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GNAQ/GNA11 Mosaicism Causes Aberrant
Calcium Signaling Susceptible to Targeted
Therapeutics

Davide Zecchin1,2,9, Nicole Knöpfel1,2,3,9, Anna K. Gluck4, Mark Stevenson4, Aimie Sauvadet1,2,
Satyamaanasa Polubothu1,2,3, Sara Barberan-Martin1,2, Fanourios Michailidis1,2, Dale Bryant1,2,
Asuka Inoue5, Kate E. Lines4, Fadil M. Hannan6, Robert K. Semple7, Rajesh V. Thakker4,8 and
Veronica A. Kinsler1,2,3
Mosaic variants in genes GNAQ or GNA11 lead to a spectrum of vascular and pigmentary diseases including
Sturge-Weber syndrome, in which progressive postnatal neurological deterioration led us to seek biologically
targeted therapeutics. Using two cellular models, we find that disease-causing GNAQ/11 variants hyperactivate
constitutive and G-protein coupled receptor ligandeinduced intracellular calcium signaling in endothelial
cells. We go on to show that the aberrant ligand-activated intracellular calcium signal is fueled by extracellular
calcium influx through calcium-release-activated channels. Treatment with targeted small interfering RNAs
designed to silence the variant allele preferentially corrects both the constitutive and ligand-activated calcium
signaling, whereas treatment with a calcium-release-activated channel inhibitor rescues the ligand-activated
signal. This work identifies hyperactivated calcium signaling as the primary biological abnormality in GNAQ/
11 mosaicism and paves the way for clinical trials with genetic or small molecule therapies.
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INTRODUCTION
Mosaic disorders are grouped by a common pathogenetic
mechanism, namely a single-cell variant occurring during
embryonic or fetal development which leads to a disease
phenotype in a percentage of the body only (reviewed in
[Kinsler et al, 2020]). Despite their monogenic nature, the
wide variability in timing and cell lineage of the variant leads
to protean clinical presentations, and gene discovery in the
last decade has led to reclassification of many diagnoses into
disease spectra (Keppler-Noreuil et al, 2015; Thomas et al,
2016).
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GNAQ and GNA11 mosaicism fits perfectly into this
complex mould. We now understand that this disease spec-
trum causes a range of vascular and/or pigmentary abnor-
malities, affecting most commonly any combination of the
skin, brain, and eyes. At the purely vascular end, diagnoses
include Sturge-Weber syndrome (SWS) (Kalischer, 1901,
Sturge, 1879, Weber, 1922), which if accompanied by spe-
cific pigmentary abnormalities is correctly named phako-
matosis pigmentovascularis (subtypes associated with dermal
melanocytosis [Happle, 2005; Hasegawa, 1979; Ota, 1947]
or PPV-DM). A purely pigmentary phenotype also exists
(Thomas et al, 2016), and both this and PPV-DM additionally
carry an increased risk of melanoma. Over the last decade,
SWS and PPV-DM have been discovered to be caused in
most cases by heterozygous postzygotic mosaic variants in
genes GNAQ or GNA11 (Jordan et al, 2020; Polubothu et al,
2020; Shirley et al, 2013; Thomas et al, 2016). For unknown
reasons GNAQ variants predominate in SWS, whereas
GNAQ and GNA11 are more evenly represented in PPV-DM
(Jordan et al, 2020; Polubothu et al, 2020; Shirley et al, 2013;
Thomas et al, 2016). Variants usually affect codon 183 of
each gene, very rarely codon 209 (Galeffi et al, 2022;
Thomas et al, 2016). GNAQ variants enriched in SWS
endothelial cells (Huang et al, 2017) suggested that these
were the cell of origin for the vascular end of the spectrum
and supported the clinical observation that the vascular
phenotype reflects embryonic vascular patterning (Waelchli
et al, 2014).

This work focuses on the vascular phenotype in this spec-
trum. The neurovascular abnormalities in SWS and PPV-DM
present with seizures, neurodevelopmental impairment,
headaches, and stroke-like episodes (Comi, 2007). Impor-
tantly, symptoms often worsen during the first year of life,
estigative Dermatology. This is an open access
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thought to be related to seizure-related damage as well as
cerebral perfusion defects (Comi, 2007). This postnatal pro-
gression suggests a tantalising window at which to target
therapy. Despite the genetic insights, there has been relatively
little exploration of the downstream biology. In vitro studies
in human embryonic kidney cells have demonstrated basal
activation of MAPK signaling downstream of disease-causing
GNAQ/11 variants (Shirley et al, 2013; Thomas et al, 2016);
however, this has not been confirmed in human endothelial
cells (Fjær et al, 2021; Huang et al, 2022). The only animal
modeling to date—in zebrafish—was restricted to recapitu-
lating the pigmentary and not the vascular phenotype
(Thomas et al, 2016).

