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Longitudinal gut microbiome changes 
in immune checkpoint blockade-treated 
advanced melanoma

Multiple clinical trials targeting the gut microbiome are being conducted 
to optimize treatment outcomes for immune checkpoint blockade 
(ICB). To improve the success of these interventions, understanding 
gut microbiome changes during ICB is urgently needed. Here through 
longitudinal microbiome profiling of 175 patients treated with ICB for 
advanced melanoma, we show that several microbial species-level genome 
bins (SGBs) and pathways exhibit distinct patterns from baseline in patients 
achieving progression-free survival (PFS) of 12 months or longer (PFS ≥12) 
versus patients with PFS shorter than 12 months (PFS <12). Out of 99 SGBs 
that could discriminate between these two groups, 20 were differentially 
abundant only at baseline, while 42 were differentially abundant only after 
treatment initiation. We identify five and four SGBs that had consistently 
higher abundances in patients with PFS ≥12 and <12 months, respectively. 
Constructing a log ratio of these SGBs, we find an association with 
overall survival. Finally, we find different microbial dynamics in different 
clinical contexts including the type of ICB regimen, development of 
immune-related adverse events and concomitant medication use. Insights 
into the longitudinal dynamics of the gut microbiome in association with 
host factors and treatment regimens will be critical for guiding rational 
microbiome-targeted therapies aimed at enhancing ICB efficacy.

Immune checkpoint blockade (ICB) has revolutionized the field of 
oncology by prolonging the survival of patients with different tumor 
types at advanced stages1. However, only a subset of patients responds 
to ICB, and the treatment can induce a variety of immune-related 
adverse events (irAEs), including colitis2,3. Cross-sectional studies 
have assessed the gut microbiome before ICB initiation4–12, but the 
field is hampered by a lack of consensus as different studies often 
report different microbial biomarkers of response4—a heterogeneity 
that is probably the result of many methodological, biological and/
or clinical confounders but that also arises from the high intra- and 
inter-individual variation of the gut microbiome13–15. Despite the lack 
of a thorough understanding of underlying mechanisms, multiple 
microbiome-directed clinical trials are ongoing in the oncoimmunol-
ogy field, including fecal microbiota transplantation (FMT) trials16. 
To better interpret the findings from these trials and to increase our 

understanding of gut microbiome dynamics more generally and in the 
context of ICB, there is an urgent need for longitudinal microbiome 
studies along the course of ICB treatment.

In this Article, we therefore describe the profiling of the gut micro-
biome (via shotgun metagenomics followed by MetaPhlAn417 and 
microbial metabolic (MetaCyc)18 analyses) at four time points during 
the first 12 weeks of treatment in a multicenter cohort comprising 175 
patients treated with ICB for advanced melanoma (Extended Data Fig. 1).  
First, because patients received an immunotherapy infusion at each 
study visit (thus, the effect of ICB on the gut microbiome may increase 
as the treatment progresses), we hypothesize that many microbial 
abundances may increase or decrease over the treatment period. 
Second, because baseline abundances of several microbial taxa have 
already been shown to differ between ICB response and nonresponse, 
we further hypothesize that patients responding and not responding to 
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to disease progression or death, comparing patients achieving a PFS 
of 12 months or longer and patients with a PFS of less than 12 months. 
PFS12 was reached by 83 (47%) participants, and the overall median OS 
was 34.1 months (minimum of 0.39 months, maximum of 93.4 months; 
censoring date, 28 March 2023). OS was defined for a subset of patients 
(n = 147 patients) as the time in months from initiation of treatment 
to occurrence of death from any cause. Patients were followed over a 
maximum period of 7.3 years (median of 4.3 years) after providing the 
first fecal sample. Fecal samples were collected at baseline and three 
subsequent treatment visits over a period of 12 weeks (Methods and 
Extended Data Fig. 1).

Taxonomic profiling was performed at the level of species-level 
genome bins (SGBs) using MetaPhlAn4, which represent both exist-
ing and yet-to-be-characterized microbial species17. We first analyzed 
which SGBs’ and MetaCyc pathways’ relative abundances were differ-
entially abundant between patients with PFS ≥12 and PFS <12 months 
averaging over the effect of confounders such as therapy regimen, 
development of ICB-induced colitis and other irAEs, concomitant use 
of PPIs, previous use of antibiotics, previous v-raf murine sarcoma 
viral oncogene homolog B1 (BRAF) or mitogen-activated protein 
kinase (MEK)-targeted therapy, and cancer center (Methods). Each 
regression parameter in our Bayesian model was represented by 
a marginal posterior probability distribution. We computed post 
hoc contrasts (see Supplementary Table 1 for the number of patient 
samples per contrast and study visit) for which we concluded that a 
microbial SGB or pathway is differentially abundant between cases 
and controls if 90% of its posterior distribution does not cover zero 
(that is, 90% Bayesian confidence level (BCL); other BCLs are reported 
in Supplementary Tables 2–12). At 90% BCL, we observed 62 (14.3%) 

the treatment exhibit different patterns of microbial increase/decrease. 
To model this, we used a Bayesian regression model with higher-order 
interactions, allowing patients with progression-free survival (PFS) 
≥12 months and patients with PFS <12 months to exhibit different 
longitudinal (linear) trajectories for each microbial feature. While we 
focus on the overall comparison between patients with PFS ≥12 and 
PFS <12 months averaging over the effect of multiple confounders, our 
methodology also allowed us to analyze microbial dynamics between 
patients with PFS ≥12 and PFS <12 months in three relevant clinical 
scenarios, namely therapy regimen (mono versus combination ICB), 
the development of ICB-induced colitis and concomitant proton-pump 
inhibitor (PPI) use. The latter two have well-studied effects on the gut 
microbiome19,20.

Results
Cohort characteristics
Cohort characteristics are summarized in Table 1. We recruited 175 
patients from five distinct cohorts across the Netherlands, the United 
Kingdom and Spain who were treated with ICB for unresectable stage 
3 and stage 4 cutaneous melanoma, as previously described4–6,9–12. 
A total of 117 (67%) patients received single agent treatment with an 
anti-programmed cell death (PD)-1 antibody (nivolumab or pembroli-
zumab), while 58 (33%) patients received combination therapy with 
anti-PD-1 and anti-cytotoxic T-lymphocyte-associated antigen (CTLA)-4 
antibody (ipilimumab). We used the Response Evaluation Criteria in 
Solid Tumors (RECIST v.1.1) to determine tumor response (Methods). To 
capture patients who are alive or progression-free at late time points, we 
defined clinical endpoints as PFS at 12 months (PFS12) and overall sur-
vival (OS). PFS was defined as the time from the initial immunotherapy 

Table 1 | Cohort characteristics at study entry

PRIMM–UK 
(n = 54)

PRIMM–NL 
(n = 74)

Manchester (n = 17) Leeds  
(n = 19)

Barcelona 
(n = 11)

All cohorts 
(n = 175)

P value

Age (years), median (range) 64 (19–94) 60 (21–85) 66 (38–87) 57 (35–88) 64 (37–88) 63 (19–94) 0.127

Sex (female), n (%) 19 (35) 37 (50) 7 (41) 7 (37) 5 (45) 75 (43) 0.530

BMI (kg m−2), mean (range) 28.6 
(18.83–47.66)

27.02 
(15.43–40.74)

26.92 
(18.99–40.40)

28.46 
(20.90–38.57)

26.27 
(20.96–36.08)

27.63 
(15.43–47.66)

0.075

Metastatic stage, n (%) 0.006

  Stage 3 unresectable 5 (9) 2 (3) 0 (0) 1 (5) 0 (0) 8 (5)

  Stage 4 M1a 12 (22) 7 (9) 5 (29) 3 (16) 4 (36) 31 (18)

  Stage 4 M1b 12 (22) 14 (19) 2 (12) 5 (26) 5 (45) 38 (22)

  Stage 4 M1c 20 (37) 23 (31) 8 (47) 7 (37) 2 (18) 60 (34)

  Stage 4 M1d 5 (9) 28 (38) 2 (12) 3 (16) 0 (0) 38 (22)

BRAF mutant, n (%) 18 (33) 42 (57) 2 (12) 9 (47) 3 (27) 74 (42) 0.004

ECOG performance status ≥1, n (%) 36 (67) 17 (23) 8 (47) 2 (11) 1 (9) 64 (37) 1.729 × 10−6*

Outcomes following ICB

PFS ≥12 months, n (%) 27 (50) 32 (43) 8 (47) 11 (58) 5 (45) 83 (47) 0.824

irAEs, n (%) 38 (70) 44 (59) 9 (53) 9 (47) 7 (64) 107 (61) 0.399

Colitis, n (%) 13 (24) 10 (14) 3 (18) 4 (21) 3 (27) 33 (19) 0.570

Treatment details

ICB combination therapy (anti-CTLA-4/
anti-PD-1), n (%)

29 (54) 15 (20) 2 (12) 11 (58) 1 (9) 58 (33) 1.60 × 10−5*

Previous BRAF or MEK inhibition, n (%) 10 (19) 28 (38) 2 (12) 0 (0) 1 (9) 41 (23) 0.001*

PPI use at baseline, n (%) 13 (24) 24 (32) 4 (24) 6 (32) 1 (9) 48 (27) 0.495

Antibiotics use at baseline, n (%) 9 (17) 11 (15) 2 (12) 3 (16) 0 (0) 25 (14) 0.694

