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Abstract
Hazard ratios are prone to selection bias, compromising their use as causal esti-
mands. On the other hand, if Aalen’s additive hazard model applies, the hazard dif-
ference has been shown to remain unaffected by the selection of frailty factors over 
time. Then, in the absence of confounding, observed hazard differences are equal 
in expectation to the causal hazard differences. However, in the presence of effect 
(on the hazard) heterogeneity, the observed hazard difference is also affected by 
selection of survivors. In this work, we formalize how the observed hazard differ-
ence (from a randomized controlled trial) evolves by selecting favourable levels of 
effect modifiers in the exposed group and thus deviates from the causal effect of 
interest. Such selection may result in a non-linear integrated hazard difference curve 
even when the individual causal effects are time-invariant. Therefore, a homogene-
ous time-varying causal additive effect on the hazard cannot be distinguished from 
a time-invariant but heterogeneous causal effect. We illustrate this causal issue by 
studying the effect of chemotherapy on the survival time of patients suffering from 
carcinoma of the oropharynx using data from a clinical trial. The hazard difference 
can thus not be used as an appropriate measure of the causal effect without making 
untestable assumptions.
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1  Introduction

Hazard ratios, often obtained by fitting a Cox proportional hazards model (Cox 
1972), are the most common effect measures when dealing with time-to-event data. 
However, the hazard ratio is prone to selection bias due to conditioning on survival 
and therefore not suitable for causal inference (Hernán 2010; Aalen et  al. 2015; 
Stensrud et  al. 2017). It has been recommended to use other, better interpretable, 
estimands when interested in causal effects (Hernán 2010; Stensrud et al. 2018; Bar-
tlett et al. 2020; Young et al. 2020). Alternatively, using the additive hazard model 
can avoid interpretation issues (Aalen et al. 2015; Martinussen et al. 2020). In the 
nonparametric model proposed by Aalen (1989), the hazard rate at time t for indi-
vidual i with (possibly time-dependent) covariates xi(t) (of dimension p) is deter-
mined by the values of xi up until time t and equals

where the parameters �j(t) are arbitrary regression functions, allowing time-varying 
effects (Aalen et al. 2008). Restricted versions have been proposed by Lin and Ying 
(1994) and McKeague and Sasieni (1994), where all or some �j(t) are assumed to 
be constant over time. The cumulative regression function, Bj(t) = ∫ t

0
�j(s)ds , may 

reveal changes in effect over time, see for example Aalen et al. (2008, pp. 160-162).
For cause-effect relations that can be accurately described with Aalen’s additive 

hazard model, the hazard difference is a collapsible measure (Martinussen and Van-
steelandt 2013). Then, in the absence of confounding, the hazard difference can be 
appropriately used to estimate the causal effect, even in the case of unmeasured risk 
factors (Aalen et al. 2015). For this, it is necessary that the exposure effect on the 
hazard does not depend on unmeasured individual features (modifiers) and thus is 
the same for all individuals. However, due to the fundamental problem of causal 
inference, the effect homogeneity assumption is untestable (Holland 1986). In our 
companion paper (Post et al. 2024), we showed that next to unmeasured risk factors, 
i.e. frailty (Aalen et al. 2008, Chapter 6), effect heterogeneity at the level of the indi-
vidual hazard results in selection bias of observed hazard ratios.

In this work, we extend the additive hazard model studied in Aalen et al. (2015) by 
allowing heterogeneity of the effect (on the hazard) and quantify the bias of using the 
observed hazard difference when estimating the causal effect. In Sect. 2, we introduce 
notation to describe the cause-effect relations using a structural causal model for which 
we can define the causal hazard difference. In practice, when appyling an additive haz-
ard model the observed hazard difference is modelled. We show that (in absence of 
confounding) the expected value of the observed hazard equals a causal hazard margin-
alized over survivors. The expectation of the observed hazard difference thus equals a 
difference between hazards marginalized over survivors in the exposed and unexposed 
universe. By selection of individuals with favourable values of the effect modifier, this 
difference can deviate from the causal hazard difference as we formalize in Sect. 3. We 
present numerical examples to illustrate how this selection can result in a non-linear 
integrated hazard difference curve, that can be interpeted as reflecting a time-varying 
causal effect, while the actual individual causal effects are time-invariant. To emphasize 

�
(
t ∣ {xi(s)}s≤t

)
= �0(t) + �1(t)xi1(t) +… + �p(t)xip(t),
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why it is important to be aware of such a difference between the expected observed haz-
ard difference and the causal hazard difference, we reflect on the analysis of the effect 
of treatment on survival with carcinoma of the oropharynx from the clinical trial in 
Sect. 4. Finally, we present some concluding remarks in Sect. 5.

2 � Notation and hazard differences

Probability distributions of factual and counterfactual outcomes are defined in the 
potential outcome framework (Neyman 1923; Rubin 1974). Let Ti and Ai represent 
the (factual) stochastic outcome and exposure assignment level of individual i. Let 
Ta
i
 equal the potential outcome of individual i under the intervention of the exposure 

to level a (counterfactual when Ai ≠ a ). For those more familiar with the do-cal-
culus, Ta is equivalent to T ∣ do(A=a) as e.g. derived in Pearl (2009a, Equation 40) 
and Bongers et  al. (2021,  Definition 8.6). Throughout this paper, we will assume 
causal consistency, i.e. if Ai=a , then Ta

i
= T

Ai

i
= Ti . Causal consistency implies that 

potential outcomes are independent of the assigned exposure levels of other indi-
viduals. The hazard rate of the potential outcome can vary among individuals due to 
heterogeneity in risk factors U0 as also considered by Aalen et al. (2015). The hazard 
difference of the potential outcomes with and without ( a = 0) exposure might also 
vary among individuals due to an effect modifier U1 . Therefore, the hazard rate of 
individual i at time t of the potential outcome under exposure to level a is a function 
of U0i and U1i and thus random and equals

