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Abstract

Background: Chromosomal microarray (CMA) is commonly utilized in the ob-
stetrics setting. CMA is recommended when one or more fetal structural abnor-
malities is identified. CMA is also commonly used to determine genetic etiologies
for miscarriages, fetal demise, and confirming positive prenatal cell-free DNA
screening results.

Methods: In this study, we retrospectively examined 523 prenatal and 319
products-of-conception (POC) CMA cases tested at Nationwide Children's
Hospital from 2011 to 2020. We reviewed the referral indications, the diagnostic
yield, and the reported copy number variants (CNV) findings. Results.

In our cohort, the diagnostic yield of clinically significant CNV findings for pre-
natal testing was 7.8% (n=41/523) compared to POC testing (16.3%, n=52/319).
Abnormal ultrasound findings were the most common indication present in 81%
of prenatal samples. Intrauterine fetal demise was the common indication identi-
fied in POC samples. The most common pathogenic finding observed in all sam-
ples was isolated trisomy 21, detected in seven samples.

Conclusion: Our CMA study supports the clinical utility of prenatal CMA for
clinical management and identifying genetic etiology in POC arrays. In addition, it
provides insight to the spectrum of prenatal and POC CMA results as detected in an
academic hospital clinical laboratory setting that serves as a reference laboratory.
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1 | INTRODUCTION
Chromosomal microarray (CMA) is a diagnostic tool that
hasbeen integrated into many medical specialties (Mathew
et al., 2022). In the pediatric setting, CMA is a first-tier
diagnostic test for individuals with intellectual disability,
developmental delay, and multiple congenital anomalies
(Miller et al., 2010). In the practice of obstetrics, CMA is
primarily performed on samples obtained from amnio-
centesis, percutaneous umbilical blood sampling, and
chorionic villi sampling samples, with or without chro-
mosome analysis (Lo et al., 2014). The diagnostic yield
of CMA has been previously demonstrated to be higher
than karyotyping in routine prenatal testing because it
precludes the need for culturing (Pauta et al., 2018; Raca
et al., 2009; Wapner et al., 2012). In addition, the high
sensitivity of CMA can detect chromosomal aneuploid-
ies, as well as submicroscopic deletions and duplications,
that may be causal for miscarriages, spontaneous abor-
tions, and abnormal fetal ultrasound findings (Donnelly
et al., 2014; Edwards & Hui, 2018; Levy & Wapner, 2018;
South et al., 2013; Wapner et al., 2012; Zhu et al., 2018).

In addition to abnormal fetal ultrasound findings, CMA
can be utilized as a confirmatory test for positive prenatal
screening results. Historically, maternal serum screening
with or without ultrasound can achieve a detection rate
of 80%-95% for Trisomy 21 (Rose et al., 2020). Prenatal
cell-free DNA screening was later introduced in 2011; it
uses cell-free DNA to detect common fetal aneuploidies
with high sensitivity and specificity (Rose et al., 2022).
Recently, ACMG recommended prenatal cell-free DNA
screening for fetal trisomies 13, 18, 21 as well as fetal sex
chromosome aneuploidy, over traditional screening meth-
ods for all pregnant individuals (Dungan et al., 2023).
Confirmation testing using a diagnostic procedure, such
as chromosomal analysis or CMA is recommended for
positive screening test results confirmation due to risk for
false positives and varying positive predictive values with
increasing maternal age (Cherry et al., 2017; Liehr, 2022).

Moreover, genetic testing using CMA on products of
conception (POC) is also common in obstetric practice. It
can aid in clinical management by identifying a genetic
etiology or refining recurrence risk for families. Previous
studies have demonstrated that CMA could identify chro-
mosome anomalies in approximately 60% of POC cases
from individuals with a single or recurrent pregnancy loss
(Dahdouh & Kutteh, 2021; Smits et al., 2020). However,
given that POC testing recommendations vary by profes-
sional organizations, a broad study of POCs with vary-
ing reasons is uncommon (Papas & Kutteh, 2021; Schilit
et al., 2022).

