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Abstract
Our aim was to evaluate biomarkers for organic anion transporting polypeptide 
1B1 (OATP1B1) function using a hypothesis-free metabolomics approach. We 
analyzed fasting plasma samples from 356 healthy volunteers using non-targeted 
metabolite profiling by liquid chromatography high-resolution mass spectrome-
try. Based on SLCO1B1 genotypes, we stratified the volunteers to poor, decreased, 
normal, increased, and highly increased OATP1B1 function groups. Linear re-
gression analysis, and random forest (RF) and gradient boosted decision tree 
(GBDT) regressors were used to investigate associations of plasma metabolite 
features with OATP1B1 function. Of the 9152 molecular features found, 39 asso-
ciated with OATP1B1 function either in the linear regression analysis (p < 10−5) 
or the RF or GBDT regressors (Gini impurity decrease > 0.01). Linear regres-
sion analysis showed the strongest associations with two features identified as 
glycodeoxycholate 3-O-glucuronide (GDCA-3G; p = 1.2 × 10−20 for negative and 
p = 1.7 × 10−19 for positive electrospray ionization) and one identified as glyc-
ochenodeoxycholate 3-O-glucuronide (GCDCA-3G; p = 2.7 × 10−16). In both the 
RF and GBDT models, the GCDCA-3G feature showed the strongest association 
with OATP1B1 function, with Gini impurity decreases of 0.40 and 0.17. In RF, 
this was followed by one GDCA-3G feature, an unidentified feature with a mo-
lecular weight of 809.3521, and the second GDCA-3G feature. In GBDT, the sec-
ond and third strongest associations were observed with the GDCA-3G features. 
Of the other associated features, we identified with confidence two represent-
ing lysophosphatidylethanolamine 22:5. In addition, one feature was putatively 
identified as pregnanolone sulfate and one as pregnenolone sulfate. These results 
confirm GCDCA-3G and GDCA-3G as robust OATP1B1 biomarkers in human 
plasma.
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INTRODUCTION

Organic anion transporting polypeptide 1B1 (OATP1B1; 
encoded by SLCO1B1) is an influx transporter ex-
pressed on the sinusoidal membrane of human hepato-
cytes.1 OATP1B1 transports multiple drugs, including 
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 
reductase inhibitors (statins), repaglinide, the angio-
tensin II receptor antagonists olmesartan and valsar-
tan, as well as methotrexate.1 Substantial variability 
exists in OATP1B1 function due to genetic variants 
in the SLCO1B1 gene.1,2 The no function c.521T>C 
(p.Val174Ala, rs4149056) single nucleotide variant 
(SNV) significantly increases the plasma concentrations 
of many OATP1B1 substrate drugs, such as statins.1,3–8 
This increases the risk of statin-associated musculo-
skeletal symptoms.8–10 Furthermore, increased function 
SLCO1B1 alleles have been associated with decreased 
plasma concentrations of OATP1B1 substrate drugs, 
such as rosuvastatin, simvastatin acid, and methotrex-
ate.6,7,11 Moreover, inhibition of OATP1B1 can impair 
the hepatic uptake of OATP1B1 substrates and increase 
their plasma concentrations.1,12–14

Endogenous substrates of drug transporters can 
potentially serve as biomarkers to aid in elucidating 
transporter-mediated drug–drug interactions in early 
phases of clinical drug development. In addition, bio-
markers may enable the estimation of transporter 
function and aid in personalized drug dosing.15 A pre-
vious non-targeted metabolomics study showed that 
the SLCO1B1 c.521T>C SNV associates with increased 
plasma levels of several endogenous metabolites.16 The 
strongest association was observed with a compound 
suggested to be a glucuronide conjugate of the bile acid 
glycochenodeoxycholate (GCDCA), but the structure 
of the compound was not fully confirmed. Using a tar-
geted approach with authentic reference compounds, 
GCDCA 3-O-glucuronide (GCDCA-3G) and glycodeoxy-
cholate 3-O-glucuronide (GDCA-3G) were subsequently 
identified as very sensitive and specific biomarkers for 
OATP1B1.17 In addition to these molecules, copropor-
phyrins I (CPI) and III (CPIII) have also been suggested 
as specific biomarkers for OATP1B1.18,19 A recent study, 
however, showed that GCDCA-3G and GDCA-3G per-
form better than CPI and especially CPIII in assessing 
OATP1B1 function.20