We hypothesized that whatever the original mechanism
leading to the congenital vascular malformation, postnatal
neurological disease progression in SWS or PPV-DM may be
associated with disturbed local calcium handling in variant
endothelial cells. This hypothesis was based on several ob-
servations. Firstly, patients progressively develop neuro-
vascular calcification, visualised as classical “tram-lining” of
blood vessels on plain skull radiography (Weber, 1922).
Secondly, the proteins encoded by GNAQ and GNA11, G
subunit-aq and -a11 respectively, are known regulators of
intracellular calcium signaling in other contexts. Lastly,
pathogenic germline variants in GNA11 cause familial
hypocalciuric hypercalcaemia type 2 and autosomal domi-
nant hypocalcaemia type 2 (Nesbit et al, 2013; Wettschureck
et al, 2007). By modeling the commonest causative GNAQ/
GNA11 variants in endothelial cells, this work identifies
calcium signaling as a fundamental downstream cellular
abnormality. Design and testing of targeted genetic therapies
and repurposing of a small-molecule therapy identifies this
pathway as druggable, paving the way for clinical trials.
RESULTS
GNAQ/GNA11 variants cause constitutive activation of
intracellular calcium signaling in endothelial cells

Transgenic telomerase-immortalised microvascular endothe-
lial (TIME) cells were used to characterise the effects of var-
iants on calcium signaling. To this aim, TIME parental cells
were transduced with lentiviral vectors to induce stable
expression of hemagglutinin-tagged forms ofGNAQwildtype
(WT), GNAQ p.(R183Q), GNA11 WT, or GNA11 p.(R183C)
cDNAs (Supplementary Figure S1a and b). Transduced lines
expressed WT/variant hemagglutinin-tagged transgenes at
similar levels (Supplementary Figure S1c), and total expres-
sion of Gaq or Ga11 in the respective transgenic models was
higher but within the same order of magnitude as endoge-
nous expression observed in parental TIME cells
(Supplementary Figure S1d and e). Strikingly, basal calcium
signaling was highly significantly increased in both TIME-
GNAQR183Q and TIME-GNA11R183C variant cells compared
to WT controls, as demonstrated by a sharp increase in
inositol-1-phosphate accumulation in both complete and
nutrient-deprived medium (Figure 1a). On the other hand, no
differences were seen in basal MAPK activation between
variant and WT (Figure 1b and Supplementary Figure S2a).
Ectopic expression of GNAQ or GNA11 WT transgenes
decreased basal calcium signaling but had no effect on
Journal of Investigative Dermatology (2024), Volume 144
constitutive MAPK activation compared with TIME parental
cells (Figure 1a and b).

To validate our findings in a second cellular system without
interference from endogenous Gaq and Ga11, human em-
bryonic kidney double knock out (DKO) Gaq/
11;CaSR;nuclear factor of activated T-cells (NFAT)-Luc cells
were transfected with vectors for expression of GNAQWT,
GNAQR183Q, GNA11WT, or GNA11R183C hemagglutinin-
tagged cDNAs (Supplementary Figure S2b). This model,
therefore, uses calcium as an extracellular G-protein coupled
receptor (GPCR) ligand, which leads to intracellular calcium
signaling. Untransfected cells were appropriately unrespon-
sive to extracellular calcium stimulation, whereas transfected
cells showed increased luciferase signal, validating the
model (Figure 1c). Variant GNAQ and GNA11 cells had
significantly increased NFAT-driven luciferase signal
compared with WT, in the absence of extracellular calcium
(Figure 1c), confirming basal constitutive activation of cal-
cium signaling.

Levels of CASR expression were undetectable in variant
and WT GNAQ TIME cell lines, and in CD31þ cells isolated
from a vascular cutaneous lesion of a patient with SWS
(Supplementary Figure S2c).

Variant GNAQ amplifies and prolongs GPCR-
ligandeinduced intracellular calcium signaling in
endothelial cells, fueled by extracellular calcium influx

The dynamics of calcium signaling activation in TIME cells
upon GPCR ligand stimulation were studied using thrombin
as the prototypical GPCR stimulant in this cell type
(Korhonen et al, 2009). TIME-GNAQR183Q showed signifi-
cantly increased and prolonged levels of intracellular cal-
cium compared with TIME-GNAQWT in response to thrombin
stimulation, an effect not seen in TIME-GNA11R183C

(Figure 1d and e). Strikingly, this difference was entirely
abolished by removing calcium from the extracellular buffer
(Figure 1f), identifying influx of extracellular calcium as the
reservoir for the ligand-induced aberrant signal. TIME-
GNAQR183Q and -GNA11R183C also showed increased levels
of phosphorylated extracellular signaleregulated kinase or
extracellular signaleregulated kinase after thrombin stimu-
lation compared with their respective WT controls (Figure 1g)