The hazard of the potential outcome Ta
i
 can be parameterized with a function that 

depends on U0i , U1i and a.
We describe cause-effect relations with a structural causal model (SCM) which 

is commonly used in the causal graphical literature, see e.g.  Pearl (2009b,  Chap-
ter  1.4) and   Peters et  al. (2018,  Chapter  6), to model observations. Instead, we 
include details on individual effect modifier U1 as well as the latent common cause 
of the outcomes U0 , so that the SCM consists of a joint probability distribution of 
(NA,U0,U1,NT ) and a collection of structural assignments (for more details, see Post 
et al. (2024, Section 2)) such that 

Ai := fA(NAi )2()
λa
i (t) := f0(t, U0i) + f1(t, U1i, a)
T a
i := min{t > 0: exp (−Λa

i (t)) ≤ NT i},

where ∀t: f1(t, U1i, 0) = 0, fA is the inverse cumulative distribution function of A,
NAi, NT i ∼ Uni[0, 1], Λa

i (t) =
∫ t
0 λ

a
i (s)ds, and U0i, U1i ⊥⊥ NT i so that λa

i (t) equals the
hazard rate of the potential outcome given U0 and U1.

(1)�a
i
(t) = lim

h→0
h−1ℙ

(
Ta
i
∈ [t, t + h) ∣ Ta

i
≥t,U0i,U1i

)
.
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If in SCM (2), N
A
̸⟂⟂U0,U1,NT

 , then there exists confounding as the distribu-
tions of (U0,U1,NT ) are not exchangeable between exposed and non-exposed indi-
viduals. However, in this work we focus on the distribution of data observed from a 
properly executed RCT, where by the randomization N

A
⟂⟂U0,U1,NT

 so that there 
is no confounding. It is important to realize that a SCM cannot be validated with 
data as it describes potential outcomes from different universes. For each individ-
ual the outcome can only be observed in one of the universes, and only the fit of 
the distribution of the outcomes in the factual world can be verified. In SCM (2), 
we did not restrict the distribution of U0 and U1 and only restricted f� and fA to be 
properly defined hazard and inverse cumulative distribution functions respectively, 
so that the structural model is quite general. However, in this work we limit our-
selves to cause-effect relations where the causal effect of the exposure is described 
by �a

i
(t) − �0

i
(t) = f1(t,U1i, a).

2.1 � Hazard differences

If SCM (2) applies and �a
i
(t) − �0

i
(t) = f1(t, a) , then the causal effect is equal for each 

individual, i.e. effect homogeneity, and Aalen’s additive hazard model applies. Oth-
erwise, when �a

i
(t) − �0

i
(t) = f1(t,U1i, a) , the difference differs among individuals 

so that �[�a
i
(t) − �0

i
(t)] will typically be the estimand of interest. The latter contrast 

equals the difference between the expected hazard rate in the world where everyone 
is exposed to a and the world without exposure, and will therefore be referred to as 
the causal hazard difference (CHD) defined in Definition 1.

Definition 1  Causal hazard difference The CHD for cause-effect relations that can 
be parameterized with SCM 2 equals

Throughout this paper, we abbreviate the Lebesque-Stieltjes integral of a func-
tion g with respect to probability law FX , ∫ g(x)dFX(x) , as ∫ g(X)dFX.

The CHD thus equals the difference of hazard rates of the potential out-
comes marginalized over the population distribution of (U0,U1) . However, the 
distribution of (U0,U1) among survivors will differ over time (in all worlds), 

i.e.  (U0,U1)
d≠ (U0,U1) ∣ T

a≥t . In turn, (U0,U1) ∣ T
a≥t and (U0,U1) ∣ T

0≥t can 
differ in distribution. As a consequence, the hazard rates for the observed (fac-
tual) outcomes are affected by these conditional distributions of U0 and U1 , and 
the observed hazard difference may reflect both the causal effect of exposure and 
a difference in distributions of (U0,U1) between exposed and unexposed indi-
viduals. Since practioners are typically interested in the causal effect alone, it 

𝔼
[
�a
i
(t)
]
− 𝔼

[
�0
i
(t)
]
= 𝔼[f1(t,U1, a)]

=� lim
h→0

h−1ℙ
(
Ta ∈ [t, t + h) ∣ Ta≥t,U0,U1

)
dFU0,U1

− � lim
h→0

h−1ℙ
(
T0 ∈ [t, t + h) ∣ T0≥t,U0

)
dFU0

.
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is important to understand this mixture. Since the focus of this work is on esti-
mands, for readability, we refer to the expected value of the difference of the 
observed hazards as the observed hazard difference (OHD) presented in Defini-
tion 2.

Definition 2  Observed hazard difference The OHD at time t equals

To be precise, at time t the hazard rate can only be observed for non-censored 
individuals at that time (C(t) = 0) . However, in this work we will assume inde-
pendent censoring, so that ℙ(T ∣ T≥t,A=a) is equal to ℙ(T ∣ T≥t,A=a,C(t)=0).

To compare the OHD to the CHD of interest, the OHD should be expressed in 
terms of potential outcomes. By causal consistency,

For a randomized controlled trial (RCT), where by design of the trial A⟂⟂Ta (in 
SCM (2) equivalent to NA⟂⟂U0,U1,NT,

The OHD at time t is then equal to

We refer to (5) as the survivor marginalized causal hazard difference (SMCHD) that 
is rewritten in Definition 3.

