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Abstract

Background: Heart failure (HF) is a complex clinical syndrome with high mortality. Current 

risk stratification approaches lack precision. High-throughput proteomics could improve risk 

prediction. Their use in clinical practice to guide the management of patients with HF depends on 

validation and evidence of clinical benefit.

Objective: To develop and validate a protein risk score for mortality in patients with HF.
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Design: Community-based cohort.

Setting: Southeast Minnesota.

Participants: Patients with HF enrolled between 2003–2012 and followed through 2021.

Measurements: We measured 7,289 plasma proteins in 1,351 HF patients, using the SomaScan 

assay. Using least absolute shrinkage and selection operator (LASSO) regression and temporal 

validation, we derived a protein risk score in patients enrolled between 2003–2007 (development 

cohort) and 2008–2012 (validation cohort). Multivariable Cox regression was used to examine the 

association between the protein risk score and mortality. The performance of the protein risk score 

to predict 5-year mortality risk was assessed using calibration plots, decision curves, and relative 

utility analyses and compared with a clinical model including the Meta-Analysis Global Group in 

Chronic Heart Failure (MAGGIC) mortality risk score and N-terminal pro-brain natriuretic peptide 

(NT-proBNP).

Results: The development (N, 855; median age, 78 years; 50% female; 29% with ejection 

fraction <40%) and validation cohorts (N, 496; median age, 76 years; 45% female; 33% with 

ejection fraction < 40%) were mostly similar. In the development cohort, 38 unique proteins 

were selected for the protein risk score. Independently of ejection fraction, the protein risk score 

demonstrated good calibration, reclassified mortality risk particularly at the extremes of the risk 

distribution and greater clinical utility compared with the clinical model.

Limitation: Participants were predominantly of European ancestry, potentially limiting the 

generalizability of the findings to different patient populations.

Conclusion: Validation of the protein risk score demonstrated good calibration and evidence of 

predicted benefits to stratify the risk of death in HF superior to that of clinical methods. Further 

studies are needed to prospectively evaluate the score performance in diverse populations and 

determine risk thresholds for interventions.
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Introduction

Heart failure (HF) is a highly prevalent and heterogeneous clinical syndrome (1). Despite 

therapeutic advances, survival after the diagnosis remains poor (2–6). The 2022 American 

Heart Association/American College of Cardiology/ Heart Failure Society of America 

(AHA/ACC/HFSA) Guideline for the Management of Heart Failure recommends the 

development and evaluation of omics-based strategies to improve HF risk stratification 

beyond current guideline-recommended risk-prediction tools such as the Meta-Analysis 

Global Group in Chronic Heart Failure (MAGGIC) score and natriuretic peptides (7). Risk 

stratification approaches that capture the biological complexity of the HF syndrome and 

show clinical utility are needed (6, 8–10). High-throughput proteomics is an attractive and 

novel approach to address this need and can be evaluated in large epidemiologic studies 

(11, 12). Prior studies examining the prognostic value of proteomics in HF (13–21) have 

provided an important proof of concept for its use in HF risk stratification. However, these 
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studies have notable limitations, including methodological heterogeneity, selection biases, 

left ventricular ejection fraction (EF) restrictions, and in some cases, small sample sizes (13–

20, 22). These limitations underscore the critical need to evaluate the prognostic value of 

proteomics in unselected populations such as community cohorts which have the advantage 

of high clinical relevance. In assembling such cohorts, it is critical to include the entire 

spectrum of HF encountered in clinical practice regardless of EF (12, 23).

Our primary goal was to assess if proteomics improved mortality risk prediction, beyond 

clinical factors and across the spectrum of HF syndrome. A secondary objective was to 

explore the potential clinical utility, including among patients with preserved and reduced 

EF. Accordingly, we assembled a large community cohort of patients with confirmed HF in 

which we developed and validated a protein risk score to predict mortality.

