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At present, safe and effective treatment drugs are ur-
gently needed for diabetic kidney disease (DKD). Circu-
lating protein biomarkers with causal genetic evidence
represent promising drug targets, which provides an op-
portunity to identify new therapeutic targets. Summary
data from two protein quantitative trait loci studies are
presented, one involving 4,907 plasma proteins data
from 35,559 individuals and the other encompassing
4,657 plasma proteins among 7,213 European Ameri-
cans. Summary statistics for DKD were obtained from a
large genome-wide association study (3,345 cases and
2,372 controls) and the FinnGen study (3,676 cases and
283,456 controls). Mendelian randomization (MR) analy-
sis was conducted to examine the potential targets for
DKD. The colocalization analysis was used to detect
whether the potential proteins exist in the shared causal
variants. To enhance the credibility of the results, exter-
nal validation was conducted. Additionally, enrichment
analysis, assessment of protein druggability, and the
protein-protein interaction networks were used to fur-
ther enrich the research findings. The proteome-wide
MR analyses identified 21 blood proteins that may caus-
ally be associated with DKD. Colocalization analysis fur-
ther supported a causal relationship between 12 proteins
and DKD, with external validation confirming 4 of these
proteins, and TGFBI was affirmed through two separate
group data sets. These results indicate that targeting
these four proteins could be a promising approach for
treating DKD, andwarrant further clinical investigations.

Diabetic kidney disease (DKD), a prevalent complication
of both type 1 and type 2 diabetes, stands as the primary

catalyst for end-stage renal disease (ESRD) (1). In 2021, ap-
proximately 536.6 million people between the ages of 20
and 79 years were estimated to have diabetes worldwide,
and this number is projected to increase to 783.2 million
people by 2045 (2). As the number of patients with diabe-
tes increases, the incidence rate of DKD is also showing a
worrying trend. This not only imposes substantial social
and economic costs but also poses a grave risk to human
health and well-being (3). Currently, the treatment options
for DKD are limited, with a majority focused on managing
symptoms, such as regulating blood pressure and glucose lev-
els. Major drugs include inhibitors of the renin-angiotensin-
aldosterone system, sodium-dependent glucose transporter 2
(SGLT-2) (4), and finerenone (5) (a nonsteroidal, selective min-
eralocorticoid receptor antagonist). Unfortunately, these medi-
cations cannot provide a complete cure for the condition and
can only slow down its progression to some extent. DKD
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develops rapidly into ESRD, and patients with ESRD can only
receive kidney replacement therapy through dialysis or kidney
transplantation (6). Therefore, it is particularly urgent to carry
out research and development of therapeutic drugs for DKD.

Proteins often have specific binding sites or regions
that can be targeted by small molecules or biologics, allow-
ing for the development of drugs that can interact with
them in a precise and controlled manner (7). Recently,
thousands of protein quantitative trait loci (pQTL) for
plasma proteins have been identified through genome-
wide association studies (GWAS) (8). These studies not
only enable the testing of causal effects of plasma proteins
on DKD but also hold promise in identifying potential
biomarkers and assessing the risk and protective factors as-
sociated with DKD. Mendelian randomization (MR) is a sta-
tistical method that uses genetic variation as a tool to
evaluate causal relationships between exposures and out-
comes. These genetic variations are typically independent of
confounding factors and remain unaffected by postnatal
environmental, behavioral, psychological, or socioeconomic
influences (9). Using MR to integrate GWAS and pQTL data
can help determine drug targets in advance, reducing experi-
mental bias and minimizing confounding factors. This ap-
proach makes the most efficient use of experimental
resources and time, avoids redundant work, and acceler-
ates the research and development process (10).