Definition 3  Survivor marginalized causal hazard difference The SMCHD at 
time t for cause-effect relations that can be parameterized with SCM 2 equals

As the integration in Definition 1 is with respect to the population distribution 
of (U0,U1) (instead of that of the survivors in the exposed and unexposed universe 
respectively), the SMCHD is thus affected by the difference in distribution between 
(U0,U1) and (U0,U1) ∣ T

a ≥ t as well as the actual causal effect. Therefore, the 
SMCHD can deviate from the CHD. Nevertheless, Aalen et al. (2015) explained that 
U0⟂⟂A|T ≥ t so that for degenerate U1 , the SMCHD is only affected by the causal 

lim
h→0

h−1ℙ(T ∈ [t, t + h) ∣ T≥t,A=a) − lim
h→0

h−1ℙ(T ∈ [t, t + h) ∣ T≥t,A=0)
= lim

h→0� h−1ℙ
(
T ∈ [t, t + h) ∣ T≥t,A=a,U0,U1

)
dFU0,U1∣T≥t,A=a

− lim
h→0� h−1ℙ

(
T ∈ [t, t + h) ∣ T≥t,A=0,U0

)
dFU0∣T≥t,A=0.

(3)ℙ(T ∈ [t, t + h) ∣ T≥t,A=a) = ℙ(Ta ∈ [t, t + h) ∣ Ta≥t,A=a).

(4)ℙ(Ta ∈ [t, t + h) ∣ Ta≥t,A=a) = ℙ(Ta ∈ [t, t + h) ∣ Ta≥t).

(5)lim
h→0

h−1ℙ(Ta ∈ [t, t + h) ∣ Ta≥t) − lim
h→0

h−1ℙ
(
T0 ∈ [t, t + h) ∣ T0≥t).

lim
h→0� h−1ℙ

(
Ta ∈ [t, t + h)∣Ta≥t,U0,U1

)
dFU0,U1∣T

a≥t

− � h−1ℙ
(
T0 ∈ [t, t + h)∣T0≥t,U0

)
dFU0∣T

0≥t.
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effect and equals the CHD, so that the latter can be unbiasedly estimated from RCT 
data. In the next section, we formalize the SMCHD in case of effect heterogeneity 
(non-degenerate U1 ) and show that U1 ̸⟂⟂A|T ≥ t , so that then the SMCHD deviates 
from the CHD.

3 � Results

In the remainder of the paper, we will focus on binary exposures such that a ∈ {0, 1} . 
In this section we quantify how the SMCHD describes both the causal effect and the 
difference in distribution of (U0,U1) between survivors in the exposed and unex-
posed universes.

For cause-effect relations where SCM (2) applies with �a
i
(t) = f0(t,U0i) + f1(t, a) , 

it is known from Aalen et  al. (2015) that for an RCT U0i⟂⟂Ai
|T

i
≥ t , so that 

U0 remains exchangeable between exposed ( U0 ∣ T≥t,A=1 ) and nonexposed 
( U0 ∣ T≥t,A=0 ) survivors. This independence, causal consistency, and the absence 
of confounding in an RCT (T

a
⟂⟂A) imply

Thus in absence of effect heterogeneity of the hazard difference, U0 is exchangeable 
between survivors in the exposed ( U0 ∣ T

1≥t ) and unexposed universes (U0 ∣ T
0≥t) , 

so that the OHD from an RCT (that equals the SMCHD) equals the CHD and 
describes the causal effect.

However, if heterogeneity exists, there will also be a selection of the modifier 
( U1 ) in the exposed universe, where individuals with more favourable levels of U1 
are more likely to survive. As a result of this selection, the SMCHD over time no 
longer represents the (population) average effect. For the main result of this paper, 
we consider hazard functions that satisfy Condition 1.

Condition 1  Hazard without infinite discontinuity

In Theorem 1, we show that the SMCHD, for a hazard function that satisfies Con-
dition 1, can be expressed in terms of conditional expectations of f1(t,U1, 1) and 
f0(t,U0) . In presence of effect heterogeneity, the SMCHD thus deviates from the CHD 
equal to �[f1(t,U1, 1)].

Theorem 1  If the cause-effect relations of interest can be parameterized with SCM 
(2), where

U0 ∣ T≥t d
= U0 ∣ T≥t,A=a
d
= U0 ∣ T

a≥t,A=a
d
= U0 ∣ T

a≥t.

∀t>0∶ ∃h̃>0 such that ∀h∗ ∈ (0, h̃)∶ �
[
f0(t + h∗,U0) + f1(t + h∗,U1, a) ∣ T

a≥t] < ∞
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and Condition 1 applies, then the SMCHD at time t equals

To illustrate how the SMCHD can deviate from the CHD we continue by presenting 
some examples and apply Theorem 1. All programming codes used for these exam-
ples can be found online at https://​github.​com/​RAJP93/​CHD. First, we consider cause-
effect relations for which U0⟂⟂U1.

3.1 � Independent U
0
 and U

1

As discussed at the start of this section, Aalen et  al. (2015) implicitly showed that 
U0 ∣ T

1≥t d
= U0 ∣ T

0≥t in absence of effect heterogeneity of the hazard difference. 
Based on similar arguments, Lemma 1 states that the additive frailty is also exchange-
able in the presence of effect heterogeneity at the hazard scale that is independent of the 
frailty.

Lemma 1  If the cause-effect relations of interest can be parameterized with SCM 
(2), where

and U0i⟂⟂U1i then,

Note that while �
[
f0(t,U0) ∣ T

1≥t] = �
[
f0(t,U0) ∣ T

0≥t] , 
�
[
f0(t,U0) ∣ T

a≥t] ≠ �
[
f0(t,U0)

]
 as the conditional expectations will decrease over 

time representing the survival of less susceptible individuals. If U0⟂⟂U1 , as for the 
case of effect homogeneity, U0 is thus exchangeable between survivors in the exposed 
( U0 ∣ T

1≥t ) and unexposed ( U0 ∣ T
0≥t ) universes. By Theorem 1 and Lemma 1, the 

SMCHD at time t now equals �[f1(t,U1, 1) ∣ T
1≥t].

