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Abstract

Purpose: Recent advances in computer vision and machine learning have resulted in endoscopic 

video-based solutions for dense reconstruction of the anatomy. To effectively use these systems in 

surgical navigation, a reliable image-based technique is required to constantly track the endoscopic 

camera’s position within the anatomy, despite frequent removal and re-insertion. In this work, we 

investigate the use of recent learning-based keypoint descriptors for six degree-of-freedom camera 

pose estimation in intraoperative endoscopic sequences and under changes in anatomy due to 

surgical resection.

Methods: Our method employs a dense structure from motion (SfM) reconstruction of the 

preoperative anatomy, obtained with a state-of-the-art patient-specific learning-based descriptor. 

During the reconstruction step, each estimated 3D point is associated with a descriptor. This 

information is employed in the intraoperative sequences to establish 2D-3D correspondences for 

Perspective-n-Point (PnP) camera pose estimation. We evaluate this method in six intraoperative 

sequences that include anatomical modifications obtained from two cadaveric subjects.

Results—show that this approach led to translation and rotation errors of 3.9 mm and 0.2 

radians, respectively, with 21.86% of localized cameras averaged over the six sequences. In 

comparison to an additional learning-based descriptor (HardNet++), the selected descriptor can 

achieve a better percentage of localized cameras with similar pose estimation performance. We 

further discussed potential error causes and limitations of the proposed approach.

Conclusion: Patient-specific learning-based descriptors can relocalize images that are well 

distributed across the inspected anatomy, even where the anatomy is modified. However, camera 
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relocalization in endoscopic sequences remains a persistently challenging problem, and future 

research is necessary to increase the robustness and accuracy of this technique.

Keywords

Camera relocalization; Sinus surgery navigation; Learning-based descriptors; Anatomical 
landmark recognition

1 Introduction

Background:

The adoption of minimally invasive surgery and digital endoscopy has brought benefits to 

patients, including reduced recovery and hospitalization times [1, 2]. However, the use of 

the body’s natural cavities as pathways for endoscopic intervention entails intricate and 

occluded workspace environments, constrained fields of vision, and an inherent distance 

between target anatomy locations and surgeons’ direct visual reach. In this respect, it 

is critical to provide surgeons with useful information through improved visualization 

and spatial understanding of instruments-anatomy interactions. To achieve this, numerous 

algorithms and computer vision applications have been developed that leverage the image 

information provided by high-resolution endoscopy [3–5].

Standard approaches for endoscopic navigation use optical or electromagnetic tracking to 

estimate the position of the endoscope camera with respect to a reference coordinate frame. 

However, this practice has additional constraints like resource needs, time, and ease-of-use, 

which can negatively affect overall workflow, thus reducing adoption rates when deployed 

in clinical settings [6]. In this regard, an endoscope-centered solution is critical to enable 

navigation, while circumventing the downsides of current solutions.

Longitudinal endoscopic assessments generally involve multiple scopings of the anatomy 

of interest to follow the progression of a surgery, disease or treatment. In particular, during 

surgical procedures, the endoscope camera is inserted and removed from the anatomy 

multiple times, while documenting the anatomical variations brought by the surgeon. In this 

setting, a reliable navigation system must be able to recover the endoscope’s position across 

multiple intraoperative scopings. This task is referred to as camera relocalization, and is 

closely associated with anatomical reconstruction from surgical video, which can provide 

the model and reference frame for camera localization. Previous works have explored this 

association through Structure from Motion (SfM) [7] and Simultaneous Localization and 

Mapping (SLAM)-based approaches [5], but are limited to single scopings, where all frames 

are connected by at least some keypoint correspondences in successive frames. However, 

endoscope retraction violates this assumption and entails a loss of spatial calibration to 

the corresponding anatomical model. This motivates the development of a method that 

establishes correspondences between an anatomical model and the endoscopic frames from 

different scopings.
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Related work:

Camera pose estimation methods have been widely explored in applications in autonomous 

navigation, robotics, and augmented reality [8]. End-to-end pose regression based on deep 

learning have been proposed, however, it has been shown in [9] that this family of methods 

is outperformed by strategies that handle pose estimation via 3D structure. Structure-based 

approaches utilize SfM in order to construct 3D representations (e.g. point cloud) of the 

environment based on images showing the same scene but from different views [7]. This 

algorithm can be used to generate an initial reconstruction for more complex applications 

such as dense reconstructions [4] and neural-based surface representations [10]. SfM allows 

for explicit association of points in the 3D structure to keypoints in the 2D image [11], and 

the resulting correspondences can be employed to solve for the 6-DoF camera pose using 

methods like Perspective-n-Point (PnP) [12].