In this study, we selected two pQTL data sets as expo-
sure variables while concurrently using two GWAS data sets
as outcome variables. Initially, we used the MR method to
analyze the GWAS data sourced from van Zuydam et al.
(11), in conjunction with the deCODE pQTL data (12). Sub-
sequently, we utilized a colocalization approach to further
refine the results of MR analysis. These sequential steps
constitute the primary research findings. To gain insights
into the functions and interactions of biomolecules, enrich-
ment analysis was conducted. Additionally, we assessed the
druggability of these proteins and explored their relation-
ships with the targets of current medications for DKD. To
enhance the credibility of the primary protein results, addi-
tional validation was conducted using three sets of data:
FinnGen study and deCODE pQTL data, the GWAS data
from van Zuydam et al. (11) and Atherosclerosis Risk in
Communities (ARIC) pQTL data, along with FinnGen study
and ARIC pQTL data (13,14). This comprehensive analysis
aims to seek the strongest evidence to further substantiate
our research findings (Fig. 1).

RESEARCH DESIGN AND METHODS

Proteomic Data Source
The proteomic data come from a study conducted by the
deCODE Genetics team. In the study, the researchers used
Illumina single nucleotide polymorphism (SNP) chips to
perform whole-genome sequencing on 49,708 individuals
of Icelandic descent, generating their genotype and pheno-
type information. Based on these data, they estimated the
genomes of 166,281 Icelanders. Among these genotyped

individuals, 35,559 individuals simultaneously underwent
protein measurement using a multianalyte, modified ap-
tamer binding assay called SOMAscan version 4, and 4,907
plasma proteins were detected (12). We acquired additional
whole-blood pQTL data from the ARIC study, which en-
compassed 4,657 plasma proteins derived from a cohort of
7,213 European Americans (13). For each plasma protein
from two pQTL data sets, SNPs with a minor allele fre-
quency of at least 1% and that are genome-wide significant
(with P < 5.0 × 10�8) are retained. Additionally, SNPs that
are in high linkage disequilibrium (LD) with each other
(with an LD R2 value greater than 0.1 in the 1000 Ge-
nomes Project from the European population) are consid-
ered to be redundant and are removed from the analysis
(Supplementary Table 1).

Outcome Data Sources
The main outcome data used in this study were sourced
from the GWAS by van Zuydam et al. (11) in 2018, and
included patients with type 1 and type 2 diabetes. To ac-
curately assess the severity of kidney disease, the article
defined seven binary phenotypes related to DKD using
albumin-to-creatinine ratio, albumin excretion rate, and esti-
mated glomerular filtration rate indicators for classification.
We chose the main phenotype “all DKD,” which includes
3,345 patients with type 2 diabetes with DKD ranging from
microalbuminuria to ESRD as cases, and 2,372 patients
with type 2 diabetes with normal urinary albumin as con-
trols. The GWAS summary data for another DKD study
came from the Finnish Biobank Alliance (FinnGen) ver-
sion 8 data (https://r8.finngen.fi/), which include 287,132
Finnish adult participants (3,676 cases and 283,456 con-
trols) (14). The above GWAS data used in the study came
from two independent, nonoverlapping samples of Euro-
pean ancestry (Supplementary Table 1).

MR Analysis
MR is a powerful method for inferring causal relationships
between exposures and outcomes using genetic variants as
instrumental variables (15). In this study, we used MR with
the “TwoSampleMR” method to investigate the relationship
between plasma proteins and DKD and rigorously followed
the guidelines outlined in STROBE-MR (Strengthening the
Reporting of Observational Studies in Epidemiology-
Mendelian Randomization) (16,17). Based on three core
assumptions, we applied several filtering rules to select
the genetic instruments: 1) a significance threshold of P <
5 × 10�8, 2) one strength standard being F-statistic >10,
3) a minimum physical distance of 1,000 kb between any
two genetic variants, and 4) an LD threshold of r2 <0.1
between any two genes (based on the 1000 Genomes Eu-
ropean reference panel). In the subsequent analysis, for
proteins instrumented by only one SNP, we used the Wald
ratio method. The inverse variance weighted method was
used for proteins with more than one SNP as instrumental
variables. We used false discovery rate (FDR) correction to
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control the FDR when conducting multiple comparisons,
and set the FDR <0.05. In external validation, we used a
nominal P value threshold of less than 0.05 to determine
statistical significance. The GWAS data for DKD provide a
valuable resource for identifying and replicating genetic as-
sociations, which is a significant advantage in MR studies.
Cochran Q tests are used to assess the heterogeneity of in-
dividual causal effects. The MR-Egger intercept term is
also used to evaluate horizontal pleiotropy. When P values
are less than 0.05 in these tests, it usually indicates the
presence of heterogeneity or pleiotropy (18).