Let us consider cause-effect relations for which SCM (2) applies with

where f1(t, 0)= 0 , then �
[
f1(t,U1, 1) ∣ T

1≥t] = f1(t, a)�[U1 ∣ T
1≥t] . By Definition 1, 

the CHD equals f1(t, a)�[U1] , so that the difference with the SMCHD varies over 
time and equals

For this multiplicative case, the conditional expectation �[U1 ∣ T
1≥t] can be 

expressed in terms of the Laplace transform of U1 , as stated in Lemma 2.

�a
i
(t) ∶= f0(t,U0i) + f1(t,U1i, a),

�[f1(t,U1, 1) ∣ T
1≥t] + �[f0(t,U0) ∣ T

1≥t] − �[f0(t,U0) ∣ T
0≥t].

�a
i
(t) ∶= f0(t,U0i) + f1(t,U1i, a),

�
[
f0(t,U0) ∣ T

1≥t] = �
[
f0(t,U0) ∣ T

0≥t].

(6)f1(t,U1i, a) = U1if1(t, a),

(7)f1(t, a)
(
�[U1] − �[U1 ∣ T

1≥t]).

https://github.com/RAJP93/CHD
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Lemma 2  If the cause-effect relations of interest can be parameterized with SCM 
(2), where

and U0i⟂⟂U1i , then

where LU1
(c) = �

[
exp

(
−cU1

)]
 with derivative L

�

U1
(c).

We continue to illustrate how effect heterogeneity can affect the integrated hazard 
difference when the causal effect is time-invariant for each individual. To do so, we 
let the additive hazard effect modifier U1 equal �1 ( ≤0 , for individuals that benefit) 
with probability p1 , �2 ( ≥0 , for individuals that are harmed) with probability p2 or 0 
(for individuals that are not affected). We denote this distribution as the Benefit-
Harm-Neutral, BHN(p1,�1, p2,�2) , distribution. Note that it is necessary that 
∀t∶ ℙ(f0(t,U0)<|𝜇1)|) = 0 to guarantee that the hazard rate is always positive for 
each individual. By Theorem 1 and Lemma 2 with f1(t, 1) = 1 , the SMCHD is equal 
to �

[
U1 ∣ T

1≥t] = �1p1 exp (−t�1)+�2p2 exp (−t�2)
p1 exp (−t�1)+p2 exp (−t�2)+(1−p1−p2)

, and deviates from the constant 
CHD equal to �[U1] = p1�1 + p2�2 . For an RCT, the OHD equals the SMCHD, so 
that the integrated OHD equals

Thus, although the CHD is time-invariant, due to the selection (of U1 ) effect over 
time B(t) will not be linear and deviates from the function g(t) = t�[U1] . Three types 
of curves could be observed as shown in Fig. 1 where for illustration, p1 = p2 = 0.5 , 
so there exist only two levels for the modifier U1.

First of all, let’s consider the case where the exposure harms some individuals (for 
which U1i = 1 ) while others do not respond to the exposure at all ( U1i = 0 ); see the 
orange line in Fig. 1. Initially, B(t) evolves as t�[U1] = 0.5t . However, the individu-
als harmed by the exposure are less likely to survive over time, so the curve’s deriva-
tive decreases. In the end, only individuals with U1i = 0 are expected to survive so that 
B(t) remains constant. Concluding that the exposure initially harms but loses effect over 
time is false for this case as the effect is time-invariant for each individual.

Secondly, when some individuals do benefit (U1i = −0.25) while others are not 
affected ( U1i = 0 ), the derivative of B(t) evolves from −0.125 to −0.25 at the moment 
only those that benefit are expected to survive, as illustrated with the purple line in 
Fig. 1. The effect for an individual is again constant and does not become more benefi-
cial over time.

Finally, different individuals in the population might have opposite effects ( U1i = 1 
or U1i = −0.1 ), as illustrated with the pink line in Fig. 1. Initially, the integrated haz-
ard differences increase as the expected effect is harmful. However, over time those 

f1(t,U1i, 1) = U1if1(t, 1),

�
[
U1 ∣ T

1≥t] = −
L

�

U1
(∫ t

0
f1(s, 1)ds)

LU1
(∫ t

0
f1(s, 1)ds)

,

B(t) = �
t

0

�
[
U1 ∣ T

1≥s]ds = − log
(
p1(exp

(
−t�1

)
− 1) + p2(exp

(
−t�2

)
− 1) + 1

)
.
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individuals with U1i = −0.1 are more likely to survive so that �[U1 ∣ T
1≥1] changes 

sign. Finally, only those that benefit are expected to survive, and the curve decreases 
with a derivative equal to −0.1 . For this example, it would be false to conclude that the 
exposure first harms but becomes beneficial over time.

Similar patterns can be observed for a continuous U1 distribution, in which case the 
�
[
U1 ∣ T

1≥t] will keep decreasing as for example presented in Appendix B.
In summary, if U0⟂⟂U1 , then the SMCHD will be less or equal to the CHD due to 

the selection of U1 . Therefore, decreasing or constant B(t) curves that at some point 
increase again can not be explained by the selection of U1 since individuals with less 
beneficial values of U1 are expected to survive shorter. However, if U0 ̸⟂⟂U1 , such a pat-
tern of the B(t) curve can still occur when the CHD is time-invariant as we will show 
next.