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Many endogenous compounds are substrates of organic anion transporting 
polypeptide 1B1 (OATP1B1) and potential biomarkers for OATP1B1-mediated 
drug–drug interaction risk assessment. Previous studies have found glyc-
ochenodeoxycholate 3-O-glucuronide (GCDCA-3G) and glycodeoxycholate 
3-O-glucuronide (GDCA-3G) to be highly sensitive and specific OATP1B1 
biomarkers.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can novel OATP1B1 biomarker candidates be found using a hypothesis-free, 
non-targeted metabolomics approach? Which compounds are the most robust 
OATP1B1 biomarkers found in non-targeted metabolomics analysis of human 
plasma?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
In addition to the previously identified GCDCA-3G and GDCA-3G, we found sev-
eral metabolite features associated with OATP1B1 function, including lysophos-
phatidylethanolamine (LPE) 22:5 and putatively pregnanolone sulfate and 
pregnenolone sulfate.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
These data confirm that GCDCA-3G and GDCA-3G are robust OATP1B1 bio-
markers in human plasma. Further studies are required to investigate whether 
LPE 22:5, pregnanolone sulfate, and pregnenolone sulfate are OATP1B1 sub-
strates and potential biomarkers.
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Although previous non-targeted and targeted metabo-
lomics studies have identified several potential OATP1B1 
biomarkers,16–20 it is possible that all useful OATP1B1 bio-
markers have not yet been discovered. Therefore, our aim 
was to identify novel OATP1B1 biomarkers and to evaluate 
the performance of already identified biomarkers using 
non-targeted metabolomics data from healthy volunteers 
with genotype-predicted OATP1B1 phenotypes.

METHODS

Study participants and samples

A total of 356 healthy, non-smoking unrelated White 
Finnish volunteers (183 women, 173 men) without 
continuous medication participated in the study. The 
mean ± standard deviation (SD) age of the participants 
was 24 ± 4 years, weight 69.7 ± 12.1 kg, and body mass 
index 22.9 ± 2.7 kg/m2. Each participant provided written 
informed consent. Blood samples for measuring plasma 
metabolome were collected as part of two previously 
published single-dose pharmacokinetic studies (Trial 1, 
European Union Drug Regulating Authorities Clinical 
Trials Database, EudraCT, number 2011-004645-40 and 
Trial 2, EudraCT number 2015-000540-41).6,21 Trial 1 
took place between January 2012 and October 2014 and 
Trial 2 between May 2015 and October 2017. Following 
an overnight fast at 7–8 a.m. and before the study drug 
administration, a 10 mL blood sample was collected from 
each participant into a light-protected ethylenediamine-
tetraacetic acid-containing tube. The tubes were placed on 
ice immediately and plasma was separated within 30 min 
from sample collection. The plasma samples were stored at 
−80°C until analysis. The study protocols were approved 
by the Coordinating Ethics Committee of the Hospital 
District of Helsinki and Uusimaa (Helsinki, Finland) and 
the Finnish Medicines Agency Fimea.

Genotyping and OATP1B1 
function grouping

All the participants were genotyped using a genome-wide 
microchip and targeted methods based on TaqMan chem-
istry as described previously.17 We computed the SLCO1B1 
alleles from the c.388A>G (p.Asn130Asp, rs2306283), 
c.463C>A (p.Pro155Thr, rs11045819), c.521T>C, and 
c.1929A>C (p.Leu643Phe, rs34671512) SNVs with 
PHASE version 2.1.1.,22–24 and defined them according to 
the Pharmacogene Variation Consortium.2 The partici-
pants were classified into five OATP1B1 function pheno-
type groups based on the no function (*5 and *15), normal 

function (*1 and *37), and increased function (*14 and 
*20) SLCO1B1 alleles. Individuals homozygous or com-
pound heterozygous for a no function allele were classi-
fied as poor OATP1B1 function group, those heterozygous 
for a no function allele as decreased OATP1B1 function 
group, those homozygous for a normal function allele as 
normal OATP1B1 function group, those compound het-
erozygous for a normal and an increased function allele as 
increased OATP1B1 function group, and those homozy-
gous or compound heterozygous for an increased function 
allele as highly increased OATP1B1 function group. For 
data analysis, these function groups were encoded with 
a number between 0 and 4, corresponding to the above 
classification from poor (0) to highly increased function 
(4). The numeric grouping was treated as a continuous 
variable.