Colocalization Analysis
Colocalization is a further analysis that strengthens the re-
sults of genetic studies by searching for evidence of the
same genetic variation being associated with both exposure
and outcome. This helps to confirm that genetic variation
is truly causally related to the outcome, rather than being a
result of LD or other confounding factors. We used the co-
loc R package (19) for colocalization analysis to determine
whether the identified association between known proteins
and DKD is driven by LD. The Bayesian analysis assesses
support for five mutually exclusive hypotheses: H0, whether

a genetic variation is not associated with any trait; H1, asso-
ciated only with one trait; H2, associated only with another
trait; H3, associated with both traits but with different
causal variations; and H4, associated with both traits and
sharing the same causal variation (19). We calculated the
posterior probabilities (PP) for each hypothesis and deter-
mined the presence of colocalization evidence for a protein
based on a protein-based PP.H4 > 0.8.

Pathway and Functional Enrichment Analysis
We performed gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis using
KEGG Orthology-Based Annotation System (KOBAS) (20)
to gain a better understanding of the biological functions
and metabolic pathways of similar expressed proteins. GO
is an analytical method used to study the commonalities of
genes in biological processes (BP), molecular functions
(MF), and cellular components (CC). It determines the en-
richment of the genes in each GO annotation by compar-
ing the differences between the analyzed genes and the
reference genome, and generates enrichment analysis re-
sults. The main focus of KEGG enrichment analysis results
is the enrichment of genes in metabolic pathways (21).

Figure 1—Overview of the study design in our MR and colocalization study.
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Enrichment analysis was conducted on a group of proteins
with positive colocalization results, and the results were fil-
tered to include only those with a significance level of cor-
rected P value < 0.05.

Druggable Proteins Identification and Protein-Protein
Interaction Network
In order to assess the druggability of colocalized positive
proteins, our methodology begins with an initial query of
the DrugBank database (https://go.drugbank.com/, accessed
on 16 September 2022) (22). This database provides com-
prehensive documentation of these proteins, including de-
tails regarding associated drugs and their developmental
pathways. This methodology facilitates the discernment of
drug repurposing opportunities, where drugs initially for-
mulated for different medical indications demonstrate po-
tential efficacy in the treatment of DKD. Subsequently, we
investigate the targets of medications that are currently ap-
proved for the treatment of DKD using the Open Targets
database, with the search term “Diabetic Kidney Disease”
(https://platform.opentargets.org/, accessed on 16 Septem-
ber 2023) (23). Following this, we use version 12.0 of the
Search Tool for the Retrieval of Interacting Genes (STRING)
database (https://string-db.org/) to explore the protein-
protein interaction (PPI) network connecting the identi-
fied targets with the approved drug targets for DKD (24).

Data and Resource Availability
The pQTL summary data from deCODE can be found at
https://www.decode.com/summarydata/, and those of the
ARIC study can be found at http://nilanjanchatterjeelab
.org/pwas/.

GWAS summary statistics are available, by application,
from https://www.finngen.fi/en/access_results and https://
www.ebi.ac.uk/gwas/.

R package “TwoSampleMR” (version 0.5.6) is available
at https://github.com/MRCIEU/TwoSampleMR.

R package “Coloc” (version 5.5.2) is available at https://
cran.r-project.org/web/packages/coloc/.

All the data and code are accessible in public databases
and open for public access. Further inquiries can be directed
to the corresponding author.

