible (Fig. 4). On the first trial of each task, participants ar
ranged all 49 items. On subsequent trials, a subset of these items 
was selected based on an adaptive procedure aimed at minimizing 
uncertainty for all possible pairs of items (e.g. items that initially 
were placed very close to each other) and at better approximating 
the high-dimensional perceptual representational space (87). This 
procedure was repeated until the task timed out (20 min).

We computed one representational dissimilarity matrix (RDM) 
per task per participant. Three participants were excluded from 
the final sample because their RDMs differed from the mean 
RDMs by more than 2 SDs. Finally, we averaged the remaining in
dividual RDMs within each task.

Analyses
All reported analyses were performed independently for each EEG 
recording session and then averaged. Analyses were completed 
using custom code written in MATLAB (MathWorks) and Python.

EEG preprocessing
EEG data were preprocessed using FieldTrip (88): continuous raw 
data were first rereferenced relative to Cz, filtered with a band- 
pass filter (0.01–80 Hz), segmented into trial epochs from −200 to 
1,100 ms relative to stimulus onset, and down-sampled at 256 Hz.

Decoding analyses
Whole-brain analyses
To predict group membership from EEG brain activity, we trained 
Fisher linear discriminant classifiers to predict participants’ group 
membership based on raw EEG topographies, using all 128 chan
nels of single-trial EEG data as features. Notably, here, the decod
ing is made on an across-participants basis. This was done across all 
trials of either face or nonface condition, for each of the two ses
sions separately (∼26,000 observations per condition, per session, 
5-fold cross-validation, 5 repetitions (89, 90)). The number of trials 
was matched across participants. This process was repeated over 
all EEG time samples separately, starting from −200 ms and end
ing to 1,100 ms after stimulus onset, creating decoding accuracy 
time courses. The area under the curve (AUC) was used to assess 
sensitivity. Decoding time courses were averaged across the two 
EEG sessions. The resulting evidence indicates when super- 
recognizers can be categorized from brain activity when process
ing faces (blue) and nonface stimuli (gray), as shown in Fig. 2a. 
Additional control decoding analyses investigating effects of one- 
back trials on the predictions are shown in Fig. S1. These trials re
quired that our participant compared their representations of the 
presented image and the one stored in short-term memory. This 
showed similar findings, with one notable difference being that 
the face–face discrimination condition was the one that obtained 
peak decoding accuracy.
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Searchlight analysis
We conducted a searchlight analysis decoding EEG signals from 
all subsets of five neighboring channels to characterize the scalp 
topographies of group-membership AUC. This searchlight ana
lysis was done either using the entire EEG time series of a trial 
(0–1,100 ms; Fig. 2b, leftmost topographies) or using 60 ms tem
poral windows (centered on 135, 350, 560, and 775 ms; Fig. 2b 
rightmost topographies). We ran additional control searchlight 
decoding procedures investigating the effect of one-back trials 
(Fig. S1).

Regression analysis
We used fractional ridge regression models (39) to predict individ
ual face recognition ability scores (CFMT+) among the typical rec
ognizers from EEG patterns across time. We trained our model on 
subsets of 60% of the EEG patterns. We chose the alpha hyper
parameter with the best coefficient of determination among 20 al
pha hyperparameters ranging linearly from 0.001 to 0.99 applied 
on a 30% validation set. The decoding performance was assessed 
using the Spearman correlation between the CFMT+ scores and 
predictions from the overall best model (applied on the remaining 
10% of EEG patterns). This process was repeated 10 times and the 
Spearman correlations were averaged. Significance was assessed 
using a permutation test (see the Group comparison and inferen
tial statistics section).

Representational similarity analysis of brain 
and computational models
We compared our participants’ brain representations to those 
from visual and semantic (caption-level) artificial neural net
works using RSA (20–22, 42).

Brain RDMs
For every participant, we trained a Fisher linear discriminant to 
distinguish pairs of stimuli from every 4-ms intervals of EEG re
sponse (on all 128 channels) to these stimuli from −200 to 
1,100 ms after stimulus onset (91, 92). Cross-validated AUC served 
as pairwise classification dissimilarity metric. By repeating this 
process for all possible pairs (1,176 for our 49 stimuli), we obtained 
an RDM. RDMs are shown for selected time points in Fig. S4.