Non-targeted metabolomic analysis

Non-targeted metabolomic profiling was performed 
at the Biocenter Kuopio LC–MS Metabolomics Center 
(University of Eastern Finland, Finland). The analysis 
was carried out using an ultra-high performance liquid 
chromatography (LC, Vanquish Flex UHPLC system, 
Thermo Scientific, Bremen, Germany) coupled online 
to a high-resolution mass spectrometer (MS, Q Exactive 
Focus, Thermo Scientific). All samples were analyzed 
using two different chromatographic techniques: reversed 
phase (RP) and hydrophilic interaction chromatography 
(HILIC). Data were acquired in both electrospray ioniza-
tion (ESI) polarities: ESI positive (ESI+) and ESI negative 
(ESI−). Data-dependent product ion spectrums were ac-
quired from pooled quality control (QC) samples at the 
beginning and end of the analysis for each mode. QC sam-
ples were injected at the beginning of the analysis and after 
every 12 samples. The LC–MS instrument setups and data 
acquisition parameters have been described previously.25

Data preprocessing

Uniform Manifold Approximation and Projection 
(UMAP)26 dimension reduction technique was used to 
analyze the structure of the raw molecular feature peak 
area data and to visually identify any distinct clusters. To 
minimize confounding effects of the data structure, the 
data were normalized by removing the median and scal-
ing the data to the interquartile range using the robust 
scaler procedure from sklearn-library.27 The data analy-
sis pipeline is shown in Figure 1. After the normalization, 
visualization with UMAP was performed again to ensure 
successful scaling.
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Machine learning methods

Two decision tree-based machine learning algorithms, 
random forests (RF)28 and gradient boosted decision 
trees (GBDT),29 as well as a linear regression analysis 

were employed in parallel to identify metabolite fea-
tures associated with OATP1B1 function. The RFs and 
GBDTs were implemented with Python version 3.8.3 
using sklearn-library (a library for machine learning in 
Python).30 Initial testing indicated better performance 

F I G U R E  1   Overview of the analysis 
pipeline for analyzing non-targeted 
metabolomic data using machine learning 
methods and linear regression analysis 
to discover molecular features associated 
with organic anion transporting 
polypeptide 1B1 (OATP1B1) function. 
UMAP, Uniform Manifold Approximation 
and Projection.
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data structure using

UMAP

Robust scaling (1st.
and 3rd quartile)

Visualization of
normalized data

structure using UMAP

Analysis
branching

point

Gradient boosted
decision treesRandom forest

Linear regression
Split data into training
(70%) and validation

(30%) sets

Split data into training
(70%) and validation

(30%) sets

Hyperparameter
optimization and 5*2

cross-validation

Hyperparameter
optimization and 5*2

cross-validation

Model training

Model performance
evaluation using mean

error

Molecular feature
ranking using Gini
impurity decrease

Model training

Model performance
evaluation using mean

error

Molecular feature
ranking using Gini
impurity decrease

Molecular feature
ranking using P-value



      |  5 of 14METABOLOMICS IN OATP1B1 BIOMARKER IDENTIFICATION

using regressors than classifiers, and therefore RFs and 
GBDTs were employed as regressors operating with con-
tinuous values. Normalized metabolite feature data were 
used as the input and numeric OATP1B1 phenotype 
groups as target values. The optimal hyperparameters 
were searched by sampling from specified ranges and 
using randomized search cross-validation for both RFs 
and GBDTs. To minimize overfitting, cross-validation 
was carried out with 5*2-fold nested cross-validation. 
For both models, performances were evaluated using 
mean error between the target value and the predicted 
value. The strength of association of each metabolite 
feature with the OATP1B1 phenotype was quantified 
by calculating the average decrease in Gini impurity, a 
measurement of likelihood of an incorrect classification. 
A Gini impurity decrease of above 0.01 was considered 
as a potentially significant contribution to the classifica-
tion. Linear regression analysis was implemented in R 
version 4.0.5.31 The analysis was carried out for each me-
tabolite feature using the normalized metabolite data as 
independent and numerically encoded OATP1B1 pheno-
type classes as dependent variables. A p-value <10−5 was 
considered statistically significant.