Variant alleleespecific small interfering RNAs (siRNAs)
rescue basal and ligand-induced aberrant calcium signaling
in two endothelial cell models

siRNAs were designed and optimised for specific knock-
down of GNAQ c.548G>A, p.(R183Q) or GNA11
c.547C>T, p.(R183C) transcripts while sparing the WT al-
leles, as a molecular tool to study the biological effects of
these variants and as potential therapeutic agents for the
treatment of these diseases. Two siRNAs which successfully
knocked down variant Gaq protein and one targeting variant
Ga11 over the respective WT counterparts were identified
(Figure 2aed). An siRNA targeting to the same extent both
WT and variant GNAQ alleles was also identified (Figure 2a)
and used as an additional control in further experiments. All
three variant alleleespecific siRNAs rescued constitutive
basal calcium signaling activation in TIME GNAQR183Q and
TIME GNA11R183C cells as measured using the inositol-1-
phosphate assay. The non-specific siRNA produced a
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Figure 1. Effect of GNAQ/GNA11 variants on constitutive and ligand-induced intracellular calcium and ERK signaling in endothelial cells. (a) TIME

recombinant or parental cell lines were assayed for concentration of IP1 in complete medium and starvation conditions. The graph represents the mean � SD of

8 independent experiments. Statistical comparison among conditions was by two-tailed unpaired t-test (****P < .0001, ***P ¼ .0003, **GNA11WT versus

GNA11R183C P ¼ .0059, **GNA11WT versus parental P ¼ .0025, *P < .05, n.s. ¼ nonsignificant). (b) Densitometric analysis performed on a minimum of five

independent western blot experiments on TIME cell lines in complete medium or after 1-hour acute starvation. Results are shown as mean � SD. Two-tailed

unpaired t-tests did not reveal statistically significant differences between GNAQ or GNA11WTand variant cell lines in any condition (n.s. ¼ nonsignificant, *P

GNAQWT versus parental starvation ¼ .048, *P GNA11WT versus parental starvation ¼ .032). (c) HEK DKO Gaq/11; CaSR;NFAT-Luc cells were transfected with
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similar effect as variant-specific siRNAs (Figure 2e), proving
the prevalent effect of the variant protein on activation of the
pathway.

To validate this result using a second assay, TIME-
GNAQR183Q cells were engineered to incorporate stably a
NFAT-luciferase calcium signaling reporter (Figure 2f), in
which treatment with siRNA once again normalised basal
calcium signaling. TIME-GNAQR183Q were then transfected
with oligos and intracellular calcium accumulation measured
after thrombin stimulation. The aberrantly-prolonged
response of TIME-GNAQevariant cells to thrombin was
rescued to a similar extent by silencing of the variant tran-
script or by treatment with siRNA targeting both GNAQ al-
leles (Figure 2g), strongly tying the variant to both the basal
and ligand-induced signaling abnormality.

Calcium-release-activated channel (CRAC) inhibition
rescues aberrant calcium signaling in variant cells

Activation of G-proteins downstream of GPCRs in physiolog-
ical conditions leads to generation of inositol tris-phosphate
and opening of the intracellular inositol tris-phosphatee-
gated calcium channel of the endoplasmic reticulum (Michell,
1975; Michell et al, 1981). Endoplasmic reticulum emptying
then triggers replenishment of calcium stores through opening
of cell membrane CRAC and intracellular influx of extracel-
lular calcium. We, therefore, hypothesized that increased
activation of calcium signaling downstreamof variantGaqwas
driving influx of extracellular calcium through CRAC. In sup-
port of this, treatment with CRAC specific inhibitor Auxora
(CM4260, CalciMedica, La Jolla, CA) markedly rescued the
prolonged calcium intracellular peak in GNAQ-variant cells
(Figure 3a and b), with only limited effects on thrombin-
induced calcium signaling in TIME parental (Supplementary
Figure S2d) or GNAQWT cells (Figure 3a and b). CRAC inhi-
bition had comparatively little effect on basal calcium
signaling and only at higher concentrations (Figure 3c).

In vitro angiogenesis is disrupted by variant GNAQ and
rescued by CRAC inhibition