RESULTS

MR Reveals 21 Plasma Proteins Causally Associated
With DKD, Using pQTL
In this study, we used the GWAS data from van Zuydam
et al. (11) and deCODE pQTL data as our discovery co-
horts. Through MR analysis, we successfully identified 21
plasma proteins that have a causal relationship with DKD
(Supplementary Table 2 and Fig. 2). Among these pro-
teins, 11 were identified as risk proteins, potentially exac-
erbating the progression of DKD. Notably, RACGAP1
exhibited the most significant MR result (odds ratio [OR] =
1.185 [1.117, 1.257], FDR = 3.21E-07). Conversely, we also
identified 10 protective proteins that may help mitigate the

risk of DKD. Among them, BTN3A3 displayed the most sig-
nificant MR result (OR = 0.876 [0.834, 0.920], FDR =
1.62E-06). It is important to emphasize that, in our prelim-
inary analysis, we did not find significant heterogeneity
and pleiotropy among the analyzed proteins. Detailed re-
sults are illustrated in Fig. 2. Throughout the entire analy-
sis process, we did not delete any instrumental variables of
protein due to noncompliance with the F-value criterion
(Supplementary Table 3).

Candidate Therapeutic Targets for DKD Identified by
Colocalization
We conducted colocalization analysis on the 21 proteins
from MR results to further determine the possibility of
shared causal genetic variation associated with DKD and
pQTL. The results showed that 12 proteins may share
causal variation within DKD (PP.H4 > 0.8) and could be
candidate drug target proteins (Supplementary Table 4 and
Supplementary Fig. 1). Among these proteins, TGFBI, CLSTN1,
PTGR1, and CBLN1 are emphasized as the strongest candi-
dates for DKD risk (PP.H4 = 1.0). Additionally, FKBP6,
ASAP2, COL6A2, and ASIP are also considered to be closely
associated with DKD risk (PP.H4 > 0.95).

Exploring the Biological Significance by Enrichment
Analysis
Through GO and KEGG analysis, we can gain a comprehen-
sive understanding of the biological functions, metabolic
pathways, and interactions of similar expressed proteins.
GO annotation results of the top 10 proteins showed that
asymmetric cell division, response to antineoplastic agent,
and regulation of cellular localization were chiefly enriched
in BP, while CC included spherical HDL particles, platelet
dense granule lumens, and parallel fiber to Purkinje cell
synapses. In addition, MF of the top 10 proteins mainly
involved hemoglobin binding, FK506 binding, and dolichyl-
phosphate-mannose-protein mannosyltransferase activ-
ity (Fig. 3). On performing KEGG enrichment analysis,
we found that the proteins were mainly involved in endo-
cytosis, human papillomavirus infection, and glycosphingo-
lipid biosynthesis-lacto and neolacto series (Fig. 4).

Proteins’ Druggability and Association With Current
DKD Medications
Based on results from the Opentarget database, we identified
79 proteins related to current medications (Supplementary
Table 5). Through PPI network analysis, we discovered inter-
actions between four proteins (ITIH3, HP, TGFBI, and ASIP)
and the targets of five medications currently used for DKD
treatment. Specifically, ITIH3 is associated with CACNA1C,
which is the target of amlodipine, nisoldipine, and nifedi-
pine (calcium channel blockers). HP is associated with two
target proteins: SLC6A2, corresponding to the medication
duloxetine, and ACE, which is the target of 14 angioten-
sin-converting enzyme inhibitors drugs. Additionally, ASIP
is associated with MC2R (targeted by corticotropin), and
TGFBI is related to TGFB1 (targeted by LY-2382770)
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(Fig. 5 and Supplementary Fig. 2). We also conducted a
search for identified potential causal proteins in the
DrugBank database. Among these proteins, SDF2 and
PTGR1 have compounds as their drug targets, while ITIH3
and HP are targeted by zinc and related supplements
(Supplementary Table 6).

External Validation of Potential Drug Targets for DKD
The most crucial aspect for reliable effect estimation in our
study was the validation process, which involved the use of
different data types and independent replication cohorts.
To further bolster the evidence for DKD risk, we created
three distinct validation queues by combining various data
sets. Specifically, we incorporated the GWAS data from van
Zuydam et al. (11) and ARIC pQTL data to identify COL6A2
and TGFBI. CBLN1 was discovered in the FinnGen study

and ARIC pQTL data, while TGFBI and ITIH3 were found in
the FinnGen study and deCODE pQTL data (Supplementary
Tables 7–9).