Our laboratory serves as a reference laboratory for
CMA testing for surrounding hospitals in central Ohio. In

this retrospective study, we provide our diagnostic yield
and the copy number variant (CNV) findings of prenatal
and POC CMA for the past decade. We describe the clini-
cal testing indications and discuss the frequent findings in
our study cohort.

2 | MATERIALS AND METHODS

2.1 | Data collection and analyses

The data was generated from a single study site, the
Institute for Genomic Medicine at Nationwide Children's
Hospital (NCH). Retrospective data analysis of clinical ar-
rays consisting of 523 prenatal (517 cultured amniocytes,
3 direct amniotic fluid, 2 fetal/cord blood, 1 pleural effu-
sion) and 319 POC microarray cases extracted from NCH's
laboratory reporting software (CoPathPlus, Sunquest
Information Systems, Tucson, AZ) from January 1st, 2011,
to December 31, 2020, via a data exploration tool. Prenatal
arrays were clinically offered beginning in August 2011,
while POC arrays were offered beginning in September
2012. Canceled tests (due to poor DNA quality, insuffi-
cient fetal tissue, maternal fetal contamination, etc), and
proficiency testing samples were excluded from this study.
The clinical data generated included the size and chromo-
some bands of the losses and gains, referral indications,
and the clinical significance of each finding.

CMA analysis was performed on two microarray plat-
forms over that ten-year period: Signature NimbleGen
135K oligonucleotide array for 14 POC arrays from
September 2012 to December 2014, and 55 prenatal arrays
from August 2011 to March 2014 [Signature Genomics,
Spokane, WA] and Agilent 180k CGH+SNP array for 305
POC arrays from January 2015 to December 2020, and 468
prenatal arrays from April 2014 to December 2020 [Agilent
Technologies, Santa Clara, CA]. DNA was extracted from
cultured and uncultured amniocytes, cultured tissue,
fresh tissue, and snap-frozen tissue. CNV analyses were
performed using Genoglyphix software (PerkinElmer,
Waltham, MA). CNV calls were made when five consec-
utive probes were present in the coding region of a gene.

We also utilized the UCSC Genome Browser LiftOver
tool to convert hgl8 genomic coordinates to hgl9 for older
cases (http://www.genome.ucsc.edu/cgi-bin/hgLiftOver)
(Kent et al., 2002; Raney et al., 2013). The genome coor-
dinates listed are Human Genome Reference Consortium
Build GRCh37 build. All graphs were generated with
GraphPad Prism software v.9.0.0 (GraphPad Software, San
Diego, CA), and tables were generated with Microsoft Word
and Excel (Microsoft Corporation, Redmond, VA). The
karyotype figure was adapted from “Human Karyotype”
created with BioRender.com (Toronto, Ontario, 2023).
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3 | RESULTS

Our cohort consisted of 842 microarray cases (523 prena-
tal cases and 319 POC cases) from pregnant individuals
ages 15 to 44years. The majority (29.7%) of the pregnant
individuals were ages 26 to 30, while only 77 individuals
(9.1%) in our cohort were 20years of age or younger, and
17.7% of our cohort were ages 35years or older (Figure 1a).
From 2011 to 2015, receipt of prenatal specimens for CMA
ranged from 11 to 38 annually, while POC arrays ranged
from 0 to 14 cases annually. Beginning in 2016, we ob-
served an upward trend in the order rate for both the pre-
natal and POC array cohorts. By 2020, we had logged 57
prenatal and 39 POC cases annually (Figure 1b). The aver-
age turnaround times for our prenatal and POC testing are
11days and 14 days, respectively.

To better understand the indication for testing, we strat-
ified our study cohort based on referral indications as in-
dicated on specimen requisitions. The top two indications
were abnormal ultrasound findings (n=465/842) and in-
trauterine fetal demise (n=206/842). Other indications in-
clude abnormal prenatal cell-free DNA screening (n=27),
family history of chromosomal abnormalities (n=28),
fetal growth abnormalities (n=66), history of pregnancy
losses (n=37), maternal serum screening (n=29), missed
and spontaneous abortions (63), and multiple congenital
anomalies (n=14) (Figure 2a).