Baseline characteristics are presented as mean and s.d. or median (range) for continuous variables and as counts and percentages for categorical variables. χ2 tests for categorical variables 
and two-sided Wilcoxon tests for continuous data were performed to calculate differences between cohorts. P values written in bold indicate nominally significant differences between 
cohorts (P < 0.05). *Statistical significance under a false discovery rate of 5%. UK, United Kingdom; NL, the Netherlands.
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and 41 (9.4%) SGBs that exhibited increasing or decreasing slopes 
in patients with PFS ≥12 and PFS <12 months, respectively (Supple-
mentary Table 2), and 99 (22.8%) SGBs that were able to discriminate 
between patients with PFS ≥12 and PFS <12 months in at least one study 
visit (90% BCL; range: 342 (50% BCL)–3 (100% BCL); Supplementary 
Table 3). Of these 99 SGBs, 20 were differentially abundant only at 
baseline, 42 were differentially abundant only after the start of ICB 
and 5 and 4 remained at consistently higher abundances in patients 
with PFS ≥12 and PFS <12 months, respectively, at baseline and all sub-
sequent study visits (Fig. 1a and Supplementary Table 4). To aid in the 
interpretation, Fig. 1a,b displays the longitudinal trajectories (that is, 
slopes) of two example SGBs and one MetaCyc pathway for patients 
with PFS ≥12 and PFS <12 months, respectively. A clear example is 
Sellimonas intestinalis (SGB4617), which is not differentially abundant 
between patients with PFS ≥12 and PFS <12 months at baseline (as 
illustrated by a gray cell at T0 in Fig. 1a). Beyond baseline, however, the 
expected abundance (represented in centered log ratio coordinates) 
increases sharply (as illustrated by a vivid red cell in Fig. 1a) in patients 
with PFS <12 months while decreasing slightly (as illustrated by a light 
blue cell in Fig. 1a) in patients with PFS ≥12 months. Thus, the average 
difference between these two patient groups increases (in absolute 
terms) across the study visits (as illustrated by the increasingly darker 
brown shades from T1 towards T3 in Fig. 1a). The five SGBs that had 
consistently higher abundances in patients with PFS ≥12 months were 
Agathobaculum butyriciproducens (SGB14993 group), Intestinibacter 
bartlettii (SGB6140), Dorea sp. AF24 7LB (SGB4571), Lactobacillus 
gasseri (SGB7038 group) and Lacrimispora celerecrescens (SGB4868), 
whereof the latter two also exhibited increasing abundances (that 
is, positive slopes) over the study period (Fig. 1a and Supplementary 
Table 4). Three of these species have recently been associated with 
response in two new studies utilizing MetaPhlAn4, one meta-analysis21 
and one phase 1 FMT trial of ICB-naive patients22. These five spe-
cies represent fiber degrading taxa capable of short chain fatty acid 
(SCFA) synthesis that has been linked to plant-based diets12,23,24. Conse-
quently, we also observed higher abundances of metabolic pathways 
(PWY-6396: superpathway of 2,3-butanediol biosynthesis; PWY-P124: 
Bifidobacterium shunt; PWY-6435: 4-hydroxybenzoate biosynthesis 
V; and PWY-5088: l-glutamate degradation VIII (to propanoate)) 
involved in the synthesis of SCFAs or their precursors in patients 
with PFS ≥12 months across multiple study visits (Fig. 1c and Sup-
plementary Table 5), supporting a potential benefit of microbially 
produced SCFAs and an adjuvant role of fiber for ICB7,25. Patients 
with PFS <12 months, on the other hand, were enriched across all 
four study visits with Ruthenibacterium lactatiformans (SGB15271), 
Prevotella copri clade A (SGB1626), Ruminococcaceae unclassified 
(SGB15265 group) and an unidentified SGB from the phylum Bacte-
roidetes (SGB1957; Fig. 1a and Supplementary Table 4). In previous 
baseline studies, P. copri has been associated with ICB response26,27. 
However, in the recent meta-analysis by Thomas et al.21, this particular 
SGB (SGB1626) was only associated with response in 5/12 cohorts and 

with 3/9 different statistical methods. We found that patients with 
PFS <12 months exhibited higher abundances of several pathways 
involved in menaquinol (vitamin K) synthesis at baseline and during 
early treatment (Fig. 1c and Supplementary Table 5). Menaquinol 
synthesis pathways are enriched in various chronic inflammatory 
and cardiovascular diseases28–31. Fecal menaquinone levels have been 
correlated with the abundance of Prevotella and Bacteroides species 
and are susceptible to microbiome-targeted diets32, suggesting that 
menaquinol could represent an early marker of nonresponse that 
is amenable to dietary intervention. In contrast, patients achieving 
PFS12 exhibited higher abundances of a polyamine synthesis pathway 
(POLYAMINSYN3-PWY: superpathway of polyamine biosynthesis 
II) across the three study visits after baseline, but not at baseline. 
Polyamines are autophagy inducers33 that are implicated in immune 
regulation and have been shown to improve anti-cancer immunity 
in mice, synergizing with anti-PD ligand 1 immunotherapy22,34. Poly-
amines, including spermidine, are naturally occurring in foods and 
can be synthesized by the gut microbiome, suggesting a potential 
beneficial role for spermidine-enriched diets35.

To assess whether the five and four SGBs that had consistently 
higher abundances in patients with PFS ≥12 and PFS <12 months, 
respectively, could serve as a predictive marker for PFS12, we con-
structed a balance (a type of log ratio) between these SGBs and tested 
whether it could predict PFS12 in each study visit (Fig. 2a). We found 
that this balance could discriminate between patients with PFS ≥12 
and PFS <12 months in all but the last study visit (two-sided Wilcoxon 
test: PT0 = 0.00085, PT1 = 0.0007, PT2 = 0.0005 and PT3 = 0.1; Fig. 2b) 
with a moderate predictive ability across visits (area under the curve 
(AUC) from 100 times repeated five-fold cross-validation, measured 
as mean AUC ± standard deviation (s.d.): AUCT0 0.659 ± 0.092, AUCT1 
0.666 ± 0.091, AUCT2 0.739 ± 0.118 and AUCT3 0.655 ± 0.129; Fig. 2c). 
When we expanded this balance to include SGBs that were differentially 
abundant in all but the last study visit, its predictive ability increased 
across all study visits (AUCT0 0.771 ± 0.088, AUCT1 0.706 ± 0.094, AUCT2 
0.783 ± 0.118 and AUCT3 0.765 ± 0.138; Extended Data Fig. 3a,b). Stratify-
ing patients on the basis of whether they harbored higher or lower than 
median values of these two balances showed that patients above the 
median exhibited longer OS compared to patients below the median 
(first balance: OSHigh of 35.4 versus OSLow 28.4 months; hazard ratio (HR) 
of 1.669, P = 0.035; Fig. 2d; second balance: OSHigh of 37.0 versus OSLow 
of 26.9 months; HR of 1.792, P = 0.014; Extended Data Fig. 3c). Results 
did not quantitatively change when we substituted OS with continuous 
PFS (first balance: HR of 1.685, P = 0.022; second balance: HR = 2.25, 
P = 0.0004) and/or when we treated each balance as a continuous 
score (first balance: HROS = 0.828, POS = 0.001; second balance: HROS of 
0.752, POS = 0.0002; Extended Data Fig. 4; first balance: HRPFS of 0.829, 
PPFS = 0.0005; second balance: HRPFS of 0.727, PPFS = 8.93 × 10−6).

We next tested the generalizability of the balance described in 
Fig. 2a by computing it for patients from six independent melanoma 
cohorts5,7–10,12. Despite small sample sizes and large heterogeneity  

Fig. 1 | High-level view of gut microbiome dynamics in patients with PFS ≥12 
and PFS <12 months. a, For each microbial SGB listed, slopes are shown (that 
is, whether it is increasing or decreasing over study visits) in patients with PFS 
≥12 (n = 83) and PFS <12 months (n = 92), respectively. For increased readability, 
SGBs differentially abundant in only one study visit have been removed (see 
Extended Data Fig. 2 for all SGBs). Red and blue colors indicate whether the focal 
SGB is increasing or decreasing in its abundance over study visits, respectively, 
with the strength of the colors corresponding to the steepness of the slope, with 
darker shades indicating steeper increases/decreases. It then shows, in the teal–
brown heatmap, the average difference between the two slopes (that is, between 
patients with PFS ≥12 and PFS <12 months) across the different study visits. 
Non-gray cells in the heatmap correspond to the focal SGB’s log fold change in 
abundance between patients with PFS ≥12 and PFS <12 months, respectively. 
Teal cells correspond to study visits for which the abundance of the focal SGB 

is higher in patients with PFS ≥12 than with PFS <12 months, and vice versa for 
brown cells (at 90% BCL). Gray cells denote differences between patients with PFS 
≥12 and PFS <12 months whose 90% credible interval cover zero. b, Three example 
features and how they increase and/or decrease in their expected abundance 
(represented in centered log ratio coordinates) over the study visits in patients 
with PFS ≥12 months (yellow slope) and in patients with PFS <12 months (purple 
slope). For each microbial SGB or pathway, the inset figure then displays the 
average difference between the two slopes at each study visit, including its 90% 
credible interval. These averages are the same as depicted in the teal–brown 
heatmap in a, and significance is deemed by evaluating whether or not the 90% 
credible interval covers zero. c, Microbial pathways are shown, similar to the 
format in a. The number (n) represents the number of patient samples at each 
visit for patients with PFS ≥12 and PFS <12 months.
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in terms of DNA isolation protocols and sequencing platforms  
(Supplementary Table 6), this analysis showed that the balance 
achieves a comparable AUC in several of the independent cohorts 
(Extended Data Fig. 5a,b). However, only in the cohort with a  
reasonably large number of patients (N = 112) did we find that  
the balance could discriminate between patients with PFS ≥12 
 and PFS <12 months (two-sided Wilcoxon test, P = 0.04; Extended 
Data Fig. 5c). While limited in sample size (N = 27), the balance also 

predicted OS in one of the independent cohorts (P = 0.024; Extended 
Data Fig. 5d).

Our analysis also revealed several SGBs only associated with PFS12 
at baseline but not thereafter, many of which have not been previously 
reported in association with ICB, potentially owing to a lower resolution  
in taxonomic profiling (Extended Data Fig. 2 and Supplementary Table 4).  
For example, patients with PFS ≥12 months were enriched with 
Romboutsia timonensis (SGB6148), Limosilactobacillus fermentum 

f__FGB1217 | s__GGB2982_SGB3964 | t__SGB3964

f__Clostridia_unclassified | s__Candidatus_Parachristensenella_avicola | t__SGB58519
f__Lachnospiraceae | s__Blautia_wexlerae | t__SGB4837_group

f__Lachnospiraceae | s__Eisenbergiella_tayi | t__SGB4988
f__Lachnospiraceae | s__Ruminococcus_torques | t__SGB4608

f__Ruminococcaceae | s__Hydrogeniiclostidium_mannosilyticum | t__SGB14890
f__Clostridia_unclassified | s__Clostridia_bacterium | t__SGB14937

f__Clostridiales_unclassified | s__Clostridiales_bacterium | t__SGB15143
f__Ruminococcaceae | s__GGB9632_SGB15089 | t__SGB15089

f__Christensenellaceae | s__Christensenellaceae_bacterium_NSJ_53 | t__SGB82545
f__Clostridiaceae | s__Clostridium_sp_AF20_17LB | t__SGB4714

f__Erysipelotrichaceae | s__Faecalibacillus_faecis | t__SGB6750

f__Lachnospiraceae | s__Blautia_hydrogenotrophica | t__SGB4677
f__Lachnospiraceae | s__Sellimonas_intestinalis | t__SGB4617

f__Bacteroidales_unclassified | s__Phocaeicola_massiliensis | t__SGB1812
f__Barnesiellaceae | s__Coprobacter_fastidiosus | t__SGB1963