Visual convolutional neural network RDMs
We used a pretrained AlexNet (43) as one model of the visual com
putations along the ventral stream (45). Our 49 stimuli were input 
to AlexNet. Layerwise RDMs were constructed comparing the unit 
activation patterns for each pair of images using Pearson correla
tions. Similarly, we computed layerwise RDMs from another well- 
known CNN, VGG-16 (see Fig. S5). Following previous studies 
using this model (93, 94), we averaged the convolutional layer 
RDMs situated between each max pooling layers and the layers’ 
input into five aggregated convolutional RDMs (e.g. conv1-1 and 
conv1-2 into RDM-conv1); this facilitated the comparison of our 
results with the five convolutional layers of AlexNet.

Semantic caption-level deep averaging neural network RDM
We asked five new participants to provide a sentence caption de
scribing each stimulus (e.g. “a city seen from the other side of the 
forest,” see Fig. 1d) using the Meadows online platform (www. 
meadows-research.com). The sentence captions were input in 
GUSE (50) resulting in 512-dimensional sentence embeddings for 
each stimulus. We then computed the dissimilarities (cosine 

distances) between the sentence embeddings across all pairs of 
captions, resulting in a semantic caption-level RDM for each par
ticipant. The average RDM was used for further analyses.

Comparing brain representations with 
computational models
We compared our participants’ brain RDMs to those from the vi
sion (Fig. 3b) and semantic (Fig. 3c) models described in the previ
ous section using conditional mutual information (CMI) (48), 
which measures the statistical dependence between two variables 
(e.g. mutual information I(x; y)), removing the effect from a third 
variable (i.e. I(x; y|z)). Additional comparisons using uncon
strained mutual information between brain RDMs and both mod
els are shown in Figs. S5 and S8.

Group comparison and inferential statistics
Comparison of CMI
Time courses of CMI were compared between the super- 
recognizers and typical recognizers using independent samples t 
tests and a Monte Carlo procedure at a P-value of 0.05, as imple
mented in the Fieldtrip Toolbox (88). Familywise errors were con
trolled for using cluster-based corrections, with maximum cluster 
size as cluster-level statistic and an arbitrary t threshold for clus
ter statistic of (−1.96, 1.96) for the comparison of brain and seman
tic (excluding CNN) and for the comparison of brain and CNN 
(excluding semantic) time courses. The SE is shown for all curves 
as color-shaded areas (Fig. 3). Analyses with mutual information 
(MI) (brain; CNN) and MI (brain; semantic) were completed in an 
identical manner.

Time course of group-membership decoding
Significance was assessed using nonparametric permutation 
tests. We simulated the null hypothesis by training the linear clas
sifier to identify shuffled group-membership labels from the ex
perimental EEG patterns. This process was repeated 1,000 times 
for each time point and each one of the two sessions. We then 
compared the real, experimental decoding value at each time 
point to its corresponding null distribution, and rejected the null 
hypothesis if the decoding value was greater than the prescribed 
critical value at a P < 0.001 level.

Time course of individual ability decoding using ridge 
regression
Significance was again assessed using nonparametric permutation 
testing. The ridge regression analysis predicted cross-validated 
CFMT+ scores from single-trial EEG patterns, and goodness of fit 
is reported using Spearman’s correlation between the predicted 
and observed CFMT+ scores. Under the null hypothesis that all par
ticipants elicited comparable EEG response patterns, irrespective of 
their CFMT+ score, the face recognition ability scores are exchange
able. We simulated this null hypothesis by repeating the ridge re
gression model training using randomly shuffled CFMT+ scores. 
The predicted CFMT+ scores were then correlated to the empirical, 
observed CFMT+ scores using Spearman’s correlation, and this was 
repeated 1,000 times for each time point. We finally compared the 
real, experimental correlation value with its corresponding null 
distribution at each time point, and rejected the null hypothesis 
if the correlation value was greater than the prescribed critical 
value at a P < 0.01 level.
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