The diagnostic yield of this cohort was 11.05% (93/842)
similar to other studies (Luo et al., 2021). The prena-
tal arrays had a diagnostic yield of 7.8% (41/523) while
the POC arrays had a diagnostic yield of 16.3% (52/319).
When stratified by microarray platforms, the NimbleGen
135K array had 8.7% diagnostic yield (6/69), compared
to 11.25% in Agilent 180k array (87/773). There were 544
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normal cases, 205 variants of unknown significance find-
ings (VUS) cases, and 93 cases with clinically significant
CNV findings (pathogenic). In brief, 136 and 69 VUSes
were identified in prenatal and POC samples, respectively.
Pathogenic and VUS copy number findings are illustrated
in Figure S1 and are listed in Table S1.

Upon examination of the 93 samples with clinically sig-
nificant findings, the abnormal ultrasound findings cate-
gory had the highest frequency of cases at 43% (n=40/93)
(Figure 2b). Other top indications include intrauterine
fetal demise and stillbirths (21.5%, n=20/93), missed and
spontaneous abortions (14%, n=13/93), family history of
chromosomal abnormalities (12.9%, n=12/93), and recur-
rent pregnancy losses (12.9%, n=12/93) (Figure 2b). Due
to the high rate of clinically significant cases with abnor-
mal ultrasound findings, we further delineated these cases
by organ systems (Figure 2c). There were five POCs and
35 prenatal cases with a pathogenic finding with a referral
indication of abnormal ultrasound findings. For prenatal
arrays, 18 cases had cardiac abnormalities, and 13 cases
had brain and central nervous system abnormalities. The
remainder were due to various organ system abnormali-
ties including amniotic fluid volume, central nervous sys-
tem, craniofacial, renal, and soft markers. For POC arrays,
three out of the five cases had a central nervous system
(CNS) ultrasound abnormality (Figure 2c).

Since cardiac abnormalities were the most common
abnormal ultrasound finding in our cohort (18 prenatal
and three POC cases), we further detail the clinically sig-
nificant findings here. The cardiac abnormalities include
atrioventricular canal defect, atrioventricular septal defect,
coarctation of the aorta, hypoplastic left heart, ventricular
septal defect, and tetralogy of Fallot. The CNV findings ob-
served in these cases include 22q11.2 loss (n=3), 6q27 loss

(a) (b)
Variable Total Cohort Prenatal (n=523, POC
(N=842) 62.41%) (=319, 37.89%) Prenatal and POC Arrays
200 B POC
Age range (years) 15-42 16-44
. Bl Prenatal
@ 150
(3
>
<20 yrs 77 (9-1%) 63 (12.1%) 14 (4.4%) ag_ 100-
0
21-25 174 (20.7%) 106 (20.3%) 68 (21.3%) 3
S 50
26-30 250 (29.7%) 167 (31.9%) 83 (26.0%)
31-34 192 (22.8%) 110 (21.0%) 82 (25.7%) 0- L b b 6 A D S O
S S S S S S S S S
235 149 (17.7%) 77 (14.7%) 72 (22.6%) v
Year

FIGURE 1 Testdemographics and case intake. (a) Patient Demographics by age. A total of 842 patients who underwent prenatal or

products of conception (POC) microarray tests in our cohort are categorized into five different age groups. The ages ranged from 15-44 years

for both prenatal (blue) and POC arrays (red). (b) Distribution of prenatal and POC arrays received annually at this institution. The POC
cases are in red, while the prenatal cases are in blue. *In 2011, there were no POC arrays ordered; the legend indicates prenatal arrays are

represented in blue and POC arrays in red.
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(a) (b) (c)
Cohort Indications Summary Pathogenic Findings Pathogenic Abnormal US Findings
450 40
= POC (319) = POC (52) Soft Markers: = POC (5)
300 Bl Prenatal (523) 30 = Prenatal (41) Renal = Prenatal (35)

# of Cases
# of Cases

Clinical Indications

Neural Tube Defects
Craniofacial
Cardiac

Brain/CNS:

Ultrasound Abnormalities

Amniotic Fluid-Related
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# of Cases