f__Clostridiaceae | s__Clostridiaceae_unclassified_SGB4769 | t__SGB4769
f__Lachnospiraceae | s__Anaerotignum_faecicola | t__SGB5190

f__Lachnospiraceae | s__Enterocloster_bolteae | t__SGB4758_group
f__Lachnospiraceae | s__Lachnospiraceae_bacterium | t__SGB4706

f__Lachnospiraceae | s__Lacrimispora_amygdalina | t__SGB4716
f__Ruminococcaceae | s__GGB9614_SGB15049 | t__SGB15049
f__Ruminococcaceae | s__GGB9705_SGB15225 | t__SGB15225

f__Tannerellaceae | s__Parabacteroides_distasonis | t__SGB1934
f__Bacteroidaceae | s__Bacteroides_clarus | t__SGB1832

f__Bacteroidales_unclassified | s__Phocaeicola_vulgatus | t__SGB1814
f__Clostridiales_unclassified | s__Clostridiales_unclassified_SGB15145 | t__SGB15145

f__Lachnospiraceae | s__Blautia_obeum | t__SGB4809
f__Ruminococcaceae | s__Gemmiger_SGB15299 | t__SGB15299

f__FGB602 | s__GGB1420_SGB1957 | t__SGB1957
f__Prevotellaceae | s__Prevotella_copri_clade_A | t__SGB1626

f__Ruminococcaceae | s__Ruminococcaceae_unclassified_SGB15265 | t__SGB15265_group
f__Ruminococcaceae | s__Ruthenibacterium_lactatiformans | t__SGB15271

f__Clostridia_unclassified | s__Clostridia_unclassified_SGB6276 | t__SGB6276
f__Veillonellaceae | s__Veillonella_parvula | t__SGB6939

f__Eggerthellaceae | s__GGB9361_SGB14336 | t__SGB14336
f__Lachnospiraceae | s__Dorea_sp_AF36_15AT | t__SGB4552_group

f__Clostridia_unclassified | s__GGB3293_SGB4348 | t__SGB4348
f__Lachnospiraceae | s__Anaerobutyricum_hallii | t__SGB4532

f__Lachnospiraceae | s__Coprococcus_catus | t__SGB4670
f__Lachnospiraceae | s__Coprococcus_comes | t__SGB4577_group

f__Ruminococcaceae | s__Gemmiger_SGB15295 | t__SGB15295_group
f__Bifidobacteriaceae | s__Bifidobacterium_adolescentis | t__SGB17244

f__Clostridiales_unclassified | s__Evtepia_gabavorous | t__SGB15120
f__Coriobacteriia_unclassified | s__Coriobacteriia_bacterium | t__SGB14770

f__Lachnospiraceae | s__Fusicatenibacter_saccharivorans | t__SGB4874
f__Ruminococcaceae | s__GGB9712_SGB15244 | t__SGB15244

f__Ruminococcaceae | s__Ruminococcaceae_unclassified_SGB15260 | t__SGB15260
f__Actinomycetaceae | s__Actinomyces_bouchesdurhonensis | t__SGB17152

f__Clostridiaceae | s__Clostridium_sp_AF15_49 | t__SGB5111
f__Eubacteriaceae | s__Eubacterium_sp_AM28_29 | t__SGB6796_group

f__Eubacteriaceae | s__Eubacterium_ventriosum | t__SGB5045
f__Lachnospiraceae | s__Eubacterium_rectale | t__SGB4933_group

f__Ruminococcaceae | s__GGB9640_SGB15115 | t__SGB15115
f__Ruminococcaceae | s__Ruminococcus_sp_NSJ_71 | t__SGB4290

f__Lachnospiraceae | s__Dorea_sp_AF24_7LB | t__SGB4571
f__Lachnospiraceae | s__Lacrimispora_celerecrescens | t__SGB4868
f__Lactobacillaceae | s__Lactobacillus_gasseri | t__SGB7038_group

f__Peptostreptococcaceae | s__Intestinibacter_bartlettii | t__SGB6140
f__Ruminococcaceae | s__Agathobaculum_butyriciproducens | t__SGB14993_group

0 1 2 3
Study visit

HOMOSER−METSYN−PWY: L−methionine biosynthesis I
MET−SAM−PWY: superpathway of S−adenosyl−L−methionine biosynthesis

METSYN−PWY: L−homoserine and L−methionine biosynthesis
PWY−5347: superpathway of L−methionine biosynthesis (transsulfuration)

PWY−6608: guanosine nucleotides degradation III
PWY−6749: CMP−legionaminate biosynthesis I

PWY0−1298: superpathway of pyrimidine deoxyribonucleosides degradation
ARGORNPROST−PWY: arginine, ornithine and proline interconversion

GLUCARDEG−PWY: D−glucarate degradation I
POLYISOPRENSYN−PWY: polyisoprenoid biosynthesis (E. coli)

PWY−6071: superpathway of phenylethylamine degradation
PWY0−321: phenylacetate degradation I (aerobic)

PWY0−845: superpathway of pyridoxal 5−phosphate biosynthesis and salvage
GLUCARGALACTSUPER−PWY: superpathway of D−glucarate and D−galactarate degradation

FUC−RHAMCAT−PWY: superpathway of fucose and rhamnose degradation
METHGLYUT−PWY: superpathway of methylglyoxal degradation

PWY−5004: superpathway of L−citrulline metabolism
PWY−5845: superpathway of menaquinol−9 biosynthesis

PWY−5850: superpathway of menaquinol−6 biosynthesis I
PWY−5860: superpathway of demethylmenaquinol−6 biosynthesis I

PWY−7371: 1,4−dihydroxy−6−naphthoate biosynthesis II
PWY66−388: fatty acid &alpha;−oxidation III

PWY66−389: phytol degradation
NAGLIPASYN−PWY: lipid IVA biosynthesis

PWY−5862: superpathway of demethylmenaquinol−9 biosynthesis
PWY−5896: superpathway of menaquinol−10 biosynthesis
PYRIDOXSYN−PWY: pyridoxal 5−phosphate biosynthesis I

GALACTARDEG−PWY: D−galactarate degradation I
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(SGB7106) and Blautia schinkii (SGB4825), while patients with PFS 
<12 months had higher abundances of Eubacterium siraeum (SGB4198 
group), Oscillibacter sp. ER4 (SGB15254) and Dysosmobacter sp. NSJ 60 
(SGB15124) at baseline but not at subsequent study visits (Extended 
Data Fig. 2 and Supplementary Table 4). Stratifying patients on the 
basis of the median value of a balance between the 9 and 11 SGBs that, 
only at baseline, had higher abundances in patients with PFS ≥12 and 
PFS <12 months, respectively, we could predict OS at baseline (OSHigh 
of 35.5 months versus OSLow of 28.4 months; HR of 1.639, P = 0.034; 
Extended Data Fig. 6).

Microbial associations that emerge after ICB initiation
While microbial taxa that are able to differentiate between patients 
with PFS ≥12 and PFS <12 months at baseline may serve as important 
predictive and/or prognostic biomarkers, studying microbial taxa 
longitudinally could derive novel mechanistic insights in addition to 
becoming a new way to monitor ICB efficacy and irAEs. Therefore, we 
next identified SGBs that were only discriminative of patients with PFS 
≥12 and PFS <12 months after ICB initiation. We found higher abun-
dances of several SCFA producers from the Lachnospiraceae family, 
which included Coprococcus comes (SGB4577 group), Coprococcus 
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therapy, PPI and antibiotics use.
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catus (SGB4670), Gemmiger (SGB15295 group) and Anaerobutyricum 
hallii (SGB4532) in patients with PFS ≥12 months after ICB initiation 
(Fig. 1a and Supplementary Table 4). These species have previously 
been associated with increased response and OS in patients treated 
with immunotherapy8,12,36,37, but also with general health and a lower 
risk for metabolic and chronic inflammatory diseases28. Patients with 
PFS <12 months, on the other hand, showed an increase in Clostrid-
ium spiroforme (SGB6747), several other Lachnospiraceae (Blautia 
hydrogenotrophica (SGB4677), Blautia wexlerae (SGB4837 group), 
Ruminococcus torques (SGB4608), Sellimonas intestinalis (SGB4617) 
and Eisenbergiella tayi (SGB4988) and Erysipelotrichaceae (Turicibacter 
sanguinis (SGB6847) and Faecalibacillus faecis (SGB6750)) species 
only after the start of ICB (Fig. 1a and Supplementary Table 4). Recent 

studies have reported that Eisenbergiella sp., B. wexlerae, C. spiroforme 
and Erysipelotrichaceae were associated with resistance to ICB4,36 and 
enriched in patients with more aggressive tumors38.

Abundance patterns in patients with PFS ≥12 and <12 months 
during ICB
Next, we took a closer look at specific abundance patterns in patients 
with PFS ≥12 and PFS <12 months over the study period. Here, we assess 
whether microbial abundances reversed, converged or diverged from 
baseline in patients with PFS ≥12 and PFS <12 months over the study 
period. We found that 22.8% (90% BCL; range: 74.7% (50% BCL)–0.7% 
(100% BCL)) of the SGBs increased or decreased after treatment ini-
tiation (Supplementary Table 3). Focusing on the aforementioned 99 
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Fig. 3 | Different taxon dynamics in patients with PFS ≥12 and PFS 
<12 months. a–d, Four different dynamics exemplified by different microbial 
SGBs with different dynamics in patients with PFS ≥12 (n0 = 62, n1 = 77, n2 = 38 and 
n3 = 30) and PFS <12 (n0 = 74, n1 = 69, n2 = 34 and n3 = 24) months, where the slopes 
of patients with PFS ≥12 months (yellow slopes) and patients with PFS <12 months 
(purple slopes) diverge from similar baseline abundances (a, dynamics 2a, 
Extended Data Fig. 7a), where the slopes of patients with PFS ≥12 and PFS 
<12 months are crossing (b, generating opposite abundance patterns when 
comparing baseline to the last study visit, dynamics 3b, Extended Data Fig. 7b),  
where the slope of the patients with PFS <12 months is relatively unchanged 