Typically, hand-crafted features such as SIFT [13] are used to establish 2D-3D 

correspondences, which has shown to perform well in reconstructing scenes from natural 

images [7]. However, these features do not perform well in challenging conditions such 

as illumination changes and lack of texture present in endoscopic images. Liu et. al [3, 

4] demonstrate that these problems can be mitigated with learning-based descriptors that 

allow for reliable reconstruction of the structure, while computing an expressive feature 

representation for the estimated 3D points in the reconstruction space.

Contributions:

This work presents and evaluates a structure-based endoscope relocalization method in sinus 

endoscopy. We generate an initial anatomical 3D reconstruction utilizing the methods of 

[3] and [4]. Our relocalization pipeline then performs feature matching between the 3D 

reconstruction and 2D images of unseen endoscopy video. The 2D-3D correspondences 

were then used for for pose estimation of the video frames relative to the initial model. We 

compare the performance of different keypoint descriptors proposed for point matching and 

correspondence generation.

The method is evaluated under the challenging environment presented by the sinus 

anatomy with monocular endoscopic sequences obtained on cadaver data. Our evaluation 

environment consists of an initial video sequence generated by scoping the undisturbed 

anatomy. Relocalization is then evaluated on a repeated endoscope pass on the undisturbed 

anatomy as well as two subsequent scopings of the same anatomy after surgical 

manipulation, i. e., resection of structures, which alters the 3D anatomy visible in those 

videos. Our experimental setup is further described in Section 3.1. We aim to provide 

an analysis of potential limitations and benefits of learning-based descriptors for camera 

relocalization in a surgical environment.

2 Methods

We define the relocalization problem as the task of finding the 3 × 3 rotation matrix R 
and translation vector t ∈ R3 of a query image I in an endoscopic sequence relative to a 

previously established anatomy coordinate frame. The image I is indexed by its 2D pixel 
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position x, and hence, we use the notation I(x) to indicate the value of the image I (or of any 

array) at position x. To generate the initial model w.r.t. to which images will be relocalized, 

we rely on SfM combined with a learning-based keypoint descriptor dx = F(x) to generate an 

initial point cloud C = Xi i = 1
n  of the anatomy, with Xi ∈ ℝ3. Furthermore, each 3D point in 

C is linked to a descriptor d, that was used to establish correspondences for the generating 

2D points. We will represent this association as dX = P(X). The paired descriptors are later 

used in the relocalization process to find a set S of 2D-3D correspondences between C and 

the query image I. These correspondences are finally used to estimate the corresponding 

camera pose. Figure 1 shows an overview of our method, organized into three steps: 1) 

3D anatomy model reconstruction, 2) keypoint relocalization, and 3) endoscope image pose 

estimation.

2.1 3D Anatomy Reconstruction

To generate the corresponding point cloud C, we rely on a SfM algorithm [7] on the 

frames of an initial endoscope sequence. We generated keypoint matches by employing 

a learning-based descriptor utilizing the dense descriptor extraction and matching method 

described in [3]. The input for the network is a pair of images Is, It, as source and target 

respectively, and the output is a set of 2D-2D correspondences between the two inputs.

The network consists of a feature extraction model F = f(I) to compute the dense descriptor 

maps Fs, Ft on both the source and target images. A set of 2D keypoints locations xs
*

is sampled on the source image Is. For each keypoint location, the transposed descriptor 

dxs* = Fs xs
* ∈ ℝk is employed as a convolutional kernel and is applied to the whole target 

descriptor map Ft to compute the response map GIt, xs* to the keypoint xs
* defined as:

GIt, xs* = F t * dxs*

(1)

The position of the correspondence in the target image for the source keypoint xs
* is given 

by the pixel coordinate xt
* that maximizes the response map GIt, xs* Due to the learning-based 

description of point features that considers both local and global context, this method is able 

to generate a dense set of correspondences between a pair of images. The output matches 

are used by an SfM algorithm to generate a dense point cloud C of the sinus anatomy. 

In addition, we obtain an estimate of the preoperative camera trajectory with respect to C, 

employed for the later refinement step.