3.2 � Dependent U
0
 and U

1

The bivariate joint distribution function of U0 and U1 , F(U0,U1)
 , can be written using the 

marginal distribution functions and a copula C (Sklar 1959). As such,

and the Kendall’s � correlation coefficient of U0 and U1 can be written as a function 
of the copula (Nelsen 2006). For the next example, we consider cause-effect rela-
tions for which SCM (2) applies with

and again

F(U0,U1)
(u0, u1) = C

(
FU0

(u0),FU1
(u1)

)

(8)f0(t,U0i) = � + U0it
2,

(9)f1(t,U1i, a) = U1ia,

Fig. 1   ∫ t

0
�
[
U1 ∣ T

1≥s]ds , when 
U1 ∼ BHN(p1,�1, p2,�2) (solid), 
and g(t) = t�[U1] (dashed)
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while U0i ∼ Γ(1, 1) and (U1i + �) ∼ Γ(1, 1) , so that the hazard is nonnegative for 
each individual. To illustrate how the dependence can affect the integrated SMCHD 
for the settings presented in Fig. 5 in Appendix B, we use a Gaussian copula

where Φ and Φ2,� are the standard normal and standard bivariate normal with 
correlation � cumulative distribution functions, respectively. In Fig.  2, for 
� ∈ {−1, sin(−0.25�), 0, sin(0.25�), 1} (such that � ∈ {−1,−0.5, 0, 0.5, 1} ) 
and � ∈ {0, 0.5, 1} , we present the integrated SMCHD at time t that equals 
∫ t

0

(
�[U1 ∣ T

1≥s] + �[U0s
2 ∣ T1≥s] − �[U0s

2 ∣ T0≥s])ds by Theorem  1. The con-
ditional expectations are derived empirically from simulations (n=10,000) , and the 
integral is approximated by taking discrete steps of size 0.1. For completeness, the 
survival curves of the potential outcomes can be found in Fig. 6 in Appendix C.

The difference between the integrated OHD and SMCHD increases when 𝜏 > 0 
(compared to � = 0 ). On the other hand, for 𝜏 < 0 , the difference is smaller most of 
the time than for � = 0 since favourable U1 are expected to occur with unfavourable 
levels of U0 . Moreover, for � = −1 , at larger t, we observe that the difference can 
even change sign. For � ≠ 0 , the SMCHD might thus be larger than the CHD, so 
the SMCHD is not a theoretical lower bound for the CHD. Note that if U0 ̸⟂⟂U1 , the 
integrated SMCHD depends on the functional form of f0 . In Fig. 7 in Appendix C, 
the results for f0(t,U0i) = � + U0i

t2

20
 are presented where the effect of the depend-

ence is limited and the corresponding survival curves of the potential outcomes are 
presented in Fig. 8.

4 � Case study: the Radiation Therapy Oncology Group trial

With the findings of the previous section we will reflect on a data analysis of an 
actual case study to illustrate why it is important for a practioner to be aware of the 
possible difference between the SMCHD and CHD. We consider a large clinical trial 

C(x, y) = Φ2,�(Φ
−1(x),Φ−1(y)),

Fig. 2   Integrated hazard difference, B(t), when f0(t,U0i) = � + U0it
2 , U0i ∼ Γ(1, 1) , (U1i + �) ∼ Γ(1, 1) 

for � equal to 0 (left), 1
2
 (middle) and 1 (right) and different Kendall’s � for U0i and U1i . The lines for 

� = 0 were already presented in Fig. 5 in Appendix B. Furthermore, g(t) = t�[U1] are presented as gray 
lines
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carried out by the Radiation Therapy Oncology Group as described by Kalbfleisch 
and Prentice (2002,  Section  1.1.2 and Appendix A) and also presented by Aalen 
(1989). From the patients with squamous cell carcinoma (a form of skin cancer) of 
15 sites in the mouth and throat from 16 participating institutions, our focus is only 
on two sites (faucial arch and pharyngeal tongue) and patients from the six largest 
institutions. All participants were randomly assigned to radiation therapy alone or 
combined with a chemotherapeutic agent. So, we are interested in the causal effect 
of the chemotherapeutic agent in addition to radiation therapy on survival. If the 
causal mechanism can be parameterized with SCM (2) without effect heterogeneity, 
i.e. 

and the randomization was properly executed, implying N
Ai
⟂⟂U0i , then, by Theo-

rem 1, the OHD equals the CHD. Moreover, the CHD can be unbiasedly estimated 
by fitting Aalen’s additive hazard model. We did so by using the aalen() func-
tion from the package timereg in R. The estimated cumulative regression function 
(and a corresponding 95% confidence interval) of treatment combined with a chemo-
therapeutic agent is presented by the black lines in Fig. 3.

In the absence of effect heterogeneity (ignoring the statistical uncertainty), one 
could now conclude that initially adding the chemotherapy is expected to harm 
a patient as B(t) takes on positive values and that the exposure loses its harmful 
effect over time as the derivative of B(t) decreases over time. Following a similar 
reasoning, Aalen et  al. (2008,  pp. 160-161) discuss a conclusion on the effect 
of N-stage (an index of lymph node metastasis) on survival that may be drawn 
by practitioners based on the same dataset (while also including patients with a 
tumour located at the tonsillar fossa): “The regression plot shows that this [non-
significant P-value for a zero-effect of N-stage from a Cox analysis] is due to a 
strong initial positive effect being “watered down" by a lack of, or even a slightly 
negative effect after one year. Hence, not taking into consideration the change in 
effect over time may lead to missing significant effects.". However, if in reality

�a
i
(t) = f0(t,U0i) + f1(t, a),

Fig. 3   Estimated B(t) and corre-
sponding 95% confidence inter-
val (black). Furthermore, the 
expected evolution of B(t) when 
�a
i
(t) = f0(t,U0i) + U1ia and 