across the study visits compared to the slope of the patients with patients with 
PFS ≥12 months (c, dynamics 1c, Extended Data Fig. 7c); where the slope of the 
patients with PFS ≥12 months is relatively unchanged across the study visits 
compared to the slope of the patients with PFS <12 months (d, dynamics 2c, 
Extended Data Fig. 7c). The y axis shows the expected abundance (represented in 
centered log ratio coordinates) for each study visit (x axis). The corresponding 
inset figures show the average difference between patients with PFS ≥12 and PFS 
<12 months at each study visit, including its 90% credible interval. The number 
(n) represents the number of patient samples at each visit for patients with PFS 
≥12 and PFS <12 months.
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Fig. 4 | Divergent signals in monotherapy versus combination therapy. 
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monotherapy (PFS ≥12: n0 = 41, n1 = 49, n2 = 29 and n3 = 25; PFS <12: n0 = 49, n1 = 48, 
n2 = 25 and n3 = 18) compared to combination therapy (PFS ≥12: n0 = 21, n1 = 28, 
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anti-PD-1/anti-CTLA-4 combination therapy. The corresponding inset figures 
show the average difference between patients with PFS ≥12 and PFS <12 months 
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the number of patient samples at each visit for patients with PFS ≥12 and PFS 
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SGBs that could discriminate between patients with PFS ≥12 and PFS 
<12 months, we identified 22 SGBs for which patients with PFS ≥12 and 
PFS <12 months exhibited intersecting slopes (Fig. 3b,c and Extended 
Data Fig. 7, dynamics 3ab). In these cases, patients with PFS ≥12 and PFS 
<12 months had different initial abundances at baseline, with slopes 
crossing after the start of the treatment generating reverse abundance 
patterns at baseline compared to the last study visit. We found, for 
example, several SGBs that have been associated with various chronic 
and immune-mediated diseases, such as Streptococcus thermophilus 
(SGB8002) and T. sanguinis (SGB6847), which are dominant in the oral 
cavity, and B. schinkii (SGB4825), to exhibit opposite abundance pat-
terns in patients with PFS ≥12 and PFS <12 months at baseline compared 
to the last study visit with patients with PFS <12 months and patients 
with PFS ≥12 months exhibiting positive and negative slopes, respec-
tively. Other SGBs showed similar baseline abundances in patients with 
PFS ≥12 and PFS <12 months to only diverge after the start of ICB (Fig. 3a 
and Extended Data Fig. 7, dynamics 1ab). For example, we found increas-
ingly separating abundances of Christensenellaceae bacterium NSJ 53 
(SGB82545), E. tayi (SGB4988; Fig. 3a), Mediterraneibacter massiliensis 
(SGB4595), S. intestinalis (SGB4617) and Hydrogeniiclostridium man-
nosilyticum (SGB14890) that increased in patients with PFS <12 months 
and decreased in patients with PFS ≥12 months after the initiation of 
ICB (Extended Data Fig. 7, dynamics 2a and Supplementary Table 2).

Interestingly, we found 16 SGBs that remained relatively unchanged 
in patients with PFS <12 months over the study period but showed larger 
changes in patients with PFS ≥12 months (Extended Data Fig. 7c, dynam-
ics 1c). For example, only patients with PFS ≥12 months exhibited increas-
ing abundances of Lachnospiraceae bacterium OF09 6 (SGB4966) and 
Eubacterium siraeum (SGB4198; Fig. 3c) and decreasing abundances 
of F. faecis (SGB6750) and Fusicatenibacter saccharivorans (SGB4874). 
Recent immunotherapy studies in renal cell carcinoma reported that 
E. siraeum was associated with improved survival and overall response 
rate8,12,36,37, whereas F. saccharivorans and Erysipelotrichaceae members 
such as F. faecis were associated with resistance to ICB39. Lastly, we found 
14 SGBs, including Bilophila wadsworthia (SGB15452; Fig. 3d) and several 
Clostridium SGBs, which remained relatively unchanged in patients with 
PFS ≥12 months across all study visits while exhibiting larger changes in 

patients with PFS <12 months (Extended Data Fig. 7c, dynamics 2c). While 
these findings support previous studies showing that the gut microbi-
ome can discriminate between response and nonresponse at baseline, 
they also suggest that ICB may induce different changes in the gut micro-
biome of patients with PFS ≥12 and PFS <12 months, respectively. Thus, 
therapeutic targets that are based on baseline data only risk producing 
opposite or even unexpected effects.

The clinical context influences abundance patterns
Anti-PD-1 monotherapy versus anti-CTLA-4/anti-PD-1 combination 
therapy. We next analyzed microbial dynamics for different clinical 
scenarios and identified common and diverging signals of monotherapy 
(anti-PD-1) and combination therapy (anti-PD-1 and anti-CTLA-4). To 
avoid confounding by colitis and PPI use, which individually has con-
siderable effects on the gut microbiome19,20, we compared patients with 
PFS ≥12 months versus patients with PFS <12 months on monotherapy 
(Extended Data Fig. 8 and Supplementary Table 7) or combination 
therapy (Extended Data Fig. 9 and Supplementary Table 8) who did not 
develop colitis and did not use PPIs, while also averaging over the effects 
of irAEs that were not colitis, previous antibiotics use, previous therapy 
and cancer center (Methods and Supplementary Information). We found 
28 associations in common between monotherapy (27% of all associa-
tions at 90% BCL) and combination therapy (30% of all associations at 
90% BCL), whereof 10 and 12 differentially abundant SGBs were shared 
between patients with PFS ≥12 and PFS <12 months, respectively. Inter-
estingly, the remaining six SGBs (of the 28 shared) exhibited opposite 
patterns in patients with PFS ≥12 versus patients with PFS <12 months on 
monotherapy compared to combination therapy (Extended Data Figs. 8  
and 9). These included Coprococcus eutactus (SGB5121), Butyricicoccus 
sp. AM29 23AC (SGB14991) and Parabacteroides merdae (SGB1949), 
which had opposite slopes in patients with PFS ≥12 versus patients with 
PFS <12 months on monotherapy compared to combination therapy 
(Fig. 4). Patients with PFS <12 months treated with monotherapy showed 
increasing abundances of several Bacteroides species (except for B. 
intestinalis) across most or all study visits, which were not observed 
for combination therapy (Extended Data Figs. 8 and 9 and Supplemen-
tary Tables 7 and 8). These results confirm previous observations of 
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biphasic effects for the Bacteroides genus dependent on the specific 
treatment agent(s) used9,40,41. SGBs that exhibited higher abundances in 
patients with PFS ≥12 months compared to patients with PFS <12 months, 
regardless of therapy regimen, included Lacticaseibacillus rhamnosus 
(SGB7144), an unknown Firmicutes (SGB47850), three members from 
Lachnospiraceae (Dorea sp. AF24 7LB (SGB4571), Dorea formicigenerans 
(SGB4575), as reported previously12, and C. comes (SGB4577 group)) and 
four unidentified species from the family Ruminococcaceae (Rumi-
nococcaceae bacterium (SGB15356), GGB9705 (SGB15224), GGB9712 
(SGB15244) and GGB9677 (SGB15180); Extended Data Figs. 8 and 9 and 
Supplementary Tables 7 and 8).

ICB-induced colitis. We then aimed to identify SGBs associated with 
development or no development of colitis, averaging over the effects 
of all other predictors in our model, including PFS12 and therapy regi-
men (Extended Data Fig. 10 and Supplementary Table 9). We were 
particularly interested in colitis given the role of the gut microbiome 
in maintaining colonic immune homeostasis. Colitis was defined using 
the Common Terminology Criteria for Adverse Events (CTCAE) version 
5, excluding intestinal symptoms of non-immune etiology. We found 
that butyrate producers, such as Roseburia inulinivorans (SGB4940) 
and Roseburia hominis (SGB4936), A. butyriciproducens (SGB14993 
group), Eubacterium rectale (SGB4933 group), Bacteroides thetaio-
taomicron (SGB1861) and two Faecalibacterium prausnitzii subspe-
cies (SGB15342 and SGB15317) had higher abundances in patients 
who did not develop colitis after the start of ICB (Extended Data  
Fig. 10 and Supplementary Table 9). While all of these SGBs, apart from 
R. inulinivorans (SGB4940), exhibited negative slopes in both patients 
affected and patients unaffected by colitis, the decrease was larger in 
patients who developed colitis. It has been suggested that butyrate 
may be protective against ICB-induced colitis42; thus a further reduc-
tion in the abundance of butyrate producing bacteria during ICB may 
predispose patients with already lower baseline abundances to colitis. 
We found that the patient group who did not develop ICB-induced 
colitis exhibited a higher abundance of F. saccharivorans (SGB4874), 
which has been shown to induce anti-inflammatory effects in ulcera-
tive colitis43 but has also been associated with resistance to ICB39. While 
Akkermansia muciniphila has been associated with response in several 
baseline studies4,11, we found that A. muciniphila (SGB9226) had higher 
baseline abundances in patients who developed colitis but decreased 
sharply in abundance thereafter (Extended Data Fig. 10 and Supple-
mentary Table 9). In comparison, the group who did not develop colitis 
exhibited lower but somewhat increasing abundances of the same 
SGB (Extended Data Fig. 10 and Supplementary Table 9). While in our 
cohorts only this particular SGB was identified, there are four different 
A. muciniphila SGBs in the new MetaPhlAn4 database. Finally, monitor-
ing microbial taxa that are associated with colitis is an important first 
step toward developing strategies to ameliorate its effects. As a proof 
of concept, we tested whether a balance between the SGBs associated 
with development of colitis and the SGBs associated with no develop-
ment of colitis at baseline (that is, at T0 in Extended Data Fig. 10) could 
predict colitis development at baseline. We found that this balance 
could discriminate between the two groups (two-sided Wilcoxon test, 
PT0 = 0.00055) with an acceptable predictive ability (AUC mean ± s.d. 
of 0.723 ± 0.121; Fig. 5).

In our dataset, we found a relationship between PFS12 and irAEs 
that were not colitis (Fisher’s exact test: P = 0.002; Supplementary  
Fig. 1). Compared to patients who achieved a PFS ≥12 months 
and developed colitis, we found that patients who achieved PFS 
≥12 months but did not develop colitis exhibited higher abundances 
of four SGBs across the entire study period (Blautia sp. AF19 10LB 
(SGB4810), Lachnospiraceae bacterium (SGB4706), Gordonibacter 
pamelaeae (SGB14807) and Clostridium sp. AF20 17LB (SGB4714); Sup-
plementary Fig. 2 and Supplementary Table 10). On the other hand, 
we found seven SGBs that exhibited higher abundances, throughout 

the study period, in patients with PFS ≥12 months who developed 
colitis, including several unclassified Clostridia species (Supple-
mentary Fig. 2 and Supplementary Table 10). Interestingly, while 
patients with PFS ≥12 months without colitis showed enrichment in 
several F. prausnitzii SGBs (SGB15317, SGB15318 group, and SGB15342),  
A. butyriciproducens (SGB14993 group) and R. hominis (SGB4936), the 
abundance of A. muciniphila (SGB9226) was higher (but decreasing) in 
patients with PFS ≥12 months who developed colitis (Supplementary 
Fig. 2 and Supplementary Table 10). F. prausnitzii has previously been 
associated with the absence of colitis37; hence our findings further 
support approaches targeting different subspecies of F. prausnitzii 
to counteract colitis while maintaining ICB efficacy.