Metabolite identification

Metabolite identification was focused on molecular 
features with a p-value <10−5 in the linear regression 
analysis or Gini impurity decrease value over 0.01 in the 
machine learning models. Metabolite identification was 
done using the open-source software MS-DIAL version 
4.36.32 Metabolite identifications were ranked according 
to previously published guidelines.33 Metabolites in the 
level of identification (LI) 1 had the same exact molecu-
lar weight, retention time, and mass fragmentation as a 
pure reference compound. LI 2 includes metabolites with 
matching exact molecular weight and spectra from public 
libraries (METLIN, Lipidmaps and Human Metabolome 
DataBase were used) or in the case of lipids, the built-in 
MS-DIAL library version 4.00. In LI 3, only the chemi-
cal group of the compound, but not the exact compound, 
could be identified. In addition, the known OATP1B1 sub-
strates or biomarkers CPI (654.27 g/mol), CPIII (654.27 g/
mol), hexadecanedioate (284.20 g/mol), tetradecanedio-
ate (256.17 g/mol), glycochenodeoxycholate 3-sulfate 
(GCDCA-3S) (529.27 g/mol), glycodeoxycholate 3-sulfate 
(GDCA-3S) (529.27 g/mol), bilirubin monoglucuron-
ide (760.30 g/mol), bilirubin diglucuronide (936.33 g/
mol), and bilirubin (584.26 g/mol) were searched from 
the entire molecular feature data based on molecular 
weight.1,13,16,18,34

RESULTS

Analysis of the raw metabolite data with UMAP revealed 
two distinct clusters (Figure 2), nearly completely differ-
entiating the two clinical trials in which the samples were 
collected. Following the scaling and normalization pro-
cedure, no distinct clusters could be observed. Using all 
features, the RF and GBDT models were able to robustly 
identify different OATP1B1 function groups (Table  1, 
Figure 3).

We found altogether 9152 molecular features in the 
non-targeted metabolomic analysis, of which 39 features 
associated with the OATP1B1 function (Table 2, Figure 4). 
A total of 28 features were significantly associated in the 
linear regression analysis (p < 10−5). In addition to these, 
RF and GBDT models discovered 11 molecular features 
with Gini impurity decreases of over 0.01. The mean ± SD 
molecular weight of all the molecular features discov-
ered in the non-targeted analysis was 488.136 ± 370.403. 
The 39 features associated with OATP1B1 function had a 
mean ± SD molecular weight of 596.490 ± 317.194 (p = 0.04 
compared to all other features with a mean ± SD molecu-
lar weight of 487.727 ± 370.457).

Of the 39 molecular features associated with OATP1B1 
function, 17 had collision-induced dissociation data 
from the LC–MS analyses. Of these, seven could be con-
fidently or putatively identified (Table  2). The top three 
molecular features in the linear regression analysis, which 
were also among the top four in the RF and GBDT mod-
els, had matching molecular weights to GCDCA-3G and 
GDCA-3G. Based on product ion spectrums and retention 
times of pure reference compounds, these features were 
identified as GDCA-3G (retention time 8.825 for nega-
tive ionization and 8.834 min for positive ionization) and 
GCDCA-3G (retention time 8.72 min). When using only 
the molecular feature representing GCDCA-3G in the RF 
and GBDT models, the model performances in identifying 
OATP1B1 function groups were slightly better than when 
using the entire metabolome dataset (Table 1, Figure 3).

Of the other associated features with collision-induced 
dissociation data we confidently identified lysophospha-
tidylethanolamine (LPE) 22:5 (LI 1) in both the positive 
and negative ionization modes. In addition, one feature 
was putatively identified as pregnanolone sulfate (LI 
2) and one as pregnenolone sulfate (LI 3). Six of the re-
maining nine features with collision-induced dissociation 
data showed a fragment characteristic of a sulfate group 
(m/z 96.96 in the negative ionization mode), but the com-
pounds could not be identified further (molecular weights 
[g/mol] and retention times [min] of 809.35214 and 6.414, 
428.22377 and 7.778, 396.19689 and 0.491, 289.62754 and 
8.163, 511.26122 and 8.63, and 255.63058 and 8.613).
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Two of the 39 features associated with OATP1B1 func-
tion had the same molecular weight as GCDCA-3S and 
GDCA-3S (529.27 g/mol), but no data-dependently col-
lected product ion spectrum information was available. In 
addition, three other features with an identical molecu-
lar weight were found in the dataset. Retention times of 
pure reference compounds for GCDCA-3S (8.825 min) or 

GDCA-3S (8.834 min) did not match with the retention 
times of any of these features.