U1i ∼ BHN(0.5,−0.1, 0.5, 0.4) is 
presented (green)
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where f1(t,U1i, 0) = 0 , the observed time-varying effect can also result from 
the modifier U1i selection. For example, when �a

i
(t) = f0(t,U0i) + U1ia , and 

U1i ∼ BHN(0.5,−0.1, 0.5, 0.4) , by Theorem 1, this pattern is expected (see the green 
line in Fig.  3) while the actual causal effect is time-invariant for each individual. 
The CHD equals 0.15 at each time point, but over time individuals that are harmed 
by the chemotherapy ( U1i = 0.4 ) are less likely to survive so that the SMCHD con-
verges towards −0.1 (the effect for individuals that benefit from the chemotherapy). 
When we perform a stratified analysis by site in the oropharynx (where randomi-
zation remains), we observe that the effect of chemotherapy might have opposite 
effects for tumours located in the faucial arch and on the pharyngeal tongue, see 
Fig.  4. The tumour location could thus be the individual modifier underlying the 
BHN distribution. For this case study, we cannot be sure whether the effect of chem-
otherapy depends on the tumour location due to statistical uncertainty. However, it 
became clear that when statistical uncertainty is not the issue, it will be impossi-
ble to distinguish between a time-varying causal effect and a selection effect (of an 
unmeasured modifier) from data. Both phenomena can give rise to the same B(t).

5 � Discussion

The additive hazard model gives better interpretable estimates of causal effects 
than the proportional hazard model (Aalen et  al. 2015). As discussed by Aalen 
et al. (2015), the model assumes that the additive part of the hazard involving the 
exposure (or treatment) is not affected by any other individual feature. Otherwise, if 
such effect heterogeneity at the hazard scale exists, we have shown that the SMCHD 
deviates from the CHD of interest. For an RCT, and independent censoring, a time-
varying observed hazard difference can be the result of either an actual time-vary-
ing causal effect or of the selection of favourable effect-modifier levels over time. 

�a
i
(t) = f0(t,U0i) + f1(t,U1i, a),

Fig. 4   Estimated B(t) and corresponding 95% confidence interval (black) for patients with tumours 
located at the faucial arch (left) and pharyngeal tongue (right), respectively. Furthermore, the B(t) for a 
homogeneous population is presented (green) equal to 0.4t (left) and −0.1t (right) for comparison



395

1 3

Bias of the additive hazard model in the presence of causal effect…

Therefore, it is impossible to distinguish these scenarios based on data without mak-
ing untestable assumptions. It is important to remark that for cause-effect relations 
that can be parameterized with SCM (2) where U1 is degenerate (in which case the 
OHD equals the CHD), contrary to the individual hazard differences, the difference 
of the potential survival times, T1 − T0 can be heterogeneous. So, heterogeneous 
effects can still exist under Aalen’s additive hazard model.

In the presented examples and the case study, we have illustrated that one should 
be very careful when concluding that the effect decreases over time based on the 
cumulative regression function, as this might result from the selection. The size of 
the bias depends on how much the distribution FU1∣T

1≥t changes over time. If the U1 
is low in variability, the bias will be small. When analyzing data from an RCT with 
an additive hazard model, it can thus be helpful to adjust for potential effect modi-
fiers to reduce the remaining variability of unmeasured effect modifiers. We want 
to remark that for cause-effect relations that cannot be described by SCM (2), the 
CHD is not the appropriate estimand to quantify the causal effect, which is then a 
more serious concern than that the complicated causal interpretation of the observed 
hazard difference.

Even in the absence of confounding, the hazard difference and the hazard ratio 
(as discussed in Post et  al. (2024)) have a difficult causal interpretation. Instead, 
contrasts of the survival probabilities, the median, or the restricted mean survival 
time, have clear causal interpretations and should thus be used to quantify the causal 
effect on time-to-event outcomes as suggested by others (Hernán 2010; Stensrud 
et al. 2018; Bartlett et al. 2020; Young et al. 2020). Nevertheless, (additive) hazard 
models can still be used for causal inference to derive these appropriate estimands 
(Ryalen et al. 2018).

Appendix A: Proofs

Appendix A.1: Proof of Theorem 1

Proof  By causal consistency (Hernán and Robins 2020),

As N
A
⟂⟂U0,U1,NT

 , there is no confounding and Ta
⟂⟂A , so that

By the law of total probability,

lim
h→0

h−1ℙ(T ∈ [t, t + h) ∣ T≥t,A=a) = lim
h→0

h−1ℙ(Ta ∈ [t, t + h) ∣ Ta≥t,A=a)

lim
h→0

h−1ℙ(T ∈ [t, t + h) ∣ T≥t,A=a) = lim
h→0

h−1ℙ(Ta ∈ [t, t + h) ∣ Ta≥t, ).

lim
h→0

h−1ℙ(Ta ∈ [t, t + h) ∣ Ta≥t)
= lim

h→0� h−1ℙ
(
Ta ∈ [t, t + h) ∣ Ta≥t,U0,U1

)
dFU0,U1∣T

a≥t
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First, we focus on the integrand,

For monotonic conditional hazard functions, if h2 < h1 , then

or

as the average integrated conditional hazard over the interval increases (or 
decreases). Moreover,

Then, the limit and integral can be interchanged by directly applying the monotone 
convergence theorem.