While we found a difference in the proportion of patients who 
develop colitis on monotherpay (0.128) compared to combination 
therapy (0.310) (two-sided test of equal proportions: Δ = 0.182; 95% 
CI: 0.036, 0.329; χ2 = 7.259; P = 0.007), we did not find a difference in 
the proportion of patients with PFS ≥12 months who developed colitis 
on monotherapy (0.051) compared to combination therapy (0.138) 
(two-sided test of equal proportions: Δ = 0.087; 95% CI: −0.024, 0.197; 
χ2 = 2.866; P = 0.09). When we compared colitis development under 
combination versus monotherapy, we observed higher and increas-
ing abundances of SGBs belonging to the Streptococcus, Veillonella, 
Bacteroides and Eggerthella genera, an overall signature resembling 
the gut microbiome of patients with inflammatory bowel disease20 
(Supplementary Fig. 3 and Supplementary Table 11).

PPI use. Finally, we investigated the effect of PPI use on patients 
with PFS ≥12 and PFS <12 months (Supplementary Fig. 4 and Supple-
mentary Table 12). To avoid confounding by combination therapy 
and colitis, we focused on the group of patients who were treated 
with monotherapy and did not develop ICB-induced colitis. Here we 
found that PPI users on monotherapy shared 33 associations with 
nonusers on monotherapy (at 90% BCL; Supplementary Table 13). For 
a few SGBs, patients with PFS ≥12 months exhibited different slopes 
for users and nonusers. For example, S. thermophilus (SGB8002) 
exhibited increasing abundances in nonusers with PFS ≥12 months 
and decreasing abundances in users with PFS ≥12 months. Similarly, 
C. bacterium NSJ 53 (SGB82545) and B. caccae (SGB1877) exhibited 
increasing and decreasing abundances in nonusers and users, respec-
tively, with PFS <12 months. While the Christensenellaceae family 
has been associated with health, B. caccae, B. stercoris and P. vulgatus 
have been linked to diseases such as inflammatory bowel disease and 
colorectal cancer44,45.

Discussion
In this study, we longitudinally profiled the gut microbiome in a multi-
center cohort of 175 patients with advanced melanoma undergoing ICB. 
Through Bayesian regression models with higher-order interactions, 
we characterized microbiome changes in patients with PFS ≥12 or PFS 
<12 months during ICB, including in different clinical contexts such as 
therapy regimen, development of colitis and PPI use.

Previous studies conducted at baseline have led to an accumulat-
ing interest in SCFA producers as targets for increasing ICB efficacy, 
whereas species predictive of resistance to ICB have been associated 
with chronic immune-mediated or metabolic diseases46. However, 
longitudinal studies of the gut microbiome dynamics during treat-
ment with ICB have been lacking. We show that, during ICB, a num-
ber of SGBs have contrasting dynamics to what would be expected 
from baseline and that the same SGB can exhibit different trajectories 
depending on the clinical context. While the abundance of SCFA pro-
ducers remained at a higher abundance or even increased in patients 
with PFS ≥12 months during treatment, the abundance of SGBs con-
sidered ‘immunogenic’ exhibited larger changes from baseline, with 
different dynamics in different clinical contexts. Patients with PFS 
<12 months showed higher or increasing abundances of taxa that have 
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been associated with inflammatory diseases, such as B. clarus, S. intesti-
nalis and E. tayi. However, when considering different clinical contexts, 
we also found several taxa regarded as ‘proinflammatory’ (for example, 
P. merdae, Desulfovibrio piger and Streptococcus oralis) to be enriched 
in patients with PFS ≥12 months (Supplementary Fig. 5).

Comparing our results to two recent studies employing Met-
aPhlAn4, we found many common SGBs associated with ICB response 
at baseline, including several SGBs that also were differentially abun-
dant during therapy and in different clinical contexts in our study. For 
example, Thomas et al.21 found that Eubacterium sp. AM28 29 (SGB6796 
group) was associated with response in nine melanoma cohorts, four of 
which were not included in our study5,9,11,36. The same SGB was enriched 
in responders 1 month after FMT22. In our study, it was associated with 
PFS ≥12 months at baseline through to the second study visit, and at 
baseline in patients with PFS ≥12 months on combination therapy. 
Another SGB, L. celerecrescens (SGB4868), which is part of the balance 
described in Fig. 2a, was associated with response in six melanoma 
cohorts, five of which were not included in our study9,11,12,36,47 analyzed 
by ref. 21 and also enriched in all responders one month after FMT22. The 
replicability of our results, both the main balance and specific SGBs, 
shows the robustness of our longitudinal analysis (Supplementary 
Tables 14 and 15).

Our findings provide an important roadmap for designing and 
interpreting microbiome-based intervention studies. Owing to the 
distinct longitudinal dynamics observed in this study, therapeutic 
targets developed only from baseline findings may produce opposite 
or unexpected results. This can further vary depending on the clinical 
context. While we confirm a higher or increasing abundance of several 
species that are currently being studied as consortia therapies, includ-
ing A. butyriciproducens, A. hallii, C. catus, E. rectale, Bifidobacterium 
adolescentis, F. prausnitzii48 and B. thetaiotaomicron49, other members 
of these consortia showed an increase in patients with PFS <12 months 
in our study, such as R. torques, Parabacteroides distasonis48 and  
B. clarus49, or had opposite trajectories depending on the therapy regi-
men (for example, increase of several Bacteroides SGBs and P. merdae 
in patients with PFS <12 months on anti-PD-1 monotherapy)48.

Our results could also be used to disentangle the effect of FMT 
from the longitudinal effect of ICB and important confounders on the 
gut microbiome. Recent phase 1 clinical trials suggest that FMT from 
responders50,51 or healthy donors22 combined with anti-PD-1 can induce 
response in a subset of ICB-refractory (OR 20–30% in refs. 50,51) and 
ICB-naive patients (OR 65% in ref. 22). Without performing FMTs, we 
observe similar taxa changes in patients with PFS ≥12 months (Sup-
plementary Tables 14 and 15), suggesting that FMT synergizes with 
ICB to improve responses. Inter-individual variability in the response 
and engraftment of strains is widely described after FMT for differ-
ent clinical contexts52,53 in which various treatment and host factors 
play a role16,22,54,55. We observed different dynamics of the shared SGBs 
depending on the clinical context (Supplementary Tables 14 and 15), 
findings that could be used to help optimize donor-recipient stratifica-
tion in future trials.

To conclude, this study underlines the dynamic nature of the gut 
microbiome and indicates that longitudinal profiling at finer taxo-
nomic resolution in association with host factors is critical for guiding 
microbiome-targeted interventions aimed at improving treatment 
outcomes. Limitations of this study include (but are not restricted to) 
simplifying microbial dynamics to linear trajectories, comparabil-
ity with previous studies using different taxonomic databases and 
a smaller number of patient samples for some of the post hoc com-
parisons, which limits the generalizability of some of our results. To 
further validate our findings and move the clinical gut microbiome 
field forward from a biomarker perspective to actionable treatments, 
continued efforts should go into longitudinal profiling of ICB patients 
at larger scales, linking the gut microbiome, metabolome and immu-
nome to treatment outcome.
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Methods
Study design and cohort description
The prospective PRIMM cohorts. We prospectively recruited 128 
patients with advanced melanoma who were treated with ICB between 
August 2015 and January 2020 in the UK studies Predicting Response 
to Immunotherapy for Melanona with Gut Microbiome and Metabo-
lomics (PRIMM–UK, n = 54) and the Netherlands studies (PRIMM–NL, 
n = 74, made up of eligible patients from the COLIPI, POINTING and 
OncoLifeS studies). PRIMM–UK (NCT03643289) is sponsored by East 
and North Hertfordshire NHS Trust with ethical approval from King’s 
College London. OncoLifeS (METc number 2010/109), COLIPI (METc 
number 2012/085, NCT02600143) and POINTING (METc number 
2018/350, NCT04193956) have all been approved by the Medical 
Ethical Committee (in Dutch: Medisch Ethische Toetsingsingscom-
missie or METc) of the University Medical Center Groningen in the  
Netherlands. OncoLifeS information is available on the Netherlands 
Trial Register56. Fecal samples were collected from these patients 
before initiation of ICB and longitudinally at up to four treatment 
(study) visits: at baseline and before each subsequent treatment cycle 
over a period of 12 weeks (Supplementary Fig. 1). The time between 
two samples was 3 or 4 weeks, depending on the treatment regimen, 
with ipilimumab/nivolumab combination therapy and pembroli-
zumab monotherapy administered three times weekly and nivolumab 
monotherapy administered four times weekly. Written informed 
consent was obtained from all patients.

Other enrolled cohorts. Patients within the PRIMM cohorts were 
recruited in parallel, using aligned protocols4. Additional patients, 
treated between March 2015 and November 2019, were enrolled from 
cohorts outside the setting of the PRIMM study: Leeds (n = 19), Bar-
celona (n = 11) and Manchester (n = 17). Fecal samples were collected 
at time points similar to those used in our included prospective stud-
ies. Patient samples within the Manchester cohort were collected 
with written full-informed patient consent under Manchester Cancer 
Research Centre Biobank ethics application 07/H1003/161+5 (updated 
in 18/NW/0092) and approval for the work under Manchester Cancer 
Research Centre Biobank Access Committee application 13_RIMA_01. 
Barcelona cohort samples were subjected to the ethical committee of 
Hospital Clínic of Barcelona approval (registry HCB/2015/1032). Data 
and samples from Leeds were collected in a study named ‘Developing 
a blood test of immunity in illness: a study examining the peripheral 
blood transcriptome in patients with cancer, autoimmune disease, 
immunodeficiency or iatrogenic immune suppression’ (research eth-
ics committee reference 15/NW/0933). Informed written consent was 
obtained for collection of samples and data, sharing anonymized data 
and working with collaborators whether academic or commercial.

Inclusion criteria. Patients who fulfilled the following criteria were 
eligible for the analysis: (1) histologically or cytologically confirmed 
non-resectable advanced (stage 3 or 4) cutaneous melanoma, (2) treat-
ment with ICB (nivolumab or pembrolizumab) or a combination of 
ipilimumab and nivolumab at the recommended dose as a first-line 
immune checkpoint inhibitor, (3) 18 years of age or older and (4) avail-
ability of baseline characteristics presented in Table 1.

Assessment of treatment outcomes. Response to ICB was classified 
according to RECIST v1.1 criteria. Based on radiographic response, 
patients were classified as responders (complete response, partial 
response and stable disease), or nonresponders (progressive disease).