Molecular features matching the molecular weights 
of CPI, CPIII, hexadecanedioate, tetradecanedioate, 
bilirubin monoglucuronide, or bilirubin diglucuron-
ide were not found in the metabolome dataset. Several 
features not associated with OATP1B1 function had a 

F I G U R E  2   Clustering of the samples 
based on entire metabolome dataset, with 
dimension reduction using the Uniform 
Manifold Approximation and Projection 
(UMAP) technique before (a) and after 
(b) data normalization by removing 
the median and scaling the data to the 
interquartile range using the robust 
scaling procedure. Individual samples are 
depicted with red (Trial 1) and blue  
(Trial 2) dots.
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molecular weight (584.26 g/mol) matching unconju-
gated bilirubin.

DISCUSSION

In this study, we investigated the effects of decreased and 
increased function SLCO1B1 variants on plasma metabo-
lite levels in healthy volunteers. Using a non-targeted ap-
proach, 9152 molecular features were found, of which 39 
associated with OATP1B1 function in either linear regres-
sion analysis, RF, or GBDT. The RF and GBDT decision 
tree models were able to robustly separate the samples 
into the OATP1B1 function groups based on whole metab-
olome data. In the linear regression analysis, GDCA-3G 
showed the strongest association for OATP1B1 function, 
whereas RF and GBDT indicated strongest association 
for GCDCA-3G. Of the other features associated with 
OATP1B1 function, we were able to confidently identify 
LPE 22:5, and putatively pregnanolone sulfate and preg-
nenolone sulfate. In addition, several associated features 
appeared to include sulfate groups. Overall, the findings 
of this study support the feasibility of GCDCA-3G and 
GDCA-3G as robust endogenous OATP1B1 biomarkers.

The molecular features identified as GCDCA-3G and 
GDCA-3G were strongly associated with OATP1B1 func-
tion in all models. This suggests that they are the best 
performing OATP1B1 biomarkers found in non-targeted 
metabolomics analysis of human plasma. In a previous 
study, the mean plasma concentrations of GCDCA-3G and 
GDCA-3G were 8.57-fold and 5.76-fold higher in the poor 
OATP1B1 function group than in the normal OATP1B1 
function group.20 This previous study also showed that 
especially GCDCA-3G detected poor OATP1B1 function 
with high sensitivity and specificity. Substantial changes 
in plasma concentrations of GCDCA-3G and GDCA-3G 
have been detected in the presence of strong OATP1B1 

inhibitors, and their plasma concentrations have been 
shown to increase even in the presence of weak OATP1B1 
inhibition.35 These data show that the plasma concentra-
tions of GCDCA-3G and GDCA-3G depend strongly on 
OATP1B1 function.

Of the other features associated with OATP1B1 func-
tion, we confidently identified LPE 22:5 in both the positive 
and negative ionization modes and putatively identified 
one feature as pregnanolone sulfate and one as pregneno-
lone sulfate. LPE 22:5 is a phospholipid located in cellular 
membranes in all human tissues.36 Pregnenolone sul-
fate and pregnanolone sulfate are endogenous excitatory 
neurosteroids (Figure 5).37 Pregnenolone sulfate is a sub-
strate of OATP2B1 and has been suggested to play a role 
in OATP2B1 regulation.38,39 To the best of our knowledge, 
it is not known whether pregnenolone sulfate or preg-
nanolone sulfate is an OATP1B1 substrate. Interestingly, 
also several other features that associated with OATP1B1 
function contained a sulfate group. Many sulfated bile 
acids as well as dehydroepiandrosterone sulfate and es-
trone sulfate are endogenous substrates of OATP1B1.1,40,41 
The molecular weights of the features associated with the 
OATP1B1 function were significantly higher than those 
of the other features. In line with this, previous studies 
have suggested that OATP substrates in general have a rel-
atively high molecular weight.41

In addition to the 3-O-glucuronides, the sulfate conju-
gates of GDCA and GCDCA have been suggested as OATP1B 
biomarkers. For example, the non-selective OATP1B inhibi-
tors cyclosporine A and rifampin (rifampicin) have increased 
the plasma concentrations of GDCA-3S and GCDCA-3S.13,14 
In a recent study, the plasma concentrations of GDCA-3S 
but not those of GCDCA-3S were significantly increased in 
individuals with the SLCO1B1 no function genotype.40 Five 
molecular features with an exact molecular weight identical 
to that of GDCA-3S and GCDCA-3S were found in the data-
set. Two of these features associated with OATP1B1 activity. 