Methods

Patient Population

This HF community cohort was derived from the record linkage system of the Rochester 

Epidemiology Project, which is an ideal setting to conduct population research as it captures 

nearly all clinical diagnoses, procedures, results, and outcomes in its catchment area (24, 

25). The approach for case identification, cohort assembling, and data collection has been 

previously reported (26, 27). In brief, patients with HF were identified with natural language 

processing of the text of the electronic medical record. Patients 20 years and older who 

were residents of Olmsted, Dodge, and Fillmore Counties in Minnesota were identified. This 

approach yielded 100% sensitivity compared with billing data, a reference method for case 

finding (28). Research nurses reviewed and validated HF diagnosis using the Framingham 

criteria (29). Patients were approached in the hospital or after an outpatient encounter to 

provide written consent, including a blood draw, between 2003 and 2012. The Mayo Clinic 

and Olmsted Medical Center Institutional Review Boards approved this study.

Data Collection

Clinical information including inpatient and outpatient provider records was collected by 

nurse abstractors (25). Body mass index was calculated using weight (kilograms) from 

the last outpatient prior to enrollment divided by the square of the earliest recorded adult 

height (meters). Patients were classified as either HF with preserved EF (HFpEF; EF≥40) 

or HF with reduced EF (HFrEF; EF<40). MAGGIC scores were calculated using sex, age, 

EF, systolic blood pressure, body mass index, creatinine, New York Heart Association 

class, current smoking status, diabetes, chronic obstructive pulmonary disease, HF diagnosis 

≥18 months ago, and use of beta blockers, angiotensin-converting enzyme inhibitors or 

angiotensin-receptor blockers (30). The estimated glomerular filtration rate was calculated 

using the Chronic Kidney Disease Epidemiology Collaboration 2021 creatinine equation 

(31). N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were measured at the 

National Institute of Diabetes and Digestive and Kidney Diseases Clinical Laboratory Core 

using a multiplex immunoassay (Meso Scale Diagnostics).
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Mortality Ascertainment

Patients were followed through March 31, 2021. Death information was obtained from 

the healthcare providers that participated in the Rochester Epidemiology Project, from 

Minnesota death certificates, and patient record linkage to the National Death Index Plus. 

All-cause mortality and cardiovascular-related mortality (International Classification of 

Diseases, Tenth Revision, codes I00–178) were considered. Patients alive at the end of 

follow-up were censored as of March 31, 2021, or the date of last known healthcare contact, 

whichever was earlier.

Plasma Protein Measurements and Quality Control

Ethylenediaminetetraacetic acid-plasma samples, collected using a standardized protocol 

through the Rochester Epidemiology Project at enrollment (24, 25), were shipped to the 

National Institutes of Health (Bethesda, Maryland, USA) and stored at −80°C until they 

were aliquoted and shipped to SomaLogic, Inc. (Boulder, CO, USA) for proteomic analysis, 

using the SomaScan 7K version 4.1 assay.

The SomaScan platform, technology, assay, sample stability assessment, and annotations for 

proteomic measurements have been previously described (11, 32, 33). Briefly, the SomaScan 

7K assay consists of 7,596 slow off-rate chemically modified single-stranded DNA aptamer 

reagents (SOMAmer), which are oligonucleotides of ~50 base pairs in length that are 

capable of binding target proteins or peptides with high specificity and affinity. This includes 

7,289 SOMAmers targeting human proteins, 261 non-human proteins, 12 hybridization 

control elution, 4 binding mouse Fc-fusion, 4 non-cleavable, 6 ephrin-type receptors, and 20 

spuriomers.

SomaScan measurements were normalized by SomaLogic using results from 51 vendor 

quality control samples derived from a pool of healthy participants. Specifically, 

normalization included a series of standardization techniques, including hybridization 

of controls to mitigate variations within the runs, median signal normalization across 

pooled calibrator replicates to account for signal variation using adaptive normalization 

by maximum likelihood, plate scaling to adjust for overall signal intensity differences, 

and SOMAmer calibration to correct for reagent-specific assay differences between runs. 

Samples in which the calibration factors fell outside the accepted range (hybridization scale 

factors, 0.4–2.5; plate scale/median scale and median normalization scale factors, 0.4–2.5; 

plate calibration scale factors, 0.6–14, SOMAmer calibration, 0.8–12) were flagged and 

excluded from the analysis.

SOMAmer measurements were log2 transformed to account for skewness. SOMAmer 

measurements outside ±5 standard deviations of the sample mean were winsorized 

(34). SOMAmer measurements were standardized to have a mean of 0 and a standard 

deviation of 1. Sensitivity analyses were performed considering rank-based inverse normal 

transformation (35). Intra-assay Bland-Altman coefficient of variation was calculated 

using SOMAmer measurements from thirty randomly selected duplicate patient samples. 