TIME endothelial cell models were then used to assess angio-
genesis using a standard in vitro angiogenesis assay
(Arnaoutova and Kleinman, 2010). TIME-GNAQR183Q cells
had significantly impaired tubule formation in basement
membranematrix (Figure 4aec), linking the variant not only to
the pathogenesis of the vascular malformations but also to the
the GNAQWT, GNAQ R183Q, GNA11WT, or GNA11R183C constructs and treated

activation of CaSR and downstream G-protein signaling. Luciferase activity was

three independent experiments. Statistical comparison among different conditions

parental cell lines were loaded with intracellular calcium probe Fluo-8 and stimu

over the time were recorded and normalised to maximum and minimum respon

independent experiments performed with four technical replicates. Statistical tes

deviation of areas under the curve calculated from three experiments summarised

test (n.s. ¼ statistically nonsignificant, * P ¼ .049). (f) TIME-GNAQWT or GNAQR

thrombin (1U/Ml) in HBSS standard buffer (yellow and blue lines) or after 100-sec

in fluorescence over the time were recorded and normalised to maximum and m

average of three independent experiments performed with six technical replicate

blot time-course analysis of TIME recombinant cell lines starved for 1 hour and

probed with the indicated antibodies. Densitometric quantification of pERK/ERK b

variant cells compared with WT counterparts following 30 or 100 treatment by thr

area under curve; ERK, extracellular signaleregulated kinase; HBSS, Hanks’ Bala

n.s., nonsignificant; pERK, phosphorylated ERK; TIME, telomerase-immortalised
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postnatal cellular behaviour. Furthermore, thrombin-GPCR
activation disrupted angiogenesis in TIME-GNAQR183Q more
than in TIME-GNAQWT (Figure 4d). The impact of siRNA
knock-down of the variant allele on angiogenic properties was
technically very difficult to discern because of nonspecific
toxicity of in vitro transfection and the impact on survival of
variant cells challenged by new conditions. Treatment with
CRAC inhibitor CM4620; however, significantly improved
tubule formation specifically in TIME-GNAQR183Q (Figure 4e),
though the effect size was modest.
DISCUSSION
Despite the congenital nature of the vascular malformations,
the GNAQ/11 mosaicism spectrum frequently has progres-
sive postnatal neurological deterioration (Comi, 2007), sug-
gestive of a secondary, dynamic, and ongoing disease process
which might be preventable or treatable. This deterioration is
often associated with progressive accumulation of neuro-
vascular calcification that appears likely to contribute to the
problem of chronic anoxia underlying the abnormal cerebral
vasculature. Indeed, both levels of intracranial calcification
and venous hypoperfusion on radiological studies have been
correlated with neurological symptoms (Kelley et al, 2005;
Lin et al, 2006; Pilli et al, 2017). This led us to hypothesize
that brain calcifications may be signs of disturbed local cal-
cium homeostasis, and that this process may contribute to the
postnatal progression of the disease.

Our results clearly demonstrate that GNAQ disease vari-
ants induce marked constitutive and GPCR ligandeinduced
hyperactivation of intracellular calcium signaling in micro-
vascular endothelial cells. We confirm previous negative re-
sults investigating the effect of variants on basal MAPK
signaling (Fjær et al, 2021; Huang et al, 2022), but demon-
strate GPCR ligandeinduced activation of MAPK. The cal-
cium signaling abnormalities extend across the plasma
membrane of variant cells into the surrounding environment,
inducing massively increased influx of calcium from the
extracellular space through CRAC. The exact mechanism
linking aberrant influx of calcium inside variant cells with
accumulation of mineral deposits within the lesions is
currently unknown and deserves further investigation,
possibly by using animal models or organothropic coculture
systems. Interestingly, the same variants lead also to disrupted
angiogenesis in vitro, implicating abnormal calcium
with vehicle or three concentrations of extracellular calcium to stimulate

measured 4 hours after stimulation. The graph represents the mean � SD of

was performed by two-tailed paired t-test (* P< .05). (d) TIME recombinant or

lated with thrombin (1U/Ml) in HBSS standard buffer. Changes in fluorescence

ses to calculate cytosolic (Ca2þ). The graph represents an average of three

t comparing GNAQR183Q and GNAQWT is described in (e). (e) Means � SD

in Figure 1d. Statistical comparisons were performed by two-tailed unpaired t-
183Q were loaded with intracellular calcium probe Fluo-8 and stimulated with

ond-long exposure to HBSS calcium-free buffer (black and red lines). Changes

inimum responses to calculate cytosolic Ca2þ level. The graph represents an

s. Statistical test performed by two-way ANOVA (****P <.0001). (g) Western

treated by vehicle or thrombin (1U/Ml) for the times indicated. Lysates were

ands showed increased activation of the pathway in both GNAQ and GNA11

ombin. One representative of three independent experiments is shown. AUC,

nced Salt Solution; HEK, human embryonic kidney; IP1, inositol-1-phosphate;

microvascular endothelial; WT, wild type.
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Figure 2. Identification of siRNAs for specific targeting of GNAQ or GNA11 variant alleles leads to rescue of aberrant calcium signaling in variant cells. (a)

TIME cells stably expressing either WT or p.(R183Q) HA-tagged Gaq were transfected by 50 nM siRNAs targeting GNAQ c.548G > A, p.(R183Q) allele and

analysed by western blot 24 hours after transfection. Lysates were probed with the indicated antibodies. siRNAs siGNAQmut #1 and 3 (squared with solid lines)

showed specific knockdown of variant protein over WT counterparts. siRNA siGNAQmut #2 (dotted square) knockeddown both variant and WT proteins. (b)

Densitometric quantification of bands from western blot experiments similar to the ones shown in Figure 2a (mean � SD of three experiments, * P < .05).