DISCUSSION

When searching for new drug targets to treat DKD, the
human proteome becomes a critically important field of
study. In this manuscript, following the MR-STROBE
guidelines (Supplementary Table 10), we initially used MR
methodology to preliminarily identify 21 potential protein
targets, followed by colocalization analysis, resulting in
the selection of 12 proteins. Enrichment analysis, protein
druggability, and PPI network have deepened our under-
standing of the mechanisms and drug utilization related to
these proteins. Finally, through external validation, we suc-
cessfully confirmed the potential drug target properties of

Figure 2—The 21 significant potential drug targets in two independent DKD case-control cohorts. The y axis shows the protein name. The
x axis shows the OR. The error bars represent the DKD OR per 1 SD increase in protein expression, calculated using the Wald ratio
(if 1 SNP) or inverse variance weighted method (if>1 SNP) and corrected for the number of genes tested. nsnp, number of SNP.
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four proteins, including COL6A2, CBLN1, TGFBI, and
ITIH3. In particular, TGFBI, which underwent two rounds
of external validation, provides the most robust evidence
in this context (Table 1).

TGFBI, originally named big-h3 and also known as
BIGH3, is a gene that encodes a protein in the extracellu-
lar matrix (ECM) of corneal epithelial cells. TGFBI is gen-
erally expressed in the renal proximal tubules, and, under
physiological conditions, it can mediate the adhesion, ex-
tension, and migration of tubular epithelial cells through
interaction with a3b1 integrin-interaction motifs (25).
This is consistent with the results of our enrichment anal-
ysis. During kidney injury repair, TGFBI promotes the mi-
gration of primary renal proximal tubular epithelial cells
to facilitate the reconstruction of the proximal tubule
(26). However, under diabetic conditions, TGFBI is a key

factor in the development and progression of DKD.
Transforming growth factor-b (TGF-b) is known to play a
major role in the development of renal hypertrophy and
ECM accumulation in diabetes, and its expression of big-h3
is highly induced. Thus, research suggests that big-h3 can
be used as a marker to measure the biological activity of
TGF-b in the kidney (27). Animal experiments have found
that TGF-b or glucose significantly increases the produc-
tion of big-h3 in vitro in a dose-dependent manner (28).
Moritz et al. (29) posited that the damage caused by
BIGH3 to the kidney is mainly due to the activation of var-
ious signaling pathways by macrophages under high glu-
cose conditions, which induces the production of TGF-b
1(TGFB1, belonging to the TGF-b family) and stimulates
the expression of the TGFBI gene encoding the ECM pro-
tein BIGH3, leading to renal cell apoptosis. The increase in

Figure 3—GO enrichment analysis of 12 identified proteins for treatment of DKD. Significantly enriched GO terms of similar expressed
proteins in DKD.

diabetesjournals.org/diabetes Zhang and Associates 623

https://diabetesjournals.org/diabetes


the number of apoptotic cells further promotes the infiltra-
tion of phagocytic cells, forming a vicious cycle (29). While
TGFB1 is the primary target of LY-2382770 in DKD treat-
ment, it may also impact TGFBI. This discovery provides a
direction for further research to delve deeper into the mul-
tiple mechanisms of action of LY-2382770 and to validate
whether it can comprehensively intervene in the pathogene-
sis of DKD.

ITIH3 is a plasma protein that belongs to the inter-
a-trypsin inhibitors (ITIs) family and is also a component
of serine protease inhibitors (30). ITIH3 and hyaluronic
acid (HA) can come together to form a complex that can
bolster the adhesion and durability of HA (31). Under nor-
mal conditions, renomedullary interstitial cells are the

main cells responsible for producingHA in the kidney, which
helps to regulate fluid balance throughout the body and
maintain normal glomerular filtration and endothelial stabil-
ity (32,33). When DKD occurs, high blood glucose and high
insulin levels can cause kidney cells to synthesize and secrete
excessive HA, which can accelerate renal function decline
and lead to renal fibrosis (34). The main pathogenesis in-
cludes activation of the PKC/TGF-b1 pathway, increased
prostaglandin production, ischemia and hypoxia, and inflam-
matory infiltration (33). Based on our enrichment results,
ITIH3 was found to be primarily involved in HAmetabolism.
Therefore, we dare to speculate that reducing the levels of
ITIH3 protein or preventing its binding with HA could po-
tentially be a therapeutic approach for controlling the

Figure 5—Interaction between current DKD medications targets and identified potential drug targets.