SOMAmer measurements with a coefficient of variation greater than or equal to 50% were 

excluded from further analyses.

Kuku et al. Page 4

Ann Intern Med. Author manuscript; available in PMC 2024 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Protein Risk Score Development

The development and validation of the protein risk score is summarized in Supplementary 

Figure 1. Briefly, using temporal validation (36), patients enrolled between 2003 and 2007 

(n=855) were used as the protein risk score development cohort, and patients enrolled 

between 2008 and 2012 (n=496) were used as the protein risk score validation cohort. 

For comparability, patient follow-up was administratively censored at 10 years in both 

cohorts. Associations between individual SOMAmers and mortality were assessed using 

Cox proportional hazard model adjusted for age, sex, and estimated glomerular filtration 

rate, as renal function has been reported to affect plasma protein levels (37, 38). SOMAmers 

with a Benjamini-Hochberg false discovery rate of less than 1% were selected for least 

absolute shrinkage and selection operator (LASSO) penalized Cox regression model. The 

LASSO penalty parameter was optimized as the value within 1 standard error to minimize 

the 10-fold cross-validation error. Then using this lambda, the LASSO model was fitted. 

The beta coefficients from this model were used to generate the weighted linear sum of 

the protein risk score, further details are provided in the Supplemental Methods. Given the 

high dimensionality of the predictors, LASSO was used to avoid overfitting (39). Under the 

assumption the expected R-square of a continuous predictor (protein risk score) ranged from 

0.2 to 0.5, we were powered to detect a minimum hazard ratio of 1.18 to 1.24 with 80% 

power with a two-sided type I error rate of 5% in the validation cohort.

Statistical Analysis

Baseline characteristics are reported as frequencies (percentages) for categorical variables or 

median (interquartile range [IQR]) for continuous variables. NT-proBNP values were log2 

transformed for analyses. Multiple imputations by chained equations, using Rubin’s rule 

with 10 imputed data sets (40), were performed to account for missing clinical data used to 

calculate MAGGIC scores, including body mass index (2.9%), New York Heart Association 

class (0.4%), HF duration (0.1%), and EF (1.8%).

Multivariable Cox proportional hazard regression was used to examine the association 

between a 1 standard deviation change in protein risk score and all-cause mortality, with 

and without adjustment for MAGGIC score and NT-proBNP. Hazard ratios (HRs) and 95% 

confidence intervals (CIs) were estimated for the protein risk score in both the development 

and validation cohorts. Secondary analyses included stratification by EF groups (< or ≥40%) 

and HF duration at enrollment (< or ≥18 months). The association between the protein risk 

score and cardiovascular disease-related mortality was also examined using Fine and Gray 

sub-distribution hazard modeling (41).

The performance of the protein risk score to predict a patient’s 5-year mortality risk was 

assessed in the validation cohort using calibration plots (42, 43), decision curves (44, 

45), and relative utility (46) analyses. Performance was compared with models containing 

MAGGIC score and NT-proBNP (“Clinical Model”) across a range of predicted risk 

thresholds including four predefined risk groups (≤25%, 26–50%, 51–75%, and >75%). 

HRs and 95% CIs were estimated for each model across risk groups and compared to the 

reference risk group of ≤25%. Decision curves were plotted to examine the predicted net 

benefit of the protein risk score model compared with the clinical model. The predicted net 
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benefit is the difference between true positives and false positives adjusted for the relative 

harms of false positive classifications across risk thresholds (44, 45). Relative utility curves 

plot the predicted net benefit of a model compared to that of a perfect prediction across a 

range of risk thresholds (46). We examined relative utility curves of the protein risk score 

model and the clinical models.

All the analyses were performed using R statistical software v4.0.2 (R Core Team, Vienna, 

Austria) with a two-sided p-value < .05 considered statistically significant. Our approach 

follows the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis or Diagnosis (TRIPOD) guidelines (47).