(c) TIME cells stably expressing either WTor p.(R183C) HA-tagged Ga11 were transfected by 25 nM siRNAs targeting GNA11 c.547C > T, p.(R183C) allele and

analysed by western blot 24 hours after transfection. Lysates were probed with the indicated antibodies. siRNAs siGNA11mut#4 (squared) showed specific
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signaling in the pathogenesis of the vascular malformations
as well as the postnatal phenotype.

Interestingly the results for TIME-GNA11R183C differed in
one regard from those of TIME-GNAQR183Q. Basal calcium
signaling, basal MAPK signaling, and ligand-induced MAPK
signaling were the same as for GNAQ, however, thrombin-
induced calcium signaling was not different between TIME-
GNA11R183C and TIME-GNA11WT cells. This raises the
interesting possibility that G subunit-aq and -a11 calcium
knockdown of variant protein over WT counterparts. (d) Densitometric quantific

Figure 2c (mean � SD of three experiments, * P < .05). (e) TIME-GNAQR183Q or -

(siSCRA), 25 nM siRNAs for specific silencing of the variant alleles (siGNAQmut

for silencing of GNA11 variant allele), or 25 nM siRNA targeting both variant and

after transfection and shown as mean � SD of three independent experiments. St

n.s.¼ nonsignificant). (f) TIME cells harbouring the GNAQR183Q variant were tra

antibiotic selection. TIME-GNAQ p.(R183Q); NFAT-Luc were transfected with n

GNAQ allele (siGNAQmut 1 and 3) and luciferase reporter activity was measur

starvation, shown as mean � SD of percentage change of cells transfected with m

by two-tailed unpaired t-test (*P < .05; **P < .01). (g) TIME cells harbouring GN

specific silencing of the variant GNAQ allele (siGNAQ1 and siGNAQ3), or siRN

after transfection they were loaded with Fluo-8 intracellular calcium dye and sti

intervals for up to 300 seconds. The graph shows the average of three independen

AUC, area under curve; ERK, extracellular signaleregulated kinase; HA, hemag

mutated; n.s., nonsignificant; pERK, phosphorylated ERK; siRNA, small interferin

microvascular endothelial; WT, wild type.

Journal of Investigative Dermatology (2024), Volume 144
signaling is triggered by different ligand-GPCR interactions, a
hypothesis potentially supported by subtle differences in the
vascular phenotype of patients with GNAQ and GNA11
mosaicism (Jordan et al, 2020).

These findings led us on to design and testing of two
therapeutic approaches to our knowledge previously unre-
ported. In the first we designed and screened siRNAs using a
tiling approach spanning the variants, and identified variant
alleleespecific siRNAs for both GNAQ and GNA11
ation of bands from western blot experiments similar to the ones shown in

GNA11R183C were not transfected or transfected with 25 nM nontarget siRNAs

1 and siGNAQmut 3 for targeting of GNAQ variant allele and siGNA11mut 4

WT GNAQ alleles (siGNAQ tot 2). IP1 concentration was measured 48-hours

atistical comparisons were performed by two-tailed unpaired t-test (**P < .01,

nsfected with NFAT-luciferase reporter and a stable clone was obtained after

ontarget siRNA (siSCRA) or two siRNAs for specific silencing of the variant

ed 48-hours after transfection in complete medium or after four hours of

ock in three independent experiments. Statistical comparisons were performed

AQR183Q were transfected with nontarget siRNA (siSCRA), two siRNAs for

A targeting both variant and WT GNAQ alleles (siGNAQ2). Forty-eight hours

mulated by thrombin 1U/ml while recording fluorescent signal at 1 second

t experiments. Statistical tests performed by one-way ANOVA (****P < .0001).

glutinin; HEK, human embryonic kidney; IP1, inositol-1-phosphate; mut,

g RNA; siSCRA; nontarget siRNA; TIME, telomerase-immortalised
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Quantification of angiogenesis assays (average of three independent experiment, mean � SD) demonstrates significant difference between WT and variant cells

in total length of the network (defined as combined lengths of segments, branches, and isolated elements) (b) and in the average number of nodes in the network
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significant difference between vehicle and thrombin (0.3U/Ml)etreated TIME GNAQR183Q, but no statistically significant difference for TIME GNAQWT. Results

shown as mean of a technical triplicate for each of 4 independent experiments. Statistical analysis was performed by two-tailed paired t-test on four independent
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causative variants. As a highly-targeted therapy directed to
the root cause of disease, these siRNAs rescued both the
baseline and the ligand-induced calcium signaling abnor-
malities in vitro. Indeed, siRNAs molecules, unlike other
approaches targeting downstream effectors, should be able to
correct any potential downstream signaling effect of variant
GNAQ/GNA11. siRNA therapies are increasingly appearing
in clinical trials and clinical practice (Esrick et al, 2021;
Sardh et al, 2019), and these previously undescribed mole-
cules offer the prospect of a genetic therapy approach in this
mosaic disorder.