Figure 4—Key signaling pathways of 12 identified proteins associated of DKD. The x axis represents gene ratio, and the y axis represents
different biological pathways. The size of the circle represents protein count. Different colors of circles represent different P values.
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synthesis and accumulation of HA in DKD (35). STRING
analysis indicated physical interaction between ITIH3 and
CACNA1C (the treatment targets for amlodipine, nisoldi-
pine, and nifedipine), but there is currently no literature ex-
plaining their mechanism, implying that these two proteins
are closely associated, though not necessarily in direct con-
tact. Moreover, according to DrugBank, zinc is listed as the
drug corresponding to ITIH3, which suggests the need for fur-
ther exploration.

COL6A2 is the gene responsible for encoding Collagen
VI, a vital structural protein. Collagen VI are present in
the ECM of nearly all tissues, where their primary func-
tion is to provide support and structural integrity to these
tissues, aligning with our enrichment results (36). How-
ever, within the context of DKD, several critical pathologi-
cal mechanisms come into play. DKD is characterized by
chronic inflammation and metabolic disturbances, leading
to the accumulation of ECM components in renal tissues.
This accumulation results in a range of detrimental effects,
including glomerulosclerosis, vascular constriction, and dam-
age to renal tubules (37). A prominent feature of late-stage
DKD is the formation of nodular lesions, and Collagen VI is
implicated in this process. Immunohistochemical studies
have revealed a strong and uniform distribution of type VI
collagen throughout these nodules, potentially causing irre-
versible harm to the glomerular matrix (38,39). Moreover,
a3(VI) cleaved C5 domain, also known as endotrophin, is
considered a pivotal driver of fibrosis in DKD. It triggers re-
nal tissue fibrosis through multiple mechanisms, including
inflammation, apoptosis, angiogenesis, and the accumulation
of myofibroblasts. The fibrotic process significantly contributes
to the progression of DKD to ESRD (40). Additionally, a pro-
spective study involving 198 early-stage DKD patients demon-
strated that the PRO-C6 in the serum (S-PRO-C6), generated
as a result of Collagen VI activity, can independently predict

the risk of cardiovascular events, overall mortality, and de-
clining kidney function (41).

CBLN1 is a member of the C1q family’s CBLN subfamily,
primarily expressed in cerebellar granule cells. Its function
involves regulating the synaptic connections between Pur-
kinje cells and parallel fibers to maintain cerebellar coordina-
tion (42). In vivo and in vitro experiments in mice have
revealed a striking phenomenon—the high expression of
CBLN1 in the pancreas, indicating its potential role in the
development of diabetes. This suggests its potential role in
the development of diabetes. Notably, cerebellin (CER),
CBLN1’s derivative, has been found to inhibit insulin ac-
tivity, with its mechanism involving negative regulation
of cAMP and calcium-dependent pathways (43). Addition-
ally, the impact of CER extends beyond insulin secretion,
leading to a significant increase in the secretion of hor-
mones such as epinephrine, aldosterone, and cortisol/cor-
ticosterone. This effect further elevates blood glucose
levels, creating unfavorable conditions for the progression
of diabetes (44). Although CBLN1 is typically known for
its expression in the cerebellum and its neural functions,
as a member of the C1q family, it may have undiscovered
roles in the field of immunology. Therefore, we propose a
bold hypothesis: CBLN1 influences the development of di-
abetes and its complications by mediating immune re-
sponses (45). While we have recognized the potential
significance of CBLN1 in diabetes research, further experi-
ments are needed to delve deeper into its direct relation-
ship with DKD.