Role of the Funding Source

The investigators were supported by the Intramural Research Program of the National Heart, 

Lung, and Blood Institute of the National Institutes of Health (ZIAHL006279). This study 

also used in part the resources from the Rochester Epidemiology Project medical records-

linkage system, which is supported by the National Institute on Aging, the Mayo Clinic 

Research Committee, and fees paid annually by Rochester Epidemiology Project users. The 

funding institution did not play a role in the design, conduct, analysis, or reporting nor in the 

decision to submit this manuscript for publication.

Results

Cohort Characteristics

After excluding one patient with insufficient plasma volume and 37 patients whose samples 

failed SomaLogic quality control, we analyzed data from 1,351 patients. Baseline clinical 

characteristics are summarized in Table 1. In brief, the patient population was 48% female 

and had a median age of 78 years. Thirty percent of the patient population had an EF <40%, 

the median MAGGIC score was 25 (IQR 20 – 29), and the median NT-proBNP level was 

8,903 (IQR 4,211 – 16,384) pg/ml. A total of 1,013 deaths occurred during follow-up with 

an overall 5-year mortality rate of 52.1% (95% CI 49.3 – 54.7%). Baseline characteristics 

of the development and validation cohorts were mostly similar in terms of demographics, 

medical history, and clinical presentation of HF.

Protein Risk Score Development

Out of 7,289 SOMAmers measured, 7,151 were available after quality control (138 

SOMAmers were excluded with a Bland-Altman coefficient of variation greater than or 

equal to 50%). The median intra-assay coefficient of variation was 8.8% (IQR 6.7 – 12.9%). 

In univariate analyses, 1,342 SOMAmers were associated with mortality with FDR less 

than 1%. Thirty-nine SOMAmers targeting 38 unique proteins were selected by the LASSO 

model to generate the protein risk score (Figure 1). Twenty SOMAmers were negatively 

associated with mortality, and 19 were positively associated with mortality. Further details 

of the 39 SOMAmers and their possible biological links (48) are provided in Supplementary 

Table 1 and Supplementary Figure 2 respectively.
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The protein risk score had a standard deviation of 0.663 and 0.659 in the development 

and validation cohorts, respectively. After adjustment for the MAGGIC score, a 1 standard 

deviation increase in protein risk score was associated with an increased risk of mortality 

in both the development (HR: 2.62, 95% CI, 2.34 – 2.93) and validation cohorts (HR: 2.01, 

95% CI, 1.75 – 2.32). Improved risk stratification persisted after further adjustment for 

NT-proBNP (Supplementary Figure 3).

The association between the protein risk score and increased mortality persisted in analyses 

stratified by HF duration, in sensitivity analyses considering rank-based inverse normal 

transformation, and after excluding either of the SOMAmers that targeted the same protein 

were retained in the protein risk score. In the validation cohort, the association between the 

protein risk score and mortality persisted when restricted to cardiovascular disease causes in 

the crude model (HR: 1.55, 95% CI, 1.34 – 1.79) but was attenuated after adjustment for the 

MAGGIC score (HR: 1.12, 95% CI, 0.93 – 1.35).

Protein Risk Score Performance

The calibration in the validation cohort was excellent for the protein risk score with an 

estimated to observed mortality ratio of 1.01 (95% CI, 0.92 – 1.10) and appeared superior 

to that of the clinical models, particularly at the extremes of the risk distribution (Figure 

2, Supplemental Figure 4). The protein risk score showed strong discrimination across 

risk groups, which persisted after adjustment for MAGGIC score and NT-proBNP (Table 

2). Addition of the protein risk score to the clinical model classified more patients at the 

extremes of the risk distribution: 27.8% compared to 12.5% for the lowest risk group 

and 22.4% compared to 13.3% in the highest risk group (Table 3). The protein risk score 

performed similarly among HFrEF and HFpEF patients (Supplementary Table 2).

Assessment of Potential for Clinical Application—Decision curve analysis showed 

that the protein risk score provided a greater net benefit compared to the clinical model 

across a wide range (17–76%) of risk thresholds (Figure 3A). The relative utility for the 

protein risk score was higher compared with the clinical model, across risk thresholds for 

probability of mortality (Figure 3B). At a risk threshold of 50%, the relative utility of the 

protein risk score only model (0.39) and protein risk score plus clinical model (0.39) were 

both notably superior to that of the clinical model alone (0.23).