In the second therapeutic approach, CRAC inhibitor
Auxora (CM4260, CalciMedica) was used to block the influx
of extracellular calcium, rescuing the aberrant intra-
endothelial calcium signaling in response to ligand stimu-
lation in TIME-GNAQR183Q. Blockage of CRAC may be a
potential therapeutic approach and clinical trials are
currently being explored, because CM4620 is already in
phase 2 clinical trials for the treatment of pancreatitis-
associated hypocalcaemia (trial NCT04195347). In our
study, CRAC inhibitor was also effective in improving
angiogenesis of variant endothelial cells. However, the
rescue was only partial, suggesting that other effectors
downstream variant G proteins, may affect the functional
properties of endothelial cells.

Taken together these findings demonstrate clearly that the
postnatal phenotype of vascular GNAQ/GNA11 mosaic dis-
orders are primarily diseases of calcium signaling and cal-
cium handling across variant cellular membranes and that
these pathways are druggable. The biological abnormalities
could conceivably be involved in the classical chronic pro-
gressive neurocalcification and the postnatal clinical
www.jidonline.org 817
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deterioration. These insights, therefore, offer potential thera-
peutic opportunities in postnatal disease progression in SWS
and PPV-DM.

MATERIALS AND METHODS
Cell lines

hTERT-immortalised microvascular endothelial cells (TIME-ATCC

CRL-4025, “TIME”) and their transgenic derivatives were authenti-

cated by short tandem repeat DNA profiling. TIME cell lines were

maintained in EBM-2 Endothelial Cell Growth Basal Medium-2

(Lonza, Basel, Switzerland; CC-3156), supplemented with EGM-2

BulletKit (Lonza CC-3162), and 3% fetal bovine serum (Gibco,

Carlsbad, CA).

TIME parental cells were transduced with lentiviral vectors to

induce stable expression of hemagglutinin-tagged forms of GNAQ

WT, GNAQ p.(R183Q), GNA11 WT, and GNA11 p.(R183C) cDNAs

(Supplementary Figure S1a), confirmed by Sanger sequencing

(Supplementary Figure S1b).

Human embryonic kidney DKO Gaq/11; CaSR;NFAT-Luc cells

were derived as follows: human embryonic kidney DKO Gaq/11

lacking functional GNAQ and GNA11 (Schrage et al, 2015) were

engineered to integrate NFAT-luciferase calcium reporter stably and

to overexpress the CaSR, and maintained in DMEM-Glutamax media

(Thermo Fisher Scientific, Waltham, MA) with 10% fetal bovine

serum (Gibco), 400 mg/ml Geneticin (Thermo Fisher Scientific) and

100ug/ml hygromycin (Thermo Fisher Scientific).
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SUPPLEMENTARY MATERIALS AND METHODS
GNAQ/GNA11 mosaicism causes aberrant calcium signaling
susceptible to targeted therapeutics.

Plasmids and reagents

GNAQ wildtype (WT), GNAQ c.548G>A, p.(R183Q),
GNA11 WT, and GNA11 c.547C>T, p.(R183C) cDNAs were
synthesized and cloned into a pcDNA3.1þ N-hemagglutinin
(HA) plasmid, fused in-frame at their N-terminus with an HA
tag (Genscript, Piscataway, NJ). Luciferase open reading
frame was excised from pLenti PGK V5-LUC Puro (Addgene,
Watertown, MA; 21471) by SalI and XbaI combined restric-
tion digestion, and HA-tagged GNAQ/11 cDNAs were
amplified and cloned into the digested pLenti-vector using
the In-Fusion HD Cloning kit (Takara Bio, Shiga, Japan; cat.
638947), following the on-line primer design tool and the
manufacturer’s instructions. The following antibodies were
used: anti-phospho-ERK T202/Y204 (cat. 9101, 1:1000) and
anti-ERK (cat. 9107, 1:1000) from Cell Signaling Technology
(Danvers, MA); anti-vinculin (cat. MA5-11690, 1:3000) from
Invitrogen (Waltham, MA), anti-HA (clone 16B12, cat.
901501, 1:2000) from BioLegend (San Diego, CA), and anti-
Gaq (cat. sc-136181, 1:200) from Santa Cruz Biotechnology
(Dallas, TX). CM4620 was obtained from MedChemExpress
(Monmouth Junction, NJ; cat. HY-101942).