2.2 3D Point Descriptors

Using the results of SfM, it is possible to establish a correspondence between the estimated 

3D positions and the 2D keypoints that generated these positions. In general, each X ∈ C can 

be projected into a 2D keypoint x* in a particular image Iref. Considering this relationship, 

we define the descriptor for each Xi ∈ C as:

P Xi = di = Fref x* , if Xi projects intox* .
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(2)

Since Xi can have a projection in multiple images (and hence multiple 2D locations), we 

select the descriptor for the first projection found. This selection follows the definition of 

point descriptors, whereby any descriptor will cause a maximum response when convolved 

with a true correspondence in a new image. In Online Resource 1 - Figure 1, we provide a 

visual example to complement on the projection similarity of unique 3D point descriptors on 

2D images.

2.3 Keypoint Relocalization

The relocalization process relies on the information generated during the reconstruction 

step. Considering an input image Iq from the initial query image sequence, in our case an 

endoscopic video sequence of the undisturbed anatomy, we first employ a dense feature 

extraction model f to generate the query descriptor map Fq = f(Iq). Note that f is fixed and 

used for feature extraction of all test sequences (pre- and intraoperative).

In order to find the 2D-3D correspondence set S, we follow the same strategy described in 

Section 2.1, but this time to establish correspondences between a point Xi ∈ C and a location 

x′ ∈ Iq. Considering the descriptor di = P(Xi), we use Equation (1) to compute the response 

map GIq, di. To select valid matches, we establish a response threshold τq. In this manner, 

if the maximum value of the response map is bigger than τq, we set its location to be a 

correspondence for Xi. Otherwise, we consider that Xi does not have a match in Iq. With this 

in mind, the matching process can be formulated as:

M I, di =
x′ if x′ = argmaxxGIq, di(x) andGIq, di x′ > τq

∅ otherwise

(3)

The empty value ∅ indicates no correspondence was found. We run this process over the 

whole point cloud to find a set S = Xi, xi i = 1
m  correspondences between C and Iq. Moreover, 

to avoid setting a fixed response threshold τ for all input images and sequences, we design 

a τq selection method that adapts to the 2D-3D correspondences found for each query 

frame Iq. In this regard, 2D-3D correspondences are filtered progressively, decreasing the 

response threshold in fixed steps until a minimum number of correspondences is obtained. 

This procedure allows for a tailored selection of the highest-confidence correspondences for 

each query frame Iq, and ensures a satisfactory and correct pose estimation in the subsequent 

PnP stage. This design choice is supported by an additional experiment, which maintained 

the response threshold fixed for all query frames, and showed a considerable decrease in the 

localization rate of our method. Additional details are reported in Online Resource 1 - Figure 

2.

2.4 Pose Estimation

Given the set of 2D-3D correspondences between Iq and C, we use a standard PnP approach 

to compute the pose associated to Iq within the preoperative 3D model. It defines a equation 

system that is solved for R and t:
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xi = π[R ∥ t]Xi, with xi, Xi ∈ S

(4)

To reduce the impact of potential outliers found during the described 2D-3D correspondence 

search, we employ a PnP solver that incorporates a RANSAC scheme to solve for 

camera pose. By setting a maximum allowed distance of 12.0 pixels between observed 

and computed point projections during pose estimation, this implementation assists in the 

selection of the most adequate point correspondences from the computed set S.

Trajectory Post-processing.—We incorporate additional measures to discard large 

deviations in the estimated endoscopic camera poses, and confine possible solutions to the 

3D anatomical space. First, we obtain the tightest bounding cube around the preoperative 

point cloud and reject any pose estimation located outside of its limits. Second, a temporal-

based refinement of the translation component of accepted pose estimates is achieved 

through a median filter. Finally, we use the preoperative camera trajectory estimated by 

SfM as a reference for likely endoscopic camera poses. To do so, first, we compute the 

average difference μsfm between consecutive cameras in the SfM poses. Then each computed 

intraoperative pose is paired with its closest preoperative counterpart. Considering the space 

restrictions of the anatomy, the intraoperative pose is accepted if its distance with the 

nearest preoperative camera is smaller than 2μsfm and its rotation difference is lower than 45 

degrees.