< Clinical Indications

FIGURE 2 Clinical indications summary and distribution of pathogenic findings. (a) Clinical indications listed on the sample
requisition were used to group the samples received. *Other is a category for all indications with no commonalities or lacking a clinical
indication. (b) Samples with pathogenic findings (93/842) identified were categorized by clinical indication. The number of pathogenic cases
for each array type is the number indicated in the brackets in the legend (c) Pathogenic samples with abnormal ultrasound findings were
categorized by organ systems in the five POC and 31 prenatal samples. Multiple cases had more than one clinical indication and/or had
multiple organ systems affected, therefore the total number of cases in the distribution may be greater than the total pathogenic cases in this

Figure.

(n=2), 1p36 microdeletion (n=2), 15q11.2 loss (n=1),
16p11.2 loss (n=1), Trisomy 21(n=1), 4q32.2-q34.2
loss (n=1), 5q34-35.3 gain (n=1), 10q11.22-q11.23 gain
(n=1), 10q24.2-q25.1 (n=1), and six cases involving both
terminal losses and gains, suggesting unbalanced trans-
locations. Of the 128 cardiac-related ultrasound findings
seen in this cohort, ventricular septal defect (VSD) was
the most frequent in this study (20/128), and 20% (4/20)
of those VSDs had clinically significant findings, although
this was not the only ultrasound finding in all four cases
(See Table S2 for the 20 VSD cases and their clinical find-
ings and indications).

The pathogenic findings identified in our cohort are
illustrated in Figure 3. Trisomy 21 was most frequently
observed aneuploidy (n=7), followed by monosomy X
(n=4), trisomy 18 (n=4), and trisomy 13 (n=2). Notably,
66.5% (n=33/52) of the POC samples were aneuploid
or polyploid, with 14 samples involving rare autosomal
trisomies or triploidy that are not compatible with life.
They include triploidy (n=4), trisomy 22 (n=3), trisomy
16 (n=2), trisomy 7 (n=1), trisomy 9 (n=1), trisomy 4
(n=1), trisomies of both 14 and 20 (n=1), and trisomies of
both 15 and 21 (n=1). Mosaic findings were also detected
in our cohort, including a mosaic trisomy 8, 45,X/46,XX
mosaicism, and a case with two mosaic cell lines involving
a monosomy 7 and a ring chromosome 7 (Case 20). In ad-
dition, both prenatal and POC microarrays also identified
common deletion and duplication syndromes including
1p36 deletion syndrome (n=2), Wolf-Hirschhorn syn-
drome (n=1), Williams-Beuren syndrome (n=1), Cri-du-
chat syndrome (n=1), 15q11.2 deletion syndrome (n=6),

16p11.2 deletion syndrome (n=3), 22q11.2 deletion syn-
drome (n=2), distal 22q11.2 deletion syndrome (n=1),
22q11.2 microduplication syndrome (n=2) (Figure 3 and
Table 1).

In this study, the largest-sized CNV finding was identi-
fied in a POC sample from a 25-year-old pregnant individ-
ual with recurrent, spontaneous first trimester pregnancy
loss (Case 28). The sample had two de novo findings: a
37.87Mb terminal loss of 8p23.3-8p11.23 and a 106.54 Mb
gain of 8p11.21-8q24.3. This resulted in a partial mono-
somy of 8p and trisomy of 8q, and portions of 8p. These
microarray findings can be suggestive of structural chro-
mosomal abnormalities, as such, some of the cases in this
cohort had follow-up cytogenetic testing (Table 1). For
example, case 31 had microarray findings of 9q34.3 loss
and 16q23.3-q24.3 gain, subsequent cytogenetic testing
demonstrated a derivative chromosome 9 resulting from
an unbalanced translocation between chromosome 9 and
1, with a deletion of chromosome material from 9934 and
duplication of material from 16q23.