Lentiviral particles production and transduction

Lentiviral particles were produced by transfecting HEK293T
cells in 10-cm tissue culture dishes with 0.93 mg pCMV-
VSVG, 2.79 mg delta-8.2 (Addgene) and 3.72 mg pLenti
GNAQWT, GNAQR183Q, GNA11WT or GNA11R183C mixture
(Lipofectamine, Invitrogen). After 48 hours of transfection,
virus particles in the supernatant were harvested and stored
at �80 oC. Telomerase-immortalised microvascular endo-
thelial (TIME) cells were transduced with GNAQWT,
GNAQR183Q, GNA11WT, or GNA11R183C lentiviral particles
in 6-well tissue culture dishes, in the presence of 8 mg/ml
polybrene and then selected using 4 mg/Ml puromycin.

Generation of transgenic TIME cell lines

TIME parental cells were transduced with lentiviral vectors to
induce stable expression of HA-tagged forms of GNAQ WT,
GNAQ p.(R183Q), GNA11 WT, and GNA11 p.(R183C)
cDNAs (Supplementary Figure S1a), and presence of the
mutations in the genomic DNA confirmed by Sanger
sequencing (Supplementary Figure S1b). Transduced lines
expressed WT or mutant forms of HA-tagged transgenes at
similar levels, and total expression of GNAQ-encoded pro-
tein Gaq in both GNAQ transgenic models was close to
endogenous expression observed in parental TIME cells
(Supplementary Figure S1cee).

Design and testing of mutation-specific small interfering
RNAs (siRNAs)

Six siRNAs specifically annealing to mutantGNAQ c.548G>
A, p.(R183Q) transcript were synthesized with the following
sense strand sequences:

siGNAQmut #1: UGCUUAGAGUUCAAGUCCC[dT][dT];
siGNAQmut #2: GCUUAGAGUUCAAGUCCCC[dT][dT];
siGNAQmut #3: CUUAGAGUUCAAGUCCCCA[dT][dT];
siGNAQmut #4: UUAGAGUUCAAGUCCCCAC[dT][dT];
Journal of Investigative Dermatology (2024), Volume 144
siGNAQmut #5: UAGAGUUCAAGUCCCCACC[dT][dT];
siGNAQmut #6: AGAGUUCAAGUCCCCACCA[dT][dT].

Six siRNAs specifically annealing to mutant GNA11
c.547C>T, p.(R183C) transcript were synthesized with the
following sense strand sequences:

siGNA11mut #1: GUGCUGCGGGUCUGCGUGC[dT]
[dT]; siGNA11mut #2: UGCUGCGGGUCUGCGUGCC[dT]
[dT]; siGNA11mut #3: GCUGCGGGUCUGCGUGCCC[dT]
[dT]; siGNA11mut #4: CUGCGGGUCUGCGUGCCCA[dT]
[dT]; siGNA11mut #5: UGCGGGUCUGCGUGCCCAC[dT]
[dT]; siGNA11mut #6: CGGGUCUGCGUGCCCACCA[dT]
[dT].

TIME transgenic cells were transfected with siRNAs using
Lipofectamine RNAiMAX (Invitrogen) following manufac-
turer’s instructions.

We assayed these panels of mutant-specific siRNAs for their
ability to discriminate between WT and mutant transcripts of
GNAQ or GNA11 by transfecting TIME cells expressing the
respective HA-tagged transgenes and measuring the knock-
down of the WTor mutant HA-tagged proteins.

Two of six siRNAs designed to anneal specifically to the
mutant GNAQ transcript showed specific knockdown of the
mutant Gaq while sparing the product of WT GNAQ trans-
gene (Figure 2a and b). The same specificity was observed for
one out of six siRNAs targeting mutant GNA11 transcript
(Figure 2c and d)

Inositol-1-phosphate (IP1) assay

Intracellular concentrations of IP1, downstream metabolite of
inositol tris-phosphate, which is key mediator of intracellular
calcium signal, were quantified in TIME transgenic cells us-
ing HTRF-IP-One kit (Cisbio Bioassays) as per the manufac-
turer’s instructions. For IP1 experiments after GNAQ or
GNA11-mutant silencing, TIME cells were transfected with
siRNAs in antibiotic-free complete medium, medium was
replaced 18 hours after transfection and the IP1 assay was
performed 48 hours after transfection. Briefly, TIME cells
were trypsinized, and cell pellets resuspended in complete
medium and transferred to a 384-well microtitre plate at a
density of 50,000 cells per 7 ml in each well, and a total of
5e6 wells were used as technical replicates for each exper-
imental condition. To each well 7 ml of stimulation buffer
were added. After 90 minutes of incubation at 37 �C, 3 ml of
IP1-d2 conjugate and 3 ml of europium cryptateelabelled
anti-IP1 antibody dissolved in lysis buffer were added to
the cells. After incubation in the dark for 1 hour at room
temperature, fluorescence was sequentially measured at 620
and 665 nm in every well by Tecan Spark plate reader. To
account for potential errors in cell counting, 3 ml from the
same cell suspensions used for IP1 assay were also seeded in
individual wells of a 96-well plate in quadruplicate for each
condition and assayed by CellTiter-Blue Cell Viability Assay
(Promega, Madison, WI) shortly after attachment of the cells
to the surface of the wells (6 hours). Results from IP1 assay
were then further normalised to CellTiter-Blue readings.