For non-monotone conditional hazard functions, when Condition 1  
applies, for every t, there exist a h̃ so that 
∀h∗ ∈ (0, h̃)∶ �

[
f0(t + h∗,U0) + f1(t + h∗,U1, a) ∣ T

a≥t] < ∞ . Moreover, let 
t∗= argmax

s∈(t,t+h̃)

f0(s,U0) + f1(s,U1, a), so that for h < h̃∶

Using the power series definition of the exponential function,

h−1ℙ
�
Ta ∈ [t, t + h) ∣ Ta≥t,U0,U1

�

= h−1
ℙ
�
Ta≥t ∣ U0,U1

�
− ℙ

�
Ta≥t + h ∣ U0,U1

�

ℙ
�
Ta≥t ∣ U0,U1

�

= h−1

�
1 −

ℙ
�
Ta≥t + h ∣ U0,U1

�

ℙ
�
Ta≥t ∣ U0,U1

�
�

= h−1

⎛⎜⎜⎜⎝
1 −

exp
�
− ∫ t+h

0
f0(s,U0) + f1(s,U1, a)ds

�

exp
�
− ∫ t

0
f0(s,U0) + f1(s,U1, a)ds

�
⎞⎟⎟⎟⎠

= h−1
�
1 − exp

�
−�

t+h

t

f0(s,U0) + f1(s,U1, a)ds

��

h−1
1

(
1 − exp

(
−�

t+h1

t

f0(s,U0) + f1(s,U1, a)ds

))

≤ h−1
2

(
1 − exp

(
−�

t+h2

t

f0(s,U0) + f1(s,U1, a)ds

))

h−1
1

(
1 − exp

(
−�

t+h1

t

f0(s,U0) + f1(s,U1, a)ds

))

≥ h−1
2

(
1 − exp

(
−�

t+h2

t

f0(s,U0) + f1(s,U1, a)ds

))

lim
h→0

h−1ℙ
(
Ta ∈ [t, t + h) ∣ Ta≥t,U0,U1

)
= f0(s,U0) + f1(s,U1, a) ≥ 0.

h−1ℙ
(
Ta ∈ [t, t + h) ∣ Ta≥t,U0,U1

) ≤ h−1
(
1 − exp

(
−h

(
f0(t

∗,U0) + f1(t
∗,U1, a)

)))
.
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Moreover, �
[
f0(t

∗,U0) + f1(t
∗,U1, a) ∣ T

a≥t] < ∞ when 
�[f0(t + h,U0) + f1(t + h,U1, a) ∣ T

a≥t] < ∞ for all h ∈ (0, h̃) . By application of the 
dominated convergence theorem, we can change the order of the limit and integral 
and conclude,

If U0⟂⟂U1 , by Lemma 1,

and

	�  ◻

h−1ℙ
�
Ta ∈ [t, t + h) ∣ Ta≥t,U0,U1

�

≤ h−1

�
1 −

1∑∞

k=0
hk(f0(t

∗,U0) + f1(t
∗,U1, a))

k 1

k!

�

= h−1

∑∞

k=1
hk(f0(t

∗,U0) + f1(t
∗,U1, a))

k 1

k!∑∞

k=0
hk(f0(t

∗,U0) + f1(t
∗,U1, a))

k 1

k!

=
�
f0(t

∗,U0) + f1(t
∗,U1, a)

�∑∞

k=1
hk−1(f0(t

∗,U0) + f1(t
∗,U1, a))

k−1 1

k!∑∞

k=0
hk(f0(t

∗,U0) + f1(t
∗,U1, a))

k 1

k!

=
�
f0(t

∗,U0) + f1(t
∗,U1, a)

�
∑∞

k=0
hk(f0(t

∗,U0) + f1(t
∗,U1, a))

k 1

(k+1)!∑∞

k=0
hk(f0(t

∗,U0) + f1(t
∗,U1, a))

k 1

k!

< f0(t
∗,U0) + f1(t

∗,U1, a).

lim
h→0

h−1ℙ(Ta ∈ [t, t + h) ∣ Ta≥t) = 𝔼
[
f0(t,U0) + f1(t,U1, a) ∣ T

a≥t].

�[f0(t,U0) + f1(t,U1, 1) ∣ T
1≥t] − �[f0(t,U0) ∣ T

0≥t] = �
[
f1(t,U1, 1) ∣ T

1≥t],

lim
h→0

h−1ℙ(T ∈ [t, t + h) ∣ T≥t,A=1) − lim
h→0

h−1ℙ(T ∈ [t, t + h) ∣ T≥t,A=0)
= 𝔼

[
f1(t,U1, 1) ∣ T

1≥t].
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Appendix A.2: Proof of Lemma 1

Proof 

 
Moreover, if U0⟂⟂U1 , then	

� ◻

Appendix A.3: Proof of Lemma 2

Proof  If U0⟂⟂U1 , by Bayes rule, the probability density of U1 given T1 ≥ t , 
f (u1∣T

1≥t) , equals

𝔼
[
f0(t,U0) ∣ T

a≥t]

= � f0(t, u0)dFU0 ∣T
a≥t(u0)

= � f0(t,U0)
ℙ(Ta≥t ∣ U0=u0)

ℙ(Ta≥t) dF
U0

(u0)

= � f0(t,U0)

∫ exp
(
−(∫ t

0
f0(s,U0)ds + ∫ t

0
f1(s,U1, a)ds)

)
dF

U1 |U0=u0 (u1)

∫ ∫ exp
(
−(∫ t

0
f0(k0, s)ds + ∫ t

0
f1(k1, a, s)ds)

)
dF

U1 ∣U0=k0
(k1)dFU0

(k0)

dF
U0

(u0)

= � f0(t,U0)

exp
(
− ∫ t

0
f0(s,U0)ds

)(∫ exp
(
− ∫ t

0
f1(s,U1, a)ds

)
dF

U1 ∣U0=u0
(u1)

)

∫ exp
(
− ∫ t

0
f0(k0, s)ds

)(∫ exp
(
− ∫ t

0
f1(k1, a, s)ds

)
dF

U1 ∣U0=k0
(k1)

)
dF

U0
(k0)

dF
U0

(u0).