4 | DISCUSSION

CMA has the valuable utility of identifying clinically sig-
nificant genomic aberrations in the setting of fetal anom-
aly or fetal loss (Vora et al., 2016). Beginning in 2016, we
saw a volume increase which may be explained by the
addition of improved diagnostic prenatal testing educa-
tion, an oligonucleotide to SNP-based array switch which
identifies uniparental isodisomy (UPD), mosaicism, and
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FIGURE 3 Clinically significant (pathogenic) copy number
variants. This ideogram depicts clinically significant CNV findings
identified in 93 samples with clinically significant findings
reported as likely pathogenic or pathogenic. Please note, the

ring chromosome 7 and triploidy cases are not depicted in this
ideogram. CNV findings are represented by blue segments (gains)
and red segments (losses), mosaic CNV findings are represented
with an asterisk above the segment. Multiple cases had two
pathogenic CNV findings as noted in Table 1.

consanguinity that would otherwise be undetected on oli-
gonucleotide arrays. To gain a deep understanding of how
CMA has been utilized in the obstetrics setting, this study
summarized the CMA results from 842 prenatal and POC
samples over a span of ten years in a hospital reference
laboratory. Array results were categorized by the testing
indications provided by the submitting clinicians. We
characterized the diagnostic yields and clinically signifi-
cant findings based on distinctive features, such as ultra-
sound findings, and abnormal prenatal screening.

Our cohort demonstrate a diagnostic yield of 11.05%.
When stratified by microarray platform, the more updated
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platform, Agilent 180k CGH+SNP array, had a slightly
higher diagnostic yield (11.25%) than the older NimbleGen
135k platform (8.7%). The higher probe density in the
Agilent array, which provided higher resolution in detec-
tion, may contribute to the improvement in diagnostic
yield. Historically, maternal serum screening was offered
to pregnant individuals to estimate the risks for common
trisomies and neural tube defects with an accuracy of
80%-90% (Ross & Elias, 1997). Recent advances which
allow for the use of cell-free DNA (cfDNA) in prenatal
screening have increased the common trisomy accuracy
to 99% (Rose et al., 2022). Regardless of the performance
metrics (specificity and sensitivity) of a screening test, a
diagnostic test is needed to confirm the screening result
due to the risk of false positives and false negatives. In this
study, we found that 56 cases (6.6%) had a clinical indica-
tion of abnormal prenatal screening; of this category, 29
cases were abnormal maternal serum screening, and 27
cases were abnormal prenatal cell-free DNA screening.
We observed that the number of prenatal cases with indi-
cations for noninvasive prenatal screening had increased
throughout the years, from zero cases in 2011 to 22 cases
in 2020. The increase in prenatal cell-free DNA screening
cases is not unexpected, as this prenatal screening test is
now recommended for pregnant individuals regardless of
their age-associated risk or risk of chromosomal abnor-
mality (Dungan et al., 2023; Gregg et al., 2016).

None of the abnormal maternal serum screening
cases (n=29) yielded a pathogenic finding, while 11.1%
(n=3/27) of cases with an abnormal prenatal cell-free
DNA screening yielded a clinically significant finding in-
cluding: monosomy X (n=1), 15q11.2 loss (n=1), and 18p
loss with 18q duplication (n=1). Both the monosomy X
and the atypical chromosome 18 finding were indicated
on prenatal screening and confirmed by microarray. It is
perhaps surprising that more trisomies 13, 18, and 21 were
not confirmed by CMA, as the prenatal screenings have
been shown to have high sensitivities in previous studies,
yet there are no standard laboratory reporting standards
and details about false negatives are lacking in literature
which provides a false sense of safety (Rose et al., 2022).
However, it is difficult to speculate the reasons due to the
low number of abnormal prenatal cell-free DNA screen-
ing samples in this study. Additionally, confined placen-
tal mosaicism, maternal mosaicism, maternal CNVs,
maternal malignancy, vanishing twin syndrome, accept-
able fetal fractions threshold differences by platform, low
sequencing coverage, and CNV size are all factors that
are known to contribute to discordant prenatal cell-free
DNA screening results(Gromminger et al., 2014; Hartwig
et al., 2017; Mao et al., 2014; Samura & Okamoto, 2020;
Wang et al., 2014, 2022; Wang, Meng, et al., 2015; Wang,
Sahoo, et al., 2015). This emphasizes the importance of
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diagnostic confirmation of all abnormal prenatal cell-
free DNA screening results for making informed clinical
decisions and for possible clinical intervention (Cherry
et al., 2017; Lebo et al., 2015; Li et al., 2020). Currently,
ACMG recommends prenatal cell-free DNA screening
over traditional methods for all singleton and twin preg-
nancies for fetal trisomies 13, 18, 21 and sex chromosome
aneuploidies, while ACOG recommends prenatal genetic
screening for all pregnant patients (Dungan et al., 2023;
Gregg et al., 2016).