Luciferase assay

HEK DKO Gaq/11;CASR;NFAT-Luc cells were seeded at
density of 10,000 cells per well in 96-well plates and trans-
fected with pcDNA3.1 GNAQWT, GNAQR183Q, GNA11WT,
or GNA11R183C plasmids (Lipofectamine 2000) using 40 ng,
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5 ng, 5 ng, and 4 ng of constructs, respectively, to obtain
similar expression levels of cDNAs. The day after trans-
fection, cells were starved for 16 hours in DMEM containing
25 mM HEPES, 0.45 mM CaCl2 and 0.01% fetal bovine
serum. After starvation, cells were treated with different
concentrations of CaCl2 in calcium-free DMEM containing
25mM HEPES for 4 hours and then lysates were collected in
Passive Lysis Buffer (Promega). Lysates were transferred to 96-
well assay plates and Firefly luciferase activity was measured
from individual wells by addition of luciferase assay reagent
(Promega cat. E1501) using a plate reader with automatic
injector (PHERAstar) and following the manufacturer’s
instructions.

Fluo-8 AM assay

Cells were seeded at density of 8000 cells per well in 96-well
plates and the next day were incubated in 2 mM Fluo-8 AM-
HBSS for 60 minutes at 37 �C, before replacing the dye-
containing solution with HBSS and incubating for another
30 minutes at room temperature. Cells were stimulated with
thrombin 10� solution in HBSS (final concentration 1U/ml)
and fluorescence recorded every second (excitation 490 nM/
emission 525 nM) using a plate reader with automatic
injector (PHERAstar).

For experiments in HBSS-free buffer, cells were incubated
in HBSS calcium-free for 100 seconds before stimulation by
thrombin.

For analysis of cells treated with siRNAs, cells were trans-
fected 48 hours before Fluo-8 AM loading.
Cytosolic calcium concentration was calculated using:
[Ca2þ]c ¼ KD(F-Fmin)/(Fmax-F), where KD is the constant of
dissociation of Fluo-8 for Ca2þ (389 nM), Fmax and Fmin are
the maximal and minimal fluorescence values determined
after addition of CaCl2 (10 mM) and Triton (0.1%) in HBSS or
BAPTA (10 mM) and Triton (0.1%) in Ca2þ-free HBSS,
respectively.

Endothelial tube formation assay

Individual wells of a 96-well plate with black walls were
coated with 33 ml per well growth factorereduced Geltrex
(catalog A1413202), or 120 ml per well were used to coat wells
in 24-well black plates. TIME GNAQ WT or R183Q were
trypsinized, counted and seeded in individual wells of a 96-
well plate (3,000 cells/well) or in 24-well plate (25,000 cells/
well). Thirtyminutes before the end of the incubation period of
8 hours, calceinAM (catalog C3099)was added to eachwell at
a final concentration of 2 mg/ml. Tube formation was imaged
with a �4 objective lens of EVOS FLoid Imaging System mi-
croscope. The degree of tube formation was assessed by
measuring total length of segments, branches, and isolated
elements in triplicate using randomly chosen fields from
each well using the angiogenesis analyzer for ImageJ (http://
image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-
for-ImageJ).

Statistical analysis

Differences between means were analysed by unpaired or
paired t-tests, assuming equal variances. Time-signal intensity
curves were compared by two-way ANOVA.
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alleles. (a) Schematic representation of the lentiviral expression vectors used to infect the TIME cell line and generate stable recombinant derivatives. (b) Sanger
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codon-183 for mutation confirmation. (c) Western blot analysis of TIME parental cells and TIME transduced with GNAQWT, GNAQR183Q, GNA11WT, or

GNA11R183C lentiviruses. The cell lysates were probed with the indicated antibodies. (d) Western blot analysis of TIME parental cells and TIME transduced with

GNAQWT or GNAQR183Q lentiviruses. The cell lysates were probed with the indicated antibodies. Quantification of the bands reported in figure represents the
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lentiviruses. The cell lysates were probed with the indicated antibodies. Quantification of the bands reported in figure represents the average of four independent

western blot experiments. ERK, extracellular signaleregulated kinase; HA, hemagglutinin; HEK, human embryonic kidney; mut, mutated; pERK, phosphorylated
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