Discussion

In this community cohort, using high-throughput proteomics, we derived a novel protein 

risk score, which greatly contributed to mortality risk prediction across a wide range of 

risk thresholds. By integrating proteomics measurements with extensive clinical data from 

medical records, we demonstrated that the risk prediction information, measured using 

proteomics, was independent of and superior to clinical variables (MAGGIC score and 

NTproBNP), which have been the cornerstone of HF risk stratification (7). Importantly, the 

excess risk of mortality conferred by the protein risk score did not differ by EF. These 

findings provide clinically significant new evidence in support of the important role of 

proteomics in stratifying risk across the HF syndrome.
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Risk Stratification in HF: Need for a Precision Approach

Despite advancements in medical therapy, mortality risk remains large in HF (6, 49). 

Clinical risk stratification is currently centered on the use of scores, including the MAGGIC 

score as well as the natriuretic peptides (7, 30, 50). The performance of these risk markers 

typically declines once disseminated to settings and populations different from the initial 

validation populations (51, 52). This degradation in predictive performance negatively 

impacts the utility of scores in clinical practice.

Proteins and Risk Scores in Heart Failure

There are few studies of protein risk scores for HF risk stratification. Two studies that used 

the same aptamer-based method as used herein, were both restricted to HF with reduced 

EF (16, 20). The first study utilized data from a voluntary registry to derive an 8-protein 

risk score that improved mortality risk stratification, independent of the MAGGIC score 

and NT-proBNP (16). The second study conducted a secondary analysis of clinical trial 

data to derive a 64-protein risk score which improved the prediction of the composite 

outcome of cardiovascular mortality or HF hospitalization, over the MAGGIC score (20). 

Our protein risk score shared two proteins (renin and epidermal growth factor receptor) with 

the 8-protein risk score (16), and five proteins (growth differentiation factor 15, collagen 

alpha-2[XI] chain, renin, NT-proBNP, and cartilage intermediate layer protein 2) with the 

64-protein risk score (20). Renin was the only protein included in the two published risk 

scores (16, 20), and in ours. Renin is associated with left ventricular dysfunction, cardiac 

dilatation, fluid retention, and cachexia (53). While the prognostic value of renin has been 

questioned (54), the present study underscores the need for further studies examining its role 

in clinical practice.

Our protein risk score included several additional proteins known to be associated with 

HF, including NT-proBNP, growth differentiation factor-15, and interleukin-1 receptor-like 

1 (commonly known as ST2) (55). NT-proBNP increases in response to left ventricular 

wall stress and is involved in the regulation of blood pressure, blood volume, and sodium 

balance (56, 57). Growth differentiation factor-15 is a prognostic biomarker in HF associated 

with inflammation and apoptosis (58). Similarly, interleukin-1 receptor-like 1, a marker of 

myocardial and vascular strain and remodeling (59, 60) is associated with mortality in HF 

(61, 62). Identification of these markers in our protein risk score supports its biological 

plausibility.

An advantage of a non-targeted proteomic approach is the ability to discover novel proteins 

and examine their possible biological links. Three of the top predictors in our protein risk 

score (chordin-like protein 1, growth differentiation factor 11/8, and R-spondin-4) have 

been previously reported as associated with mortality in aptamer assay studies of HF with 

reduced EF (16, 20). Our findings extend these observations across the entire spectrum 

of HF, independently of EF. Chordin-like protein 1 is a transforming growth factor beta 

1 antagonist, which inhibits fibrosis and cardiac remodeling (63). Growth differentiation 

factor 11/8 is associated with left ventricular hypertrophy and cardiovascular events in 

large cohorts (64). R-spondin-4 is linked with cardiac remodeling and fibrosis (65). The 

novel findings of the prognostic value of these proteins identified in our protein risk score 
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provide a blueprint for future mechanistic studies relevant to the entire spectrum of the HF 

syndrome, regardless of EF.

The predictive capabilities of sparse combinations of proteins open the door to assays, that 

cover several mechanistic domains with prognostic value in HF, potentially accessible at a 

lower cost than discovery assays such as the one used herein. However, clinical translation 

will likely require the development of assays with absolute quantification as opposed to the 

relative quantification provided by current tests.