Clinical endpoints were defined as PFS12 and OS. PFS was defined 
as the time from the initial immunotherapy to disease progression. 
OS was defined as time in months from initiation of treatment to 
occurrence of death from any cause. IrAEs, including colitis, were 
assessed using the CTCAE version 5 (19). Side effects that were clearly 
of non-immune etiology were excluded.

Sample and data collection. Patients received oral and written 
instructions regarding the stool collection procedure. Patients  
within PRIMM–UK and PRIMM–NL were requested to collect approxi-
mately 3–5 ml plain feces using a collection kit that could be used at 
home and then store the sample in their freezer directly after col-
lection. PRIMM–NL samples were transported to the hospital in a 
frozen insulated cooling bag to prevent thawing. Due to the geo-
graphic disbursal of PRIMM–UK patients, samples were collected 
and placed in Thermo Fisher Scientific kits and sent by special post to 
the laboratory at King’s College London. After arrival in the hospital, 
the samples were directly stored at −80 °C. Plain stool samples from 
the Manchester cohort were either collected on site at the hospital 
and stored directly at −80 °C within 4–6 h of collection or collected 
in sample containers and sent by special post to the laboratories 
of CRUK Manchester Institute and stored directly at −80 °C upon 
arrival. Patients within the Barcelona cohort used the OMNIgene 
GUT collection kit (DNA Genotek). Fecal DNA was extracted from 1 to 
14 days after sample collection using the PowerFecal DNA Isolation Kit 
(previously MoBio, currently Qiagen) and kept frozen until needed. 
Patients from Leeds also collected stool at home using the OMNIgene 
GUT collection kit (DNA Genotek), and samples were returned to the 
research nurse.

Baseline demographics, including sex, age, body mass index (BMI), 
Eastern Cooperative Oncology Group (ECOG) performance status and 
medication use, were collected, along with tumor staging and previous 
anti-cancer therapy data. Demographic data were collected as part of 
a screening visit up to 14 days before ICB treatment began. All baseline 
antibiotics or PPI use within 3 months of commencing ICI treatment 
was documented. Tumor staging took place up to 1 month before the 
start of treatment.

Radiological evaluation, consisting of a computed tomography 
(CT) scan of the thorax, abdomen and pelvis and magnetic reso-
nance imaging of the brain, was performed at baseline (that is, before 
the first dose of immunotherapy). A small number of patients had  
positron emission tomography scans with a CT component. Follow-up 
radiological evaluation was performed every 10–14 weeks as long as 
the patient received systemic therapy. Additional CT and/or magnetic 
resonance imaging scans were performed when there was suspicion 
of progression. If the first radiological evaluation after the start of 
therapy was inconclusive, then a confirmatory scan was performed 
4–12 weeks later.

Metagenomics processing
DNA extraction and sequencing. DNA was isolated for all cohorts at 
King’s College London using Thermo Fisher Scientific’s MagMax Core 
protocols for nucleic acid purification and mechanical lysis. Samples 
with a high-quality DNA profile (>15 ng µl−1 of DNA) were further pro-
cessed. Sequencing libraries were prepared using the Illumina Nextera 
DNA Flex Library Prep Kit according to the manufacturer’s protocols. 
Libraries were multiplexed using dual indexing and sequenced for 
300 bp paired-end reads using the Illumina NovaSeq6000 platform 
according to the manufacturer’s protocols. We obtained a total of 
1,283 Gb with an average of 53,919,210 reads per sample before quality 
control and pre-processing.

Metagenome quality control and pre-processing. Shotgun metagen-
omic sequencing was performed at the NGS Core Facility at University 
of Trento. The quality of all sequenced metagenomes was controlled 
using the pre-processing pipeline implemented in ref. 57. Of all the 
samples collected across the five observational cohorts, we considered 
those that passed all the quality control steps of the metagenomic 
sequencing pipeline and had more than 1 Gb of sequencing data. This 
resulted in a total of 447 samples from 195 patients that were then 
subjected to strict quality control and were processed into taxonomic 
and predicted pathway abundances.

http://www.nature.com/naturemedicine
https://clinicaltrials.gov/ct2/show/NCT03643289
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Microbiome taxonomic and functional potential profiling. Taxo-
nomic and functional metagenomic profiling was performed using 
MetaPhlAn417 with the vJan21 SGB database release and HuMAnN358 
with default parameters. Before prevalence filtering (see below), we 
identified a total of 2,223 microbial SGBs and 518 microbial pathways.

Selection of independent variables for the longitudinal model. We 
were interested in modeling study visit varying intercept and slopes for 
patients with PFS ≥12 and PFS <12 months, respectively, in three main 
clinical contexts: (1) the type of immunotherapy patients received (that 
is, mono versus combination therapy), (2) if patients had developed any 
grade of ICB-induced colitis (no versus yes) and (3) if patients received 
concomitant PPIs (no versus yes). Beyond these three independent 
variables, we also controlled for previous antibiotics use, previous 
BRAF or MEK-targeted therapy, time since first injection (in days), 
cancer center, other forms of irAEs (that is, not colitis), age, sex and 
BMI. We also included a patient identifier to account for the repeated 
measurements. In the end, the included variables represented a balance 
between (1) minimizing collinearity between independent variables,  
(2) loss of patient samples due to missingness in independent vari-
ables and (3) the number of included independent variables versus the 
number of modeled samples. These selection criteria resulted in 408 
samples from 175 patients.

Prevalence filtering of microbiome taxonomic and functional  
profiles. We retained microbial features that were present in at least 
20% of the baseline samples, which also had a prevalence of least 10% 
among the longitudinal samples. Applying this stringent filtering 
criterion, we retained in the 408 samples; 434 and 395 microbial SGBs 
and pathways, respectively. This was done using phyloseq (v.1.42.0) 
and tidyverse (v.2.0.0) R packages.

Independent melanoma cohorts for validation. To validate the bal-
ance described in Fig. 2a, we downloaded the raw sequences from 
six publicly available melanoma cohorts (three using radiographic 
response based on RECIST1.1 criteria, one using PFS12 and two using 
both RECIST and PFS12) that characterized gut microbiome com-
position at baseline (Supplementary Table 6). We kept the response 
definition used in the original publication. One of the cohorts5 also 
characterized gut microbiome composition within 4 months after the 
start of ICB. We treated these pre- and post-ICB samples from ref. 5 as 
two cohorts. We re-processed the raw sequences using MetaPhlAn4 
(using the same database and settings as described above) and com-
puted the balance (Fig. 2a) for all samples in each independent cohort. 
Not all SGBs were present in all independent cohorts. For example, we 
did not find taxon GGB1420 SGB1957 (SGB1957) in any of the independ-
ent cohorts after 10% prevalence filtering (see Supplementary Table 16 
to see which SGBs were missing in each independent cohort). To test 
whether the balance could predict response anew in each independ-
ent cohort, we fit a simple logistic model [glm(response_definition ~ 
balance_score, family = ’binomial’)] to all samples in each cohort and 
computed the AUC (on the training data, as we fit all samples). We could 
not include any other independent variables in the models because 
most cohorts did not report information such as age, sex, BMI or other 
clinical variables.

Statistical analysis
Compositional data analysis. Metagenomic sequencing produces 
compositional data, which means that information can only be 
obtained in the form of relative abundances that are independent of 
the total microbial load in a given sample. As a result, an increase in one 
microbial feature (for example, a taxon or metabolic pathway) relative 
abundance necessarily requires an equivalent decrease in the relative 
abundance of the remaining community of features present in the same 
sample. If this statistical property is not accounted for, the likelihood 

of introducing false positives in differential abundance analysis59,60 and 
negative correlation biases in correlation-based analysis61,62 increases 
heavily. While standard statistical methodology assumes that the ana-
lyzed data are represented by variables free to vary from −∞ to ∞ within 
Euclidean geometry, compositional data occupy the simplex that is a 
restricted space where variables are strictly positive and vary from 0 
to 1 or 0 to 100, if data are represented as proportions or percentages 
(such as relative abundances), respectively. A log ratio transformation 
maps the simplex to Euclidean real space (that is, the Aitchison geom-
etry) where standard statistical methodology can be applied. There are 
several available log ratio transformations, each using a different refer-
ence frame (that is, the denominator). For example, the additive and 
centered log ratio (alr and clr, respectively) transformation is defined as

Xalr = [log ( x1xD
) , log ( x2xD

) ,… , log ( xD−1xD
)] (1)

Xclr = [log ( x1
g(x) ) , log (

x2
g(x) ) ,… , log ( xDg(x) )] (2)

where x = [x1, x2, x3,… , xD]  denotes a sample (that is a composition) 
containing D ‘counted’ microbial features. In the alr transformation 
(equation (1)), the choice of the denominator or the reference frame is 
arbitrary and could represent any specified feature. In the clr transfor-
mation (equation (2)), however, the denominator is defined by the 
geometric mean g(x) of the focal sample, or put simply, the ‘average’ 
feature in the focal sample.

Differential ranking
There already exist several developed methods to find changes in 
compositional data between cases and controls that avoid the biases 
caused by the compositional nature of metagenomic sequencing data 
(for example, ALDEx263, ANCOM64 and Gneiss65). What these methods 
typically have in common is that they internally use some log ratio 
transformation, which is conserved regardless of whether the data 
are relative or absolute. A recent approach called differential ranking 
is robust to the choice of the alr reference feature, and ranks produced 
from relative abundances are identical to the ranks of absolute abun-
dances66,67. More specifically, the term ‘differential’ refers to the loga-
rithm of the fold change in abundance of a microbial feature between 
cases and controls. Differential rankings can therefore be used to 
detect differentially abundant features knowing that the results are 
not affected by the compositional nature of the data. It is important 
to note, however, that high-ranking (positive) features have not neces-
sarily increased in absolute terms between the cases compared to the 
controls but can still have decreased, although to a lesser extent than 
the lower-ranking features.