2.5 Pose Evaluation

We obtain ground-truth camera poses from optical tracking. Given that pose estimations 

are computed with respect to the coordinate frame generated with SfM, we require a 

transformation between this and the optical tracker space. To do so, we register the SfM 

trajectory of the initial sequence to its measured counterpart in the coordinate frame of the 

optical tracker, enabling direct evaluation of camera pose in the optical tracker space.

Our quantitative evaluation considers independent error measures for the translation and 

rotation components of valid pose estimates. We evaluate translation vectors using the L2 

distance between the reference and estimated counterparts. To evaluate the rotation matrices, 

we compute the residual rotation between the predicted and ground truth poses’ rotation as 

RΔ = R ⋅ Rgt
−1. Note that for a perfect estimation, RΔ equals the identity matrix I3×3. Then, we 

compute the angle around the rotation axis in radians, as defined below:

θΔ = arccos tr RΔ − 1
2

(5)

where tr(·) expresses the trace of the residual rotation matrix [14].
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3 Experiments and Results

We evaluate our pipeline with six endoscopic sequences acquired during a simulated sinus 

surgery setting on two cadaveric subjects. The scoping sequences were obtained with a 

rigid endoscope connected to a Storz Image1 HD camera head, and performed by an 

experienced sinus surgeon under an IRB-approved protocol. Two sequences were acquired 

with an undisturbed anatomy, while the remaining sequences were captured after surgical 

intervention that removed parts (cadaver Subject # 1) or the complete lamella of the uncinate 

(cadaver Subject # 2). All the videos were pre-processed to remove the sections outside 

the subject and sinus anatomy. Regarding optical tracking, an NDI Polaris Hybrid Position 

Sensor was employed to obtain pose information of the endoscope relative to the patient 

anatomy utilizing rigidly attached marker spheres. We performed a hand-eye calibration 

with the system described in [15] to obtain the position of the camera to determine the 

ground-truth camera pose relative to the anatomy. The tracking information is time-paired 

with the endoscopic video to obtain a one-to-one correspondence between video frames and 

measured poses.

3.1 Experimental Setup

For both subjects, we use one of the sequences with an undisturbed anatomy as initial 

input to generate the reconstruction and 3D descriptors following the method described in 

Section 2.1. The second undisturbed scoping, together with the two sequences displaying 

the surgical progression, were employed as intraoperative sequences to evaluate the 2D-3D 

matching process and camera pose estimation. Henceforth, these sequences are referred to 

as Undisturbed Anatomy, Progression Step # 1 and Progression Step # 2. For cadaveric 

Subject # 1, these sequences contain respectively 930, 746, and 656 query images, while 

for cadaveric Subject # 2 they contain 1710, 241, and 565 query images. Due to the 

closeness of the raw frames in the temporal domain, we uniformly sample 310, 249, and 

219 (Subject # 1) and 570, 241, and 283 (Subject # 2) from the raw sequences to perform 

the experiments, ensuring a rich distribution of cameras along the sequences and avoiding 

content redundancy.

The descriptor model was initialized with the pre-trained weights provided by the authors of 

[3]. Further training was carried out for a fixed number of 52 epochs on the initial sequence 

in a self-supervised fashion, to perform patient-specific fine-tuning. The model with the 

highest accuracy on the validation set was then used for our relocalization method. We 

maintained the default architecture and training parameters, as used in the original work [3]. 

We used the learned descriptors in a general purpose Structure-from-Motion pipeline [7] to 

generate a 3D reconstruction of the sinus anatomy. After keypoint relocalization and 2D-3D 

correspondence search, we made use of the OpenCV PnP-RANSAC implementation, using 

the EPnP solver [12, 16], to solve the PnP problem. All experiments were conducted on one 

NVIDIA RTX3090 GPU, in a 128GB RAM memory PC.

Additional Descriptors.—We evaluated the performance of SIFT and an alternative 

learning-based descriptor, HardNet++ [17], in the relocalization problem. This model was 

trained until convergence, initialized with the weights provided by the authors and aiming 
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for fine-tuning over the same preoperative endoscopic sequence as before. Further, to ensure 

a fair evaluation, we fixed the SfM reconstruction and vary the descriptor paired with the 3D 

points of P.

3.2 Pose Estimation

We evaluated the localization performance of the proposed pipeline, using [3] as a keypoint 

descriptor. Average translation and rotation errors are reported in millimeters and radians in 

Table 1. We also report the percentage of localized cameras, denoting the number of valid 

solutions computed by the PnP algorithm out of the original number of frames. Invalid cases 

included frames where not enough correspondences were found or the relocalized camera 

was excluded from the estimated trajectory in the post-processing stage.