Study Limitations, Strengths, and Clinical Implications

Our cohort was predominantly of European ancestry, potentially limiting the generalizability 

to ethnically and racially diverse populations. This emphasizes the importance of replication 

in diverse populations. While patients were recruited several years ago to allow event 

accrual, survival after HF diagnosis has remained disappointingly poor (6), such that the 

outcomes observed herein are relevant to current practice. Although our cohort contained 

both incident and prevalent cases of HF, reflective of a community cohort, the protein 

risk score performed independently of HF duration. We acknowledge the conceptual 

importance of comorbid conditions and/or drug therapies. Future studies of proteomic 

expression according to HF endophenotypes and comorbidities should be conducted in 

cohorts large enough to allow robust inference. Finally, we acknowledge that, as with any 

observational study, we cannot rule out potential residual confounding related to unmeasured 

characteristics and measurement error.

This study has several important strengths. Firstly, we studied a population-based cohort, 

which represents the complete and consecutive experience of a geographically defined 

community of patients with validated HF including all EF categories. This, coupled with 

the availability of rich medical record data from in-patient and out-patient encounters 

and extensive follow-up with complete mortality ascertainment provides strong clinical 

relevance to our findings. Secondly, we used a high-throughput proteomics assay with the 

largest number of proteins measured to date. Our agnostic discovery approach enabled the 

discovery of signatures that exhibit strong associations with mortality. Thirdly, we used 

statistical methods designed to optimize reproducibility and validity such as cross-validation, 

and temporal validation per the TRIPOD guideline (47).

By identifying protein-based signatures that can stratify the risk of death in HF in a manner 

beyond current clinical tools, our findings foreshadow the clinical utility of large-scale 

proteomic assays for precision risk prediction in HF. Examples within the heterogenous 

HF syndrome, include selection of candidates for rapid drug titration (66) or patients 

with advanced HF (67), at particularly high risk for adverse outcomes, regardless of EF 

that should be considered for mechanical circulatory support or transplantation. The need 

to better identify candidates for referral to advanced HF specialists is recognized (68). 

To assess the clinical application of proteomics, model performance should be formally 

evaluated for clinical translation and practice implementation. Clinical decision support 

must be examined separately, ideally by randomized studies (69). These considerations 

notwithstanding, our results provide the proof of concept that proteomics can address this 

need with greater precision than current clinical methods. By illustrating the potential 
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of high-throughput omics to improve the clinical management of the HF syndrome, our 

findings are directly relevant to clinical practice and strongly support the pursuit of the 

evaluation of proteomics for this purpose.

In conclusion, our study responds to the recognized need to evaluate how “omics” data 

can be used for HF risk stratification. We developed and validated a protein risk score that 

stratified the risk of death in HF and showed clinical utility beyond current clinical tools 

in a community cohort that includes all forms of the HF syndrome and is therefore of high 

clinical relevance. Collectively, our findings bring important new evidence in support of the 

value of proteomics for risk stratification in HF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Primary Funding Source:

Division of Intramural Research at the National Heart, Lung, and Blood Institute of the National Institutes of Health 
(ZIAHL006279).

Abbreviations and Acronyms

HF Heart Failure

HFrEF Heart Failure with Reduced Ejection Fraction

HFpEF Heart Failure with Preserved Ejection Fraction

HR Hazard Ratio

CI Confidence Interval

EF Ejection Fraction

AHA/ACC/HFSA American Heart Association/American College of 

Cardiology/ Heart Failure Society of America

MAGGIC Meta-Analysis Global Group in Chronic Heart Failure

SOMAmers Slow Off-Rate Modified Aptamers

LASSO Least Absolute Shrinkage and Selection Operator

IQR Interquartile Range
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Figure 1. Beta Coefficients of the 39 SOMAmers (38 unique proteins) in the Protein Risk Score.
GDF-11/8, Growth/differentiation factor 11/8; GSTA2, Glutathione S-transferase A2; 

BMP-1, Bone morphogenetic protein 1; UB2Q1, Ubiquitin-conjugating enzyme E2 

Q1; ERBB1, Epidermal growth factor receptor; THBG, Thyroxine-binding globulin; 