Abnormal fetal ultrasound findings had previously
been reported in 3.68 out of 1000 pregnancies, and are
often associated with genetic diseases or an isolated find-
ing (Drukker et al., 2021). The common trisomies (chro-
mosomes 13, 18, 21), and microdeletion syndromes (e.g.,
22q11.2 microdeletion and Cri-du-chat) frequently have
characteristic ultrasound findings in cardiac, neurological,
and gastrointestinal systems. Invasive testing like prenatal
CMA is the diagnostic test to identify these disorders since
they are likely unidentified in common prenatal screening
tests due to the lower prevalence in the general population
(Conner et al., 2014). In this study, 80.7% (n=422/523) of
all prenatal cases had an abnormal US testing indication,
of which 8.3% (n=35/422) of those cases had pathogenic
findings. These findings are consistent with other pre-
vious studies with diagnostic yields ranging from 6.5%
to 9.6% (Brady et al., 2014; Costa et al., 2022; Patterson
et al., 2021; Shaffer et al., 2012) (Figure 2a,b). POC ar-
rays had a diagnostic yield of 16.3% (n=52/319), 20 of
these 52 cases were due to fetal demise and stillbirths, 13
cases were due to missed and spontaneous abortions as
expected, while only 12 cases were due to recurrent preg-
nancy losses (RPL). RPL is known to affect two to five
percent of all couples, two or more RPLs are indications
for diagnostic genetic testing, we likely identify a lower
proportion in our cohort because chromosomal analysis is
the recommended genetic testing, not CMA (El Hachem
et al., 2017; Practice Committee of the American Society
for Reproductive Medicine, 2012). This highlights the util-
ity of genetic testing for POCs, as genetic testing can pro-
vide a genetic etiology for the pregnancy loss, while also
providing families with useful tools like preimplantation
genetic testing (PGT) or invasive diagnostic prenatal test-
ing for future pregnancies.

Limitations of this study include a prenatal array co-
hort consisting of predominantly cultured amniocyte
samples. CVS samples were not included in this study,
as only amniocyte samples were validated for prenatal
testing in our clinical laboratory. While both CVS and
amniocentesis demonstrate similar accuracies for ge-
netic testing, it is possible that CVS would detect con-
fined placental mosaicism, that would otherwise not be

Open Access,

detected by amniocenteses. The clinically significant
findings described herein are restricted to the limited
number of patient samples included in this study, thus
may not represent the true disease prevalence found in
the general population. Clinical indications for CMA
were provided on the sample requisition by the sub-
mitting clinician and entered into the reporting system
by laboratory accessioners, thus offering only a limited
view of the clinical picture.

VUS and CNV findings with no known disease asso-
ciation are not described in detail, as they are outside the
scope of this study. It is possible that the interpretation
of some VUS findings could be reclassified over time.
Moreover, a pathogenic finding may not completely ex-
plain the clinical features of the fetus, and thus CMA does
not mark the end of the diagnostic odyssey. Clinicians may
choose to order additional genetic testing including next-
generation sequencing (NGS) panel testing and whole ge-
nome sequencing to reach a genetic diagnosis (Slavotinek
et al., 2023).

In conclusion, this study provides summative data on
the diagnostic yield and clinically significant CNV find-
ings identified in CMA testing in prenatal and POC arrays.
Our data details the proportions of study indications and
demonstrates the differences in pathogenic findings when
comparing prenatal samples and POC samples. Given the
uptake of NGS testing in obstetric practices, future studies
would be warranted to understand how NGS may resolve
CMA-negative cases in prenatal and POC testing (Mellis
et al., 2022).
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