Overall, performance is comparable across the six test sequences. Interestingly, in cadaver 

Subject # 1, the translation error is larger for the Undisturbed Anatomy sequence. However, 

the percentage of correctly localized cameras is ~8% bigger than the corresponding 

disturbed sequences, increasing the possibility of outliers that lie inside the anatomy. Even 

though the employed descriptor can localize cameras with similar performance along all 

sequences, it is clear that the number of cameras decreases for Progression Step # 1 and 

Progression Step # 2 sequences in Subject # 1. Subject #2 follows a similar pattern for the 

Undisturbed Anatomy and Progression Step # 1 sequences. However, Progression Step # 2 
deviates from the behavior observed in Subject # 1. The percentage of localized cameras is 

more prominent, but the error increases by around 2 mm compared with the previous steps. 

Similarly, the standard deviation has an increment of up to 2.2 mm compared to the previous 

progressions. This situation indicates that more correspondences are found, but the level of 

the noise in the predictions increases. We attribute this increase to the removal of the entire 

lamella in this particular sequence.

Furthermore, Table 2 presents the results obtained when modifying the nature and 

source of the 3D point descriptors, between hand-crafted [13] and the selected learning-

based descriptors [3, 17]. With respect to SIFT [13], the learning-based nature of these 

descriptors proves beneficial to derive expressive features from images of the sinus 

anatomy, and can more suitably localize keypoints despite their photometric inconsistencies 

and smooth appearances across a sequence. The learning-based descriptors exhibited 

consistent performance based on comparable translation and rotation errors. While the 

Dense descriptor was able to relocalize a higher percentage of cameras than HardNet++ 

for each of the sequences, these percentages are still ultimately low indicating that sinus 

anatomy provides a challenging environment for their generalizability, and overall capacity 

to recognize keypoints in endoscopic images. The complexity of the camera relocalization 

problem in endoscopic surgery is evidenced by overall low camera relocalization rates, and 

high camera pose estimation errors compared to natural scenes.
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4 Analysis and Discussion

Spatial Distribution of Localized Cameras.

The relocalization strategy employs additional restrictions based on the preoperative SfM 

results, allowing us to filter out potentially mislocalized cameras and establish a criterion 

for considering a camera as “correctly localized”. Consequently, the cameras that meet this 

criterion have a lower error, reducing the number of valid cameras to an average of 21.86% 

(Table 1). An important aspect to consider is the ability of the descriptor to find proper 

correspondences across the entire sequence. In this regard, we verify that the localized 

cameras do not collapse into a single section of the sequence but instead distribute over the 

entire endoscope trajectory. In Figure 2, we report a depiction of two exemplary estimated 

trajectories with respect to their corresponding ground-truth trajectories and anatomical 

model used as reference for the localization process.

Overall, we observe that the estimations are interspersed and cover suitably the progression 

of the different intraoperative sequences. As shown in Figure 2, this distribution is 

reflected in the spatial domain, as the localized cameras attend to several regions in the 

anatomy, and particularly cover the operated region near the lamella of the uncinate. This 

observation refers back to the appropriate relocalization of salient features, pertaining to 

anatomical landmarks along the intraoperative scopings. To complement these observations, 

the localized cameras were also shown to be well-distributed in the temporal domain of the 

ground-truth trajectory (Online Resource 1 - Figure 3).

Effect of Noisy 2D-3D Correspondences in PnP Localization.

To understand potential error sources, we evaluate the robustness of PnP against noisy 

inputs. We apply different levels of additive Gaussian noise to the 2D-3D correspondences 

to simulate a mismatch between the 3D points and the predicted 2D location over a subset 

of 106 images uniformly sampled from Subject # 1 - Progression Step # 1. We find that the 

PnP presents a certain level of robustness to noise in the estimated 2D keypoint location. 

However, noise in the 3D component leads to higher errors (above 10 cm in translation, 

and 2 radians for rotations) in the estimated pose. These findings suggest the presence of 

false positive 3D matches in the query images as one of the error sources for the camera 

pose estimation. Furthermore, it is possible that the training strategies employed with the 

descriptors generate a high-sensitivity matching process. This allows strong correspondences 

to be found in a local vicinity (favorable for SfM) but may present a low specificity in 

long-range matches, contributing to errors in the relocalization process. Additional details 

and visualizations are given in Online Resource 1 (Figures 4 and 5).