VEGF sR2, Vascular endothelial growth factor receptor 2; GGH, Gamma-glutamyl 

hydrolase; COL11A2, Collagen alpha-2(XI) chain; NPW, Neuropeptide W; CILP2, 

Cartilage intermediate layer protein 2; RELN, Reelin; I17RE, Interleukin-17 receptor E; 

IGFBP-3, Insulin-like growth factor-binding protein 3; SHP1L, Testicular spindle-associated 

protein SHCBP1L; LECT2, Leukocyte cell-derived chemotaxin-2; ADA22, Disintegrin 

and metalloproteinase domain-containing protein 22; TNFC, Lymphotoxin alpha1:beta2; 

ALT, Alanine aminotransferase 1; GLT14, Polypeptide N-acetylgalactosaminyltransferase 

14; CgA, Chromogranin-A; sICAM-5, Intercellular adhesion molecule 5; NPPB, N-

terminal pro-BNP; ADAMTS-5, A disintegrin and metalloproteinase with thrombospondin 

motifs 5; FBLN3, EGF-containing fibulin-like extracellular matrix protein 1; TIMP-4, 

Metalloproteinase inhibitor 4; XEDAR, Tumor necrosis factor receptor superfamily member 
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27; sICAM-5, Intercellular adhesion molecule 5; SLIT2, Slit homolog 2 protein; SPON1, 

Spondin-1; ST2, Suppression of Tumorigenicity 2 protein; REN, Renin; HE4, Human 

Epididymis protein; PDLI3, PDZ and LIM domain protein 3; C7, Complement component 

C7; GDF-15, Growth/differentiation factor 15; RSPO4, R-spondin-4; ABHEA, Protein 

ABHD14A; CRDL1, Chordin-like protein 1.

Kuku et al. Page 17

Ann Intern Med. Author manuscript; available in PMC 2024 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Observed and Estimated Risk of 5-Year Mortality by Predicted Risk Groups in 
Validation Cohort.
The calibration of the Protein Risk Score model is excellent across all risk groups. Improved 

calibration above that of the clinical models is evident at both extremes of the risk 

distribution.
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Figure 3. Decision Curves (A) and Relative Utility Curve (B) of the Protein Risk Score Compared 
with the Clinical Model for Heart Failure Management Decisions.
Panel A: In the decision curve analysis, the protein risk score shows greater net benefit 

compared with the clinical model alone across a wide range of risk thresholds (17–76%).

Panel B: The relative utility for the protein risk score is higher compared to the clinical 

model, across risk thresholds for probability of mortality.
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Table 1.

Cohort Characteristics

Variable Total (N=1,351) Development Cohort (N=855) Validation Cohort (N=496)

Demographics

Age (years) 78 (68, 84) 78 (69, 85) 76 (65, 84)

Male 701 (52) 427 (50) 274 (55)

Body Mass Index (kg/m2) 28 (24, 33) 28 (24, 33) 29 (25, 34)

Medical History

Current Smoker 138 (10) 85 (10) 53 (11)

Diabetes 481 (36) 288 (34) 193 (39)

Hypertension 1,234 (91) 774 (91) 460 (93)

COPD 380 (28) 257 (30) 123 (25)

Cerebrovascular Disease 385 (28) 265 (31) 120 (24)

Atrial Fibrillation 486 (36) 282 (33) 204 (41)

Ischemic Etiology 678 (50) 436 (51) 242 (49)

Clinical Presentation

NYHA Class (III/IV) 930 (69) 584 (68) 346 (70)

Ejection Fraction <40% 415 (30) 250 (29) 165 (33)

MAGGIC Score 25 (20, 29) 25 (20, 29) 23 (19, 27)

HF Duration (≥ 18 months) 486 (36) 310 (36) 176 (36)

Laboratory Measurements

eGFR (mL/min/1.73m2) 57 (42, 73) 54 (41, 68) 62 (45, 82)

NT-proBNP (pg/mL) 8903 (4211, 16384) 9345 (4182, 17080) 8481 (4240, 15181)

Medications

ACEI/ARB 868 (64) 541 (63) 327 (66)

Beta-Blocker 1,024 (76) 614 (72) 410(83)

Diuretics 1,047 (77) 639 (75) 408 (82)

Mortality per 100 Person-Years

All-Cause 14.7 (13.8, 15.6) 16.0 (14.8, 17.2) 12.6 (11.3, 14.0)

Cardiovascular-Related 7.4 (6.8, 8.1) 8.2 (7.3, 9.1) 6.3 (5.4, 7.3)

Values are reported as the frequency (percent) or median (interquartile range).