T A B L E  1   Comparison of the mean errors of the random forest and gradient boosted decision tree models for identification of 
organic anion transporting polypeptide 1B1 (OATP1B1) function groups, encoded as continuous values between 0 and 4, using the whole 
metabolome dataset or the top metabolite molecular feature representing glycochenodeoxycholate 3-O-glucuronide (GCDCA-3G).

OATP1B1 phenotype (n) Encoded value

Full model mean error GCDCA-3G mean error

RF GBDT RF GBDT

Poor (13) 0 0.366 0.467 0.255 0.242

Decreased (112) 1 0.241 0.357 0.208 0.268

Normal (170) 2 0.159 0.176 0.099 0.123

Increased (65) 3 0.245 0.363 0.191 0.200

Highly increased (5) 4 0.620 0.721 0.562 0.619

Overall (356) 0.213 0.279 0.159 0.191

Abbreviations: GBDT, gradient boosted decision tree; GCDCA-3G, glycochenodeoxycholate 3-O-glucuronide; OATP1B1, organic anion transporting 
polypeptide 1B1; RF, random forest.
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However, the retention times of these features did not match 
with the retention time of the reference compounds of ei-
ther GDCA-3S or GCDCA-3S, suggesting that these features 
may represent isomers of GDCA-3S or GCDCA-3S, or some 
other compounds. For example, the bile acid conjugates gly-
coursodeoxycholate sulfate (GUDCA-S), GCDCA-7S, and 
GDCA-7S have molecular weights identical to GCDCA-3S 
and GDCA-3S, but further studies are required to investigate 

whether the features represent any of these compounds. 
Interestingly, the weak OATP1B inhibitor GDC-0810 has 
raised the peak plasma concentration of GUDCA-S by 57% 
and that of GCDCA-3G by 58%.35

In addition to GCDCA-3G and GDCA-3G, previous 
studies have identified CPI, CPIII, hexadecanedioate, 
and tetradecanedioate as potential OATP1B1 biomark-
ers.16,18,20,42 Based on the exact molecular weights, CPI, 

F I G U R E  3   Confusion matrix on classification accuracy of the gradient boosted decision tree (GBDT) and random forest (RF) machine 
learning models for detecting the organic anion transporting polypeptide 1B1 (OATP1B1) function groups using the full metabolome dataset 
and the feature representing glycochenodeoxycholate 3-O-glucuronide (GCDCA-3G). The genetically determined OATP1B1 function groups 
are poor function (0), decreased function (1), normal function (2), increased function (3), and highly increased function (4). The values 
in the matrix are derived from normalizing confusion matrix over the true (rows) values. The sliding color scale indicates the number of 
observations in each cell.
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CPIII, hexadecanedioate, and tetradecanedioate were 
not found in our non-targeted metabolomic analysis of 
fasting plasma samples. This may be due to low con-
centrations in plasma or sensitivity to physical factors C
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affecting their concentrations during prolonged storage, 
which makes them less reliable as potential biomark-
ers. The fasting plasma concentrations of CPI and CPIII 
in healthy volunteers are below 1 ng/mL, and those 
of hexadecanedioate and tetradecanedioate are in the 
range 1–100 ng/mL.20,42,43

The participants were stratified to poor, decreased, 
normal, increased, and highly increased OATP1B1 func-
tion groups based on their SLCO1B1 genotypes as done 
previously.20 The current Clinical Pharmacogenetics 
Implementation Consortium (CPIC) guideline assigns the 
OATP1B1 phenotypes into four function groups: poor, de-
creased, normal, and increased function,8 in which the in-
creased function group is identical to the highly increased 
function group in our study. In our study, the increased 
function group consisted of individuals compound het-
erozygous for a normal and an increased function allele, 
who belong to the normal function group in the CPIC 
guideline classification. Previous studies have shown that 

the concentrations of GCDCA-3G and CPI are lower in 
individuals compound heterozygous for a normal and an 
increased function allele than in those homozygous for 
a normal function allele,17,20 supporting our classifica-
tion system. The RF and GBDT machine learning models 
using either the whole metabolome dataset or only the 
GCDCA-3G feature identified the increased OATP1B1 
function group with high accuracy, further supporting 
the idea that individuals compound heterozygous for a 
normal and an increased function allele have increased 
OATP1B1 activity as compared with those homozygous 
for a normal function allele.