A logistic normal model to estimate differential rankings from 
proportions
Almost all of the methods developed for compositional sequencing 
data are intended for counts (for example, 16S rRNA gene amplicons). 
However, if the processed sequencing data are expressed as propor-
tions with unknown sample totals, then these methods may require 
changes before being applied. The R package fido68 (1.0.4) implements 
a Bayesian multinomial logistic normal regression model called Pib-
ble that can be adapted to model proportions (that is, only fitting 
the logistic normal model). Furthermore, the coefficients estimated 
by Pibble can be ranked and interpreted as differential rankings with 
statistical significance achieved through Bayesian inference68,69. Pib-
ble is constructed to model any observed sequencing counts using a 
multinomial distribution, with the underlying microbial feature com-
position as random variables modeled by a logistic normal distribution. 
More specifically, the observed relative abundances are considered 
to be drawn from a multinomial distribution parameterized by a set 
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of proportions (πj), which have an analogous representation in the 
alr space, with the transformed variables drawn from a multivariate 
normal distribution that exists in Euclidean real space68,69. While both 
the multinomial Dirichlet model and the multinomial logistic normal 
model can handle over-dispersed count data70,71, the logistic normal 
model also allows for both positive and negative covariation between 
microbial features69. In short, the Pibble model is defined as follows:

Yj ∼ Multinomial(πj) (3)

πj = alr−1(ηj) (4)

ηj ∼ N(ΛXj,Σ) (5)

Λ ∼ MN(D−1)xQ(Ω,Σ,Γ ) (6)

Σ ∼ W−1(Ξ , ν) (7)

with Y representing a D × N count matrix with the jth column represent-
ing a sample (that is composition) containing the D ‘counted’ (micro-
bial) features (equation (3)). Equation (4) represents a transformation 
between the multinomial parameters (πj sum to 1) that exist on the 
simplex, and the transformed parameters ηj that exist in Euclidean real 
space. As is common for multinomial regression, Pibble uses the inverse 
alr transformation (also called the softmax transform in the machine 
learning literature) to produce a relative abundance matrix (that is, 
proportions varying between 0 and 1). This also implies that ηj = alr(πj). 
The Q modeled covariates are included in the Q × N matrix denoted X. 
Importantly, equation (5) simply represents a multivariate linear model 
with X containing the Q modeled covariates, Λ a matrix containing the 
corresponding estimated regression coefficients that can be ranked 
to produce the differential rankings and Σ a D × D matrix containing 
the residual covariance between all log ratios. The matrix containing 
the estimated regression coefficients (that is, Λ) is modeled as a matrix 
normal distribution, which is simply a generalization of the multivariate 
normal distribution capable of describing the covariation between the 
rows (that is, features Σ) and between the columns (that is, samples, 
Γ) of Λ (equation (6)). Finally, Σ is modeled as a inverse Wishart distribu-
tion (W−1), which is a common distribution over covariance matrices 
(equation (7))68,69.

Owing to the large flexibility of the Pibble model, it is possible to 
directly model sequencing data expressed as proportions (that is, rela-
tive abundances) using the logistic normal model (that is, starting from 
equation (4)). The only drawback of this is that variation in the counts 
cannot be modeled, but this information is naturally lost once data 
are normalized (and if the information on sample totals is not kept). 
Importantly, once the model is fit, the results can be viewed as if any 
log ratio transform had been used (instead of the alr in equation (4)),  
including the clr. Lastly, because equation (5) simply represents a 
multivariate linear model, interactions between predictor variables 
can also be modeled. Pibble uses the collapse–uncollapse sampler, 
which was developed particularly for this class of models68,69. We used 
the same priors as suggested by refs. 68,69.

A linear model with higher-order interactions
We hypothesized that microbial abundances may change over the 
course of the treatment period because patients received an immu-
notherapy injection at each treatment visit, thus probably increasing 
the cumulative effect of the therapy on the gut microbiome across the 
study period. We further hypothesized that patients with PFS ≥12 and 
PFS <12 months may exhibit different patterns of change. To model this, 
we included higher-order interactions, thereby assuming that micro-
bial abundances change linearly across study visits. In equation (5),  

we modeled the relationship between X (study visits/cumulative num-
ber of treatment injections) and Y (the log ratio value for any given 
microbial feature) to be contingent not only on Z whether patients 
achieved PFS ≥12 months, but also on the moderator variable W, which 
in our case represents one of three treatment characteristics of interest. 
Therefore, the three three-way interactions we modeled all included 
the same X and Z variables but with a different treatment characteristic 
of interest (that is, the moderator variable W1–3; see equation (8)). The 
different treatment characteristics for W that we modeled were: W1, the 
type of immunotherapy patients received (that is mono versus combi-
nation therapy); W2, if patients had developed any grade of ICB-induced 
colitis (no versus yes); and W3, if patients received concomitant PPIs 
(no versus yes). Beyond the different treatment characteristics, we 
also controlled for whether patients have had previous chemotherapy, 
time since first injection (in days), the cancer center patients were 
treated at, whether they experienced other forms of irAEs (that is, 
not colitis), age, sex and BMI. We also included a patient identifier to 
account for the repeated measurements. Lastly, before model fitting, 
all continuous variables (that is, age and BMI) were mean centered, and 
all ‘peripheral’ categorical variables (that is, previous therapy, center, 
other forms of irAEs, patient identification and sex) were coded using 
weighted sum contrasts (as opposed to treatment contrasts). The latter 
effectively mean-centers categorical variables with the result being that 
the intercept represents the average of all independent variables not 
included in the three-way interactions. To note is that all 175 patients 
in the main analysis have information on all of these metadata (that is, 
there is nothing missing/not available).

Without including any of the ‘peripheral’ independent variables, 
which we adjusted for (that is, center, time to/since first injection, other 
forms of irAEs, patient identification, age, sex and BMI), we can write 
our linear regression model as

Y = β0 + β1X + β2Z + β3XZ + β4W1 + β5XW1 + β6ZW1 + β7XZW1⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
Combination therapy

+

β8W2 + β9XW2 + β10ZW2 + β11XZW2⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
Colitis

+β12W3 + β13XW3 + β14ZW3 + β15XZW3⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
PPI

(8)

where Z and W1–3 are binary variables dummy coded to be either 0 or 
1, always with 0 as the reference category. Thus, the β2 coefficient for 
Z (PFS12: 0 is PFS <12, 1 is PFS ≥12) represents the value when all treat-
ment characteristics of interest (W1–3) are at their reference level (that 
is, monotherapy (W1), no colitis (W2) and no PPIs (W3)) and when the 
independent variable X has a value of zero (that is, baseline). We can 
further rewrite equation (8) to illustrate that the relationship between 
X and Y is conditional on Z and W1–3 as follows:

Y = (β0 + β2Z + β4W1 + β6ZW1 + β8W2 + β10ZW2 + β12W3, +β14ZW3⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
intercepts

) +

(β1 + β3Z + β5W1 + β7ZW1 + β9W2 + β11ZW2 + β13W3 + β15ZW3)⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
slopes

X

(9)

where the first and second parentheses represent the intercepts and 
the slopes graphing Y against X.

Post hoc contrasts to compute the comparisons of interest
To create the relevant comparisons between cases and controls, we 
constructed so-called post hoc contrasts (linear combinations of 
coefficients) directly from the fitted model. To compute these, we 
first constructed reference grids (Supplementary Information), which 
contain all relevant combinations of the categorical independent 
variables that we wanted to average over. Based on these reference 
grids, we computed marginal means of cases and controls, which we 
then could statistically compare. Because we already mean centered 
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all ‘peripheral’ independent (continuous and categorical) variables, 
we only consider the coefficients associated with the treatment char-
acteristic of interest (W1–3), which is shown in equation (8). The post 
hoc contrasts we computed were (1) PFS ≥12 versus PFS <12 months, 
(2) colitis versus no colitis, (3) PFS ≥12 months with and without coli-
tis, (4) patients on combination versus monotherapy with colitis,  
(5) PFS ≥12 versus PFS <12 months on monotherapy without colitis and 
no PPIs, (6) PFS ≥12 versus PFS <12 months on combination therapy 
without colitis and no PPIs and (7) PFS ≥12 versus PFS <12 months on 
PPIs, monotherapy and without colitis. In Supplementary Information, 
we show the mathematical procedure to compute these post hoc con-
trasts for (1), (2) and (3), but the same logic applies when computing 
to the remaining contrasts.

Balance analysis
A balance is a type of log ratio defined as the ratio between the geo-
metric means of two subsets of features72,73. Following the definition in  
ref. 73, mathematically a balance is defined as follows. Let X = (X1,X2,X3,…, 
Xk) be a sample with k features. Given two non-overlapping subsets of 
features in X denoted by X+ and X−, indexed by I+ and I−, and comprising 
k+ and k−, the balance between X+ and X− is defined as the log ratio of  
the geometric mean of the two subsets of features as follows:

B(X+,X−) = log
⎛
⎜⎜⎜
⎝

(∏i∈I+ )Xi)
1/k+

)

(∏j∈I− )Xj)
1/k− )

⎞
⎟⎟⎟
⎠

. (10)

Expanding the logarithm, we can simplify the above equation as

B(X+,X−) =
1
k+

∑
i∈I+

logXi −
1
k−

∑
i∈I−

logXj. (11)

Note that we have removed the normalization constant 1
k

 from the 
original definition as it is later shown by ref. 74 to be unnecessary. Using 
the relative abundances of the focal SGBs, we computed different bal-
ances using the above mathematical formula implemented in 
custom-written R scripts. Because each balance consists of a selection 
of SGBs or ‘top hits’ from the longitudinal model that already adjusts 
for a large number of confounders, the effect of different confounders 
(for example, cancer center) on each balance score, has already been 
averaged out.

Survival analysis
To test whether a focal balance was associated with OS at baseline, 
we used the multivariable Cox proportional hazard regression model 
as implemented in the coxph() function in the R package survival  
(3.5-5). We either considered the start of therapy to (1) death from 
any cause (OS) or (2) progression or death from any cause (PFS) as 
the time-to-event data. If patients were event-free (that is, alive and/
or progression-free) at the last follow-up (28 March 2023), they were 
right censored. We used these models to estimate HRs including their 
95% confidence intervals (CIs) for OS, adjusting for sex, age, BMI, PPI, 
antibiotics use, previous chemotherapy, colitis and other irAEs. We 
had n = 146 patients for which these data were complete (that is, no 
missings). The proportional hazard assumption was checked test-
ing the trend of the Schoenfeld residuals with the cox.zph() function 
in the survival package (3.5-5). We did not observe any violations in 
this assumption. Finally, survival curves were estimated using the 
Kaplan–Meier method as implemented in the survfit2() function in 
the R package ggsurvfit (0.3.0).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The longitudinally profiled metagenomes have been deposited in the 
European Nucleotide Archive under accession number PRJEB70966. 
Baseline samples are already deposited under accession number 
PRJEB43119. All MetaPhlAn4 and HUMAnN3 profiles will also be available 
within the latest version of curatedMetagenomicData (https://biocon-
ductor.org/packages/curatedMetagenomicData). All relevant patient 
data used in this study can be requested by emailing the first author 
(bjork.johannes@gmail.com). The six previously published studies used 
for validation are available under accession numbers: PRJNA770295, 
PRJNA541981, PRJNA762360, PRJNA399742, PRJNA397906, PRJEB22893 
and PRJEB22894 (see Supplementary Table 6).