COPD, Chronic Obstructive Pulmonary Disease; NYHA, New York Heart Association; MAGGIC, Meta-Analysis Global Group in Chronic 
Heart Failure; HF, Heart Failure; eGFR, Estimated Glomerular Filtration Rate; NT-proBNP, N-Terminal Pro–B-Type Natriuretic Peptide; ACEI, 
Angiotensin-converting enzyme inhibitor; ARB, Angiotensin receptor blocker;.
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Table 2.

5-year Mortality Hazard Ratios and 95% Confidence Intervals by Risk Groups and Multivariable Model; (A) 

Protein Risk Score; (B) Clinical Model (MAGGIC + NTproBNP) and (C) Clinical Model plus Protein Risk 

Score

A. Clinical Model Risk Groups

≤25% 26 – 50% 51 – 75% >75% Total

Patients (N) 62 164 204 66 496

Mortality Rate 0.13 (0.04,0.21) 0.3 (0.23,0.37) 0.53 (0.46,0.59) 0.83 (0.71,0.90)
0.45

(0.4, 0.49)

Mean Prediction 0.17 0.39 0.62 0.84 0.45

HR 1 2.55
(1.21, 5.38)

5.34
(2.60, 10.94)

10.20
(6.27,16.60)

B. Protein Risk Score

≤25% 26 – 50% 51 – 75% >75% Total

Patients (N) 133 131 117 115 496

Mortality Rate 0.15 (0.09,0.21)
0.3 0.61

0.79 (0.7,0.85)
0.45

(0.21, 0.37) (0.51, 0.69) (0.4, 0.49)

Mean Prediction 0.14 0.37 0.61 0.89 0.45

HR 1 2.13
(1.24,3.64)

5.75
(3.50,9.45)

10.20
(6.27,16.60)

C. Clinical Model + Protein Risk Score

≤25% 26 – 50% 51 – 75% >75% Total

Patients (N) 138 131 116 111 496

Mortality Rate 0.15 (0.09,0.20) 0.31 (0.23,0.39) 0.6 (0.50,0.68) 0.81 (0.72,0.87) 0.45 (0.4, 0.49)

Mean Prediction 0.14 0.38 0.62 0.89 0.45

HR 1 2.37
(1.39,4.04)

5.84
(3.55, 9.61)

11.44
(7.02, 18.64)
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Table 3.

Reclassification of 5-year Mortality Risk by Adding the Protein Risk Score to the Clinical Model

Clinical Model

Clinical Model + Protein Risk Score Reclassified by Protein Risk Score

≤25% 26 – 50% 51 – 75% >75% Total N (%) Lower Higher

≤25%

Patients, N (%) 54 (87.1) 7 (11.3) 1 (1.6) 0 (0.0) 62 (12.5) − 8 (12.9%)

Mortality (%) 7.6 42.9 100 − 13.1 − 50

26 – 50%

Patients, N (%) 69 (42.1) 62 (37.8) 25 (15.2) 8 (4.9) 164 (33.1) 69 (42.1%) 33 (20.1%)

Mortality (%) 20.3 29 56 50 30.5 20.3 54.5

51 – 75%

Patients, N (%) 15 (7.4) 58 (28.4) 76 (37.3) 55 (27.0) 204 (41.1) 73 (35.8%) 55 (27.0%)

Mortality (%) 14.3 31 59.2 78.2 53.1 27.7 78.2

>75%

Patients, N (%) 0 (0.0) 4 (6.1) 14 (21.2) 48 (72.7) 66 (13.3) 18 (27.3%) −

Mortality (%) 50 71.4 89.6 83.3 66.7

Total

Patients, N (%) 138 (27.8) 131 (26.4) 116 (23.4) 111 (22.4) 496 (100.0)

Mortality (%) 14.7 31.3 60.3 81.1 44.7

Adding the Protein Risk Score to the clinical model places more patients at the extremes of the risk distribution.
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