The samples used in this study were collected during 
two separate pharmacokinetic studies.6,21 Using the 
UMAP dimension reduction technique, the samples from 
these two trials formed two distinct clusters. Similarly, 
a previous study using the same samples found a signif-
icant difference in the concentrations of CPI and CPIII 
between the two studies.20 The underlying cause for these 

F I G U R E  4   Associations of molecular features found in non-targeted metabolomics analysis of the fasting plasma samples from 356 
healthy volunteers with genetically determined organic anion transporting polypeptide 1B1 (OATP1B1) function groups using random 
forest and gradient boosted decision tree machine learning models, and linear regression analysis. Each feature is represented by a symbol 
indicating the chromatographic technique and ionization polarity. Significance based on p-value or Gini impurity decrease is shown on the 
y-axis and exact molecular weight on the x-axis. GCDCA-3G, glycochenodeoxycholate 3-O-glucuronide; GDCA-3G, glycodeoxycholate 3-O-
glucuronide; HILIC, hydrophilic interaction liquid chromatography; RP, reversed phase liquid chromatography.

F I G U R E  5   Chemical structures 
of pregnenolone sulfate, pregnanolone 
sulfate, glycodeoxycholate 
3-O-glucuronide (GDCA-3G), 
glycochenodeoxycholate 3-O-
glucuronide (GCDCA-3G), and 
lysophosphatidylethanolamine (LPE) 22:5. 
Only one isomer of LPE 22:5 is shown. Pregnenolone sulfate

Pregnanolone sulfate

GDCA-3G

GCDCA-3G

LPE 22:5
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differences in the metabolite levels between the studies 
remains unclear. The only differences between the sam-
ples from the two studies were the time that the samples 
were stored in the deep freezer and the brand of the light-
protected polypropylene freezing tubes. Nevertheless, the 
effects of the differences between the studies on the re-
sults should be minimal, as the normalization procedure 
removed the clustering entirely. This shows that standard-
ization of both the collection and storage of the samples 
is crucially important in metabolomic biomarker studies.

RFs and GBDTs are machine learning algorithms 
based on decision trees. RFs combine the decision trees 
at the end of the process, whereas GBDTs combine the 
trees throughout the process using gradient boosting to 
minimize error. Linear regression analysis is simpler to 
implement than a machine learning approach and pro-
duces easily interpretable results, but functions best with 
linear relationships between the input and target values. 
We found that analysis using multiple complementary 
modeling techniques can be useful in identifying metabo-
lite–transporter function associations as the relationships 
between molecular features and transporter function can 
be complex. Linear regression analysis and the decision 
tree-based machine learning models complement each 
other in this regard.

Our study has some limitations. First, we could not 
verify the identities of pregnanolone sulfate or preg-
nenolone sulfate using reference compounds. In addi-
tion, there were several metabolite features associated 
with OATP1B1 activity that could not be identified. 
Furthermore, a few previously identified OATP1B1 
substrates or biomarkers could not be seen in the non-
targeted metabolomics analysis. It is possible, that a 
more sensitive method could have captured these com-
pounds. Moreover, as the use of machine learning meth-
ods in biomedical research is still evolving, there are no 
standardized cutoff values for significant Gini impurity 
decreases. Lastly, it is important to note that while the 
effect of genetically poor OATP1B1 function is most 
likely substrate-independent, the effects of OATP1B1 
inhibitors may be substrate-dependent. Therefore, when 
investigating OATP1B1-mediated drug interactions with 
endogenous biomarkers, possible substrate-dependent 
effects should be considered.

To conclude, using non-targeted metabolomics we 
found that GCDCA-3G and GDCA-3G are robust and 
specific biomarkers for OATP1B1 function, a finding 
supported by previous targeted studies. In addition, we 
discovered possible novel biomarker candidates includ-
ing LPE 22:5, pregnanolone sulfate, and pregnenolone 
sulfate. Non-targeted metabolomics analysis of care-
fully collected plasma samples from a relatively large 
homogenous group of healthy volunteers and the use 

of genetically determined phenotype classification pro-
vides a robust method for discovering biomarkers for 
pharmacokinetic proteins.
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