Overall Performance Suggests Need for Further Research.

The use of the same descriptor for SfM reconstruction and 2D-3D matching brings 

advantages, as only one single model is required for both tasks. Nevertheless, to apply these 

models to the relocalization task, it is necessary to understand and address their limitations. 

Even though patient-specific descriptors are advantageous over other descriptor models, 

results show that extending these descriptors to problems beyond their primary SfM task 

requires additional effort. Moreover, we identify the inclusion of incorrect 3D locations in 
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the 2D-3D correspondence sets as a strong contribution to the errors in the estimation of 

the endoscopic camera poses. In light of this, the employed feature model’s specificity is 

a critical point that needs to be attended to. However, additional aspects also need to be 

considered, including the influence of the noise in the pseudo-ground truth used to train the 

model given the self-supervised nature of the descriptor employed.

5 Conclusion

This work presents an application and evaluation of patient-specific learning-based 

descriptors for the endoscope camera relocalization problem. The main objective of the 

descriptor is to define 2D-3D correspondences between a preoperative point cloud and the 

individual frames of a new endoscopic sequence. Patient-specific learning-based descriptors 

can relocalize endoscopic images that are well distributed across the inspected anatomy, 

even in cases where the anatomy is modified. However, camera relocalization in endoscopic 

sequences remains a challenging problem, and future research is necessary to increase both 

the robustness and the accuracy of these techniques, before optimizing them for clinical use.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Endoscope relocalization pipeline.
The relocalization process comprises three main stages: a) Using preoperative data, we 

generate a dense point cloud C of the anatomy using a learning-based descriptor extraction 

and matching process [3] along with SfM. We relate every point in C with a numerical 

descriptor (depicted as brown blocks). b) The relocalization of a query image Iq occurs by 

extracting its corresponding descriptor representation, and finding matches with the point 

cloud descriptors to generate a query 2D-3D correspondence set S. c) The set S is used by 

a standard PnP solver that integrates RANSAC for correspondence outlier rejection. Best 

viewed in color.
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Fig. 2. 
Spatial distribution of valid cameras (red) w.r.t its ground-truth trajectory (blue) and 3D 

anatomical model. (a) and (b) correspond to sequences of Undisturbed Anatomy and 

Progression Step # 1 of Subject # 1, respectively. A comparative frame of the operated 

region is also presented. Best viewed in color.

Hernández et al. Page 13

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hernández et al. Page 14

Table 1

Performance comparison for estimated trajectories employing the proposed method. Results are reported as 

mean error ± standard deviation.

Subject # Sequence Translation error (mm) Orientation error (rad) % of Localized Cameras

1

Undisturbed Anatomy 3.33 ± 2.33 0.2 ± 0.14 27.42

Progression Step # 1 2.28 ± 1.21 0.22 ± 0.14 19.68

Progression Step # 2 2.6 ± 1.43 0.26 ± 0.16 6.85

2

Undisturbed Anatomy 4.76 ± 1.69 0.17 ± 0.07 14.04

Progression Step # 1 3.87 ± 0.81 0.31 ± 0.12 13.69

Progression Step # 2 6.4 ± 3.08 0.28 ± 0.16 49.47
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Table 2

Performance comparison for estimated trajectories using different 3D point descriptors.

Descriptor type Sequence Translation error (mm) Orientation error (rad) % of Localized Cameras

SIFT [13]

Undisturbed Anatomy 1.65 ± 0.26 0.2 ± 0.004 1.94

Progression Step # 1 - - 0

Progression Step # 2 - - 0

HardNet++ [17]

Undisturbed Anatomy 3.28 ± 1.63 0.19 ± 0.11 19.35

Progression Step # 1 1.73 ± 1.65 0.18 ± 0.11 8.43

Progression Step # 2 4.17 ± 2.33 0.23 ± 0.15 3.2

Dense descriptor [3]

Undisturbed Anatomy 3.33 ± 2.33 0.2 ± 0.14 27.42

Progression Step # 1 2.28 ± 1.21 0.22 ± 0.14 19.68

Progression Step # 2 2.6 ± 1.43 0.26 ± 0.14 6.85
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