Code availability
All code is available in the first author’s GitHub page (https://github.
com/johannesbjork/Longitudinal-gut-microbiome-changes-in-ICB- 
treated-advanced-melanoma) and mirrored at WeersmaLab (https://
github.com/WeersmaLabIBD).
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Extended Data Fig. 1 | Study description with sample numbers across 
study visits. Samples were collected within 5 sub-cohorts: two prospectively 
recruited within parallel observational studies (The PRIMM cohorts), and three 
retrospectively pooled cohorts. Fecal samples were collected at 4 timepoints: 
at baseline (T0) and at every treatment cycle (T1 to T3) over a period of 12 weeks. 
The time between two samples was 3 or 4 weeks, depending on the treatment 
regimen, with Ipilimumab/Nivolumab combination therapy and Pembrolizumab 
monotherapy administered 3-weekly and Nivolumab monotherapy administered 
4-weekly. Treatment continued after the 12 weeks until the patient responded 
or until the treatment had to pause/stop due to irAEs. Not all subjects provided 
fecal samples at all study visits. Therefore, gut microbial dynamics were modeled 
at the level of the population including a random effect for the patient identifier 
(see Methods). Sample numbers represent patients with complete metadata 

(that is, no missingness) for all considered covariates/confounders. For the 
survival analysis, because we adjusted for a smaller number of covariates/
confounders, there were n = 147 at baseline (PRIMM-UK = 41; PRIMM-NL = 53; 
Barcelona = 12; Leeds = 17; Manchester = 24) rather than n = 136 as indicated here. 
Tumor staging by CT or PET-scans was performed at study entry and at regular 
intervals during treatment. Tumor response was classified using the Response 
Evaluation Criteria in Solid Tumors (RECIST) v.1. Endpoints were defined as 
Progression-free survival at 12 months (PFS12) and overall survival (OS). Immune-
related adverse events (irAEs) were assessed using the Common Terminology 
Criteria for Adverse Events (CTCAE) v.5 (see Table 1). ICB, Immune checkpoint 
blockade; PRIMM, Predicting Response to Immunotherapy for Melanoma With 
Gut Microbiome and Metabolomics; NL, Netherland; UK, United Kingdom.  
The figure was generated in BioRender.com.
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Extended Data Fig. 2 | Extension of Fig. 1. This includes all SGBs, that is, also those that were differentially abundant in only one study visit.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Extended longitudinal balance. The extended balance 
has 12 SGBs in the numerator (A. butyriciproducens [SGB14993 group],  
I. bartlettii [SGB6140], D. sp AF24 7LB [SGB4571], L. gasseri [SGB7038 group],  
L. celerecrescens [SGB4868], R. sp NSJ 71 [SGB4290], GGB9640 [SGB15115],  
E. rectale [SGB4933 group], E. entriosum [SGB5045], E. sp AM28 29 [SGB6796 
group], Clostridium sp AF15 49 [SGB5111], and A. bouchesdurhonensis [SGB17152]) 
and 9 SGBs in the denominator (R. lactatiformans [SGB15271], R. unclassified 
[SGB15265 group], P. copri clade A [SGB1626], GGB1420 [SGB1957], Gemmiger 
[SGB15299], B. obeum [SGB4809], Clostridiales unclassified [SGB15145],  
P. vulgatus [SGB1814], and B. clarus [SGB1832]). Panel (A) balance’s ability to 
discriminate between patients with PFS ≥ 12 (n = 83; n0 = 62; n1 = 77; n2 = 38; n3 = 

30) and PFS < 12 (n = 92; n0 = 74; n1 = 69; n2 = 34; n3 = 24) months across study visits. 
Boxplots represent minima, Q1, Q2, Q3, and maxima. Panel (B) the balance’s 
predictive ability expressed as the Area Under the Curve (AUC) computed from 
100 times repeated five-fold cross-validation (CV). Each line shows, for each 
study visit, the average across the 100 repeated five-fold CVs with the shaded 
area representing the 95% confidence interval. Panel (C) Kaplan–Meier curves 
and multivariable Cox regression analysis of overall survival in 146 patients at 
baseline (one patient was removed due to missingness in the included predictor 
variables) according to high (above median) and low (below median) values of the 
balance after adjusting for age, sex, BMI, previous therapy, PPI and antibiotic use.
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Extended Data Fig. 4 | Treating balances as continuous independent 
variables. Panel A-C shows a multivariable Cox regression analysis of overall 
survival (OS) in months for 146 patients at baseline (one patient was removed due 
to missingness in the included predictor variables) treating (a) the first balance 
(Fig. 2a), (b) the second balance (that is, the extended longitudinal balance), 

and (c) the third balance (that is, the ‘baseline only’ balance) as a continuous 
independent variable. While the histograms show the distribution of each 
balance (right y-axes), each regression line represent the hazard ratio as a smooth 
function of each balance (left y-axes). All models are adjusted for age, sex, BMI, 
PPI and antibiotics use, and previous therapy.
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Extended Data Fig. 5 | Generalizability of the longitudinal balance (Fig. 2a)  
across six independent melanoma cohorts. Panel (A) shows the AUC for each 
independent baseline cohort, including the current study (in red). Panel  
(B) shows the AUC for McCullochJA_2022’s post-ICB cohort. Panel (C) shows the 
average difference in the balance score between patients with PFS < 12 months 

versus PFS ≥ 12 months from the SpencerCN_2021 cohort. Finally, panel (D) shows 
Kaplan-Meier curves and multivariable Cox regression analysis of overall survival 
(OS) in months from 27 patients from McCullochJA_2022’s baseline cohort 
according to high (≥75 percentile) and low (<75 percentile) values of the balance 
after adjusting for age, sex, BMI and PPI-use.
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Extended Data Fig. 6 | Baseline only balance. A ‘baseline only’ balance 
containing the 9 species associated with patients with PFS ≥ 12 months at baseline 
only in the numerator, and the 11 SGBs associated with patients with PFS < 12 
months at baseline only in the denominator (see Fig. 1a). Kaplan-Meier curves 

and multivariable Cox regression analysis of overall survival in 146 patients at 
baseline (one patient was removed due to missingness in the included predictor 
variables) according to high (above median) and low (below median) values of the 
balance after adjusting for age, sex, BMI, previous therapy, PPI and antibiotic use.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Schematic illustration showing the different types 
of microbial dynamics we observe between patients with PFS ≥ 12 months 
and PFS < 12 months. Panels A-E are schematic illustrations (that is, cartoons) 
showing the breakdown of the different types of taxon dynamics we observe 
in the overall comparison between patients with PFS ≥ 12 months and patients 
with PFS < 12 months. Yellow and purple slopes correspond to patients with 
PFS ≥ 12 and PFS < 12 months, respectively. Panel (A) shows dynamics where 
patients with PFS ≥ 12 and PFS < 12 months are differentially abundant only after 
T0 (that is, dynamics 1a and 2a). Dynamics 3a is a particular case of dynamics 1a 
and 2a where the slopes for patients with PFS ≥ 12 and PFS < 12 months intersect. 
Panel (B) shows dynamics where patients with PFS ≥ 12 and PFS < 12 months are 
differentially abundant at early but not at late visits (that is, dynamics 1b and 2b).  

Dynamics 3b is a special case of dynamics 1b and 2b where the patients with 
PFS ≥ 12 and PFS < 12 months slopes intersect. Panel (C) shows dynamics where 
the slope of one of the groups is zero (or close to zero) while the other group 
is either increasing or decreasing, respectively (that is, dynamics 1c and 2c). In 
panels (D) and (E), included the inset figures, patients with PFS ≥ 12 and PFS < 12 
months exhibit parallel lines (that is, no statistical interactions); Panel 1d and 2d 
shows dynamics where both patients with PFS ≥ 12 and PFS < 12 months are either 
increasing or decreasing, respectively, while in panels 1f and 2f, the slopes of 
patients with PFS ≥ 12 and PFS < 12 months are zero (or close to zero). The number 
in each plot corresponds to the number of microbial SGBs that follow each type 
of different dynamics.
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Extended Data Fig. 8 | Patients with PFS ≥ 12 and PFS < 12 months on 
monotherapy. Panel (A) shows, for each microbial SGB listed, its slopes in 
patients with PFS ≥ 12 months and PFS < 12 months on monotherapy, respectively. 
Red and blue colors indicate whether the focal SGB is increasing or decreasing in 
its abundance over study visits, respectively. It then shows the average difference 
between patients with PFS ≥ 12 and PFS < 12 months across the different study 
visits. Non-gray cells in the heatmap correspond to the focal SGB’s log-fold 

change in abundance between patients with PFS ≥ 12 and PFS < 12 months, 
respectively. Teal cells correspond to study visits for which the abundance of 
the focal SGB is higher in in patients with PFS ≥ 12 than with PFS < 12 months on 
monotherapy, and vice versa for brown cells (at 90% BCL). Gray cells denote 
differences between patients with PFS ≥ 12 and PFS < 12 months on monotherapy 
whose 90% CI overlapped with zero.
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Extended Data Fig. 9 | Patients with PFS ≥ 12 and PFS < 12 months on 
combination therapy. Panel (A) shows, for each microbial SGB listed, its slopes 
in patients with PFS ≥ 12 months and PFS < 12 months on combination therapy, 
respectively. Red and blue colors indicate whether the focal SGB is increasing 
or decreasing in its abundance over study visits, respectively. It then shows the 
average difference between patients with PFS ≥ 12 and PFS < 12 months across 
the different study visits. Non-gray cells in the heatmap correspond to the focal 

SGB’s log-fold change in abundance between patients with PFS ≥ 12 and PFS 
< 12 months, respectively. Teal cells correspond to study visits for which the 
abundance of the focal SGB is higher in in patients with PFS ≥ 12 than with PFS < 
12 months on combination therapy, and vice versa for brown cells (at 90% BCL). 
Gray cells denote differences between patients with PFS ≥ 12 and PFS < 12 months 
on combination therapy whose 90% CI overlapped with zero.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Patients who developed and not developed colitis. 
The figure shows, for each microbial SGB listed, its slopes in patients who 
developed and not developed colitis, respectively, regardless of response to 
therapy. Red and blue colors indicate whether the focal SGB is increasing or 
decreasing in its abundance over study visits, respectively. It then shows the 
average difference between patients with and without colitis across the different 

study visits. Non-gray cells in the heatmap correspond to the focal SGB’s log-fold 
change in abundance between patients with and without colitis, respectively. 
Teal cells correspond to study visits for which the abundance of the focal SGB 
is higher in in patients who developed colitis compared to those resistant to 
colitis, and vice versa for brown cells (at 90% BCL). Gray cells denote differences 
between patients with and without colitis whose 90% CI overlapped with zero.
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