In addition to the four proteins that underwent external
validation, the remaining eight proteins identified through
colocalization analysis continued to demonstrate strong po-
tential, further expanding our pool of potential drug tar-
gets. ASAP2, as a protein associated with iron metabolism
and insulin signaling, may play a crucial regulatory role in
DKD. Qin’s discovery suggests that ASAP2 induces the

Table 1—Evidence supporting potential proteins for which expression was significantly associated with DKD

Protein DKD outcome Colocalization Duplication
MR-Egger

intercept test Cochran Q test
Druggable proteins

identification PPI network

FKBP6 Protection � � �

ASAP2 Protection � � �

SDF2 Protection � � � �

CLSTN1 Protection � � �

COL6A2 Risk � � � �

PTGR1 Protection � � � �

TGFBI Risk � � � � �

ASIP Protection � � � �

ST3GAL6 Risk � � �

ITIH3 Risk � � � � � �

HP Protection � � � � �

CBLN1 Risk � � � �

A check mark denotes pass; a blank denotes fail.
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expression of SLC7A11 by regulating SOX2 through miR-
770-5p, which, in turn, reduces inflammation and oxidative
stress while alleviating ferroptosis. This mechanism offers
protection against DKD (46). Additionally, research from
Zhao et al. (47) underscores the significance of ASAP2 in
DKD, as it reveals that RL15 can form a complex with
ASAP2, thereby mediating insulin signaling. SDF2 associ-
ates with endoplasmic reticulum (ER) stress, with functions
that include participating in the quality control of newly
synthesized proteins. Studies indicate that ER stress and
the unfolded protein response are activated, with SDF2
playing a regulatory role in this process and contributing
to protective mechanisms (48). ER stress is a critical mech-
anism in the development of DKD, leading to damage in
various kidney cell types (49). Based on these research
findings, it can be inferred that SDF2 mitigates kidney
damage in DKD patients by modulating the ER stress pro-
cess. ASIP is typically expressed in human adipose tissue
and has been shown to be involved in lipid metabolism
(50). However, when ASIP is expressed in the pancreas, it
stimulates calcium signaling in pancreatic b-cells, leading
to increased insulin secretion (51). HP is an acute-phase
protein. When diabetes leads to increased oxidative stress,
HP binds to free hemoglobin and serves multiple functions:
protecting hemoglobin from oxidative damage and aiding
macrophages in clearing fragmented hemoglobin. Addition-
ally, the formation of large complex molecules through this
binding prevents free hemoglobin from obstructing renal
tubules, thus maintaining kidney function (52,53). More-
over, HP has demonstrated an expansion in drug-related
research, which is certainly worth our attention. ST3GAL6,
PTGR1, FKBP6, and CLSTN1 have limited research on their
association with diabetes and DKD. It is necessary for us
to conduct more comprehensive studies to fill the gaps in
our understanding of their involvement in these conditions.

There are certain limitations that need to be acknowl-
edged. First, the GWAS data we used in this study were
derived exclusively from European populations, which
may limit the generalizability of our findings to other eth-
nic groups. Second, although we used the largest GWAS
data set for DKD currently available, the sample size is
still relatively small, which may increase the risk of bias
and limit the statistical power of the study. Third, we
need to further elucidate the biological mechanisms un-
derlying our in vivo and in vitro experimental results to
better understand the therapeutic efficacy of the protein
targeted in our research. Finally, despite the limitation of
the original GWAS data lacking detailed gender informa-
tion to the extent that we could not differentiate by gen-
der in target proteins, it is crucial to emphasize that this
constraint does not compromise the validity of our re-
sults. The study’s findings remain robust and insightful.

In summary, we have successfully extended the current
biomarkers of DKD and gained a deeper understanding of
its pathogenesis. Through MR and colocalization analysis,
we identified 12 plasma proteins associated with DKD,

among which ITIH3, COL6A2, CBLN1, and TGFBI had the
most common causal variants. These findings provide guid-
ance and new directions for targeted therapies. We believe
that these research results will contribute to the prevention
and treatment of DKD, and may also help reduce the per-
sonal and societal burden of kidney diseases.
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