�
[
f0(t,U0) ∣ T

a≥t]

= � f0(t,U0)

exp
(
− ∫ t

0
f0(s,U0)ds

)(∫ exp
(
− ∫ t

0
f1(s,U1, a)ds

)
dF

U1
(u1)

)

∫ exp
(
− ∫ t

0
f0(k0, s)ds

)(∫ exp
(
− ∫ t

0
f1(k1, a, s)ds

)
dF

U1
(k1)

)
dF

U0
(k0)

dF
U0

(u0)

= � f0(t,U0)

exp
(
− ∫ t

0
f0(s,U0)ds

)(∫ exp
(
− ∫ t

0
f1(s,U1, a)ds

)
dF

U1
(u1)

)
(∫ exp

(
− ∫ t

0
f0(k0, s)ds

)
dF

U0
(k0)

)(∫ exp
(
− ∫ t

0
f1(k1, a, s)ds

)
dF

U1
(k1)

) dF
U0

(u0)

= � f0(t,U0)
exp

(
− ∫ t

0
f0(s,U0)ds

)

∫ exp
(
− ∫ t

0
f0(k0, s)ds

)
dF

U0
(k0)

dF
U0

(u0)

= �
[
f0(t,U0) ∣ T

0≥t].
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So that the Laplace transform of f (u1∣T1≥t) can be written as

LU1∣T
1≥t(c) = �[exp

(
−U1c

)
∣ T1≥t]

= � exp
(
−u1c

)
dFU1∣T

1≥t(u1)

= � exp
(
−u1c

) exp
(
− ∫ t

0
u1f1(s, 1)ds

)

∫ exp
(
−k1f1(s, 1)ds

)
dFU1

(k1)
dFU1

(u1)

=

∫ exp
(
−u1(c + ∫ t

0
f1(s, 1)ds)

)

∫ exp
(
−k1f1(s, 1)ds

)
dFU1

(k1)
dFU1

(u1)

=
�

[
exp

(
−U1(c + ∫ t

0
f1(s, 1)ds)

)]

�
[
exp

(
−U1f1(s, 1)ds

)]

=
LU1

(c + ∫ t

0
f1(s, 1)ds)

LU1
(∫ t

0
f1(s, 1)ds)

.

f (u1∣T
1≥t)

=
ℙ(T1≥t ∣ U1=u1)f (u1)

∫ ℙ(T1≥t ∣ U1 = u1)dFU1
(u1)

=

∫ exp
(
−
(∫ t

0
f0(s,U0) + u1f1(a, s)ds

))
dFU0

(u0)f (u1)

∫ ∫ exp
(
−
(∫ t

0
f0(k0, s) + k1f1(a, s)ds

))
dFU1

(k1)dFU0
(k0)

=

exp
(
− ∫ t

0
u1f1(a, s)ds

) ∫ exp
(
− ∫ t

0
f0(s,U0)ds

)
dFU0

(u0)f (u1)

∫ exp
(
−k1f1(a, s)ds

)
dFU1

(k1) ∫ exp
(
− ∫ t

0
f0(k0, s)ds

)
dFU0

(k0)

=

exp
(
− ∫ t

0
u1f1(a, s)ds

)
f (u1)

∫ exp
(
−k1f1(a, s)ds

)
dFU1

(k1)
.



400	 R. A. J. Post et al.

1 3

Since for a random variable X, �[X] = −L
�

X
(0),

	�  ◻

Appendix B: Continuous U1 distribution ( U0⟂⟂U1)

Let us consider cause-effect relations for which SCM (2) applies with

and U0⟂⟂U1 . Moreover, let (U1 + �) ∼ Γ(k, �) , then LU1+�
(c) = (1 + �c)−k . By 

lemma 2,

and

The B(t) are presented over time in Fig. 5 for � = k = 1 and � ∈ {0,
1

4
,
1

2
, 1}.

�[U1 ∣ T
1≥t] = −L

�

U1∣T
1≥t(0) = −

L
�

U1
(∫ t

0
f1(s, 1)ds)

LU1
(∫ t

0
f1(s, 1)ds)

.

(10)f1(t,U1i, a) = U1ia,

�
[
U1 ∣ T

1≥t] = �k

�t + 1
− �,

B(t) = k log(�t + 1) − �t.

Fig. 5   ∫ t

0
�
[
U1 ∣ T

1≥s]ds (thick 
lines), when U1 + � ∼ Γ(1, 1) 
and g(t) = t�[U1] (transparent 
lines)
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Appendix C: Figures dependent U0 and U1

The additional figures for f0(t,U0i) = � + U0i
t2

20
.

Fig. 6   Survival curves for Y1 and Y0 when f0(t,U0i) = � + U0it
2 , U0i ∼ Γ(1, 1) , (U1i + �) ∼ Γ(1, 1) for � 

equal to 0 (left), 1
2
 (middle) and 1 (right) and different Kendall’s � for U0i and U1i

Fig. 7   B(t), when f0(t,U0i) = � + U0i
t2

20
 , U0i ∼ Γ(1, 1) , (U1i + �) ∼ Γ(1, 1) for � equal to 0 (left), 1

2
 (mid-

dle) and 1 (right) and different Kendall’s � for U0i and U1i . The lines for � = 0.5 and � = 1 do overlap, 

and the lines for � = 0 were already presented in Fig. 5. Furthermore, g(t) = t�[U1] are presented as gray 
lines

Fig. 8   Survival curves for Y1 and Y0 when f0(t,U0i) = � + U0i
t2

20
 , U0i ∼ Γ(1, 1) , (U1i + �) ∼ Γ(1, 1) for � 

equal to 0 (left), 1
2
 (middle) and 1 (right) and different Kendall’s � for U0i and U1i
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