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SUMMARY

Although social interactions are known to drive pathogen transmission, the contributions of
socially transmissible host-associated mutualists and commensals to host health and disease
remain poorly explored. We use the concept of the social microbiome—the microbial
metacommunity of a social network of hosts—to analyze the implications of social microbial
transmission for host health and disease. We investigate the contributions of socially
transmissible microbes to both eco-evolutionary microbiome community processes (colonization
resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial
transmission-based processes (transmission of microbes with metabolic and immune effects,
inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of
viruses). We consider the implications of social microbial transmission for communicable and
non-communicable diseases and evaluate the importance of a socially transmissible component
underlying canonically non-communicable diseases. The social transmission of mutualists and
commensals may play a significant, under-appreciated role in the social determinants of health and
may act as a hidden force in social evolution.

INTRODUCTION

Eukaryotic life originated from prokaryotic life, evolved amidst microbiomes, and how
harbors distinct host-associated microbiomes.! These microbes (collectively, the microbiota)
shape the phenotypes of their hosts, influencing energy metabolism,22 immunity,* and
even psychological development and behavior, including social behavior.%:78 Furthermore,
the host’s social context, interactions, and relationships influence the composition of its
microbiome, and several exciting discoveries have revealed that endogenous microbes are
readily transmissible between hosts through social interactions.®-17 In this regard, socially
transmissible microbes may be an under-appreciated aspect of the social determinants of
health11:18 and may contribute to both the causes and consequences of variation in host
sociality and health. Much research has focused on the costs of enhanced pathogen dispersal
in social networks and the rather more aggressive transmission strategies of pathogens.1?
However, comparatively less is known about the social transmission of mutualistic and
commensal microbes and whether social animals derive any significant benefits from

such social microbial transmission. Indeed, although social evolution may have driven the
emergence of pathogen avoidance and control behaviors,19-21 it has also been suggested
that social behaviors and social structures supporting the transmission of commensal and
mutualistic microbes could have emerged over the course of social evolution.22-26 |n other
words, given that both pathogenic and non-pathogenic microbes exert substantial effects

on host physiology and are socially transmissible, we believe that it is time to move
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beyond the focus on pathogen transmission. Here, we examine the implications of the social
transmission of commensals and mutualists for host health and disease and also consider the
role of such transmission in social evolution.

We first provide a synthesis of the social transmission of microbes through the lens of

the social microbiome concept?” (i.e., the microbial metacommunity of an animal social
network, together with its genes and gene products; Figure 1A; Table 1). We focus primarily
on the gut microbiome because its associations with host health are better characterized,
but we also discuss the microbiomes of other body sites. Throughout this Perspective,

we refer to five levels of social-ecological forces that shape the social microbiome

(Figure 1A), including microbial exchanges occurring at the inter-host level (level 1), the
network level (level 2), the inter-group level (level 3), the species level (level 4), and

the inter-species level (level 5). We then define two general dimensions under which
various relationships between social microbial transmission and host health and disease

can be analyzed (Figure 1B). One dimension can be conceptualized as a set of broader eco-
evolutionary processes occurring at the level of complex, whole-microbiome communities
and entails processes such as (1) colonization resistance, (2) the evolution of virulence

and microbial transmissibility, and (3) the reactions of the microbiome to ecological
disturbance. The second dimension can be conceptualized as the dispersal of specific
microbes between hosts and entails processes such as (1) the transmission of microbes

with appreciable metabolic and immunological effects, (2) inter-specific transmission and
zoonotic spillovers, (3) the transmission of antibiotic-resistant microbes and microbial
genes, and (4) the transmission of viruses from the host virome. We describe a range of
effects, outcomes, and predictions pertaining to these categories (Figure 1B) as well as
empirical approaches to test those predictions. Finally, we analyze the role of the social
transmission of microbes in relation to communicable diseases (infectious diseases caused
by pathogenic microorganisms) and non-communicable diseases (chronic diseases typically
attributed to host factors, such as cardiovascular diseases, autoimmune diseases, metabolic
diseases, atopic diseases, neurological conditions, and cancers). We evaluate the possibility
that non-communicable diseases entail a communicable component by virtue of the social
transmission of microbes.28 Depending on the nature of the host-microbe interactions and
other host factors, this socially transmissible component could either mitigate or exacerbate
disease risk and severity.

MICROBIAL TRANSMISSION IN THE SOCIAL MICROBIOME

Animal gut microbiomes are highly dynamic ecosystems that display considerable variation
within and between hosts over time.#6 Microbial composition is shaped by environmental
influences, such as diet and the dispersal of microbes from external sources, as well

as factors intrinsic to hosts such as physiology and genetics®46 (Figure 2; Table 2).
Metacommunity theory supplies a useful framework for understanding these dynamics.4’~
50 Under this framework, each host’s microbiome is an “island,” a distinct community
shaped by ecological processes operating both within hosts (including microbe-microbe
interactions and host-mediated selection on microbes) and between hosts (including social
transmission and selection imposed by the external environment) (Figure 2; Table 2). In
this regard, the social microbiome refers to the microbial metacommunity of an animal
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social network (as well as its genes and gene products), wherein networks of host islands
can form distinct biological archipelagos?” (Figure 1A; Table 1). Moreover, different social
groups of the same host species inhabiting similar ecologies often have distinct social
microbiomes, a phenomenon that has been observed across the animal kingdom, including
humans.2” Each microbiome is embedded in a social-ecological network and is connected
to other microbiomes by microbial transmission. The social transmission of microbes can
be analyzed at five distinct, but not mutually exclusive, levels of increasing ecological scale.
These range from inter-host to inter-specific interactions that can influence the nature and
frequency of microbial exchange between hosts?’ (Figure 1A; Table 1). Importantly, the
social transmission of microbes has been shown to covary with and reflect host social
networks.910:13-15.17.29.51 |ndeed, socially transmitted microbes appear to be detectable
even for second-order interactions in humans.2? For example, if A interacts with B, and

B interacts with C, then C bears a microbial trace of the commensals and mutualists

from A that C acquired via interactions with B.2° This phenomenon has previously been
observed for pathogens such as Mycobacterium tuberculosis.>> However, if such patterns
also characterize the transmission of commensals and mutualists, then it would suggest
that an individual’s extended social network affects microbiome composition through
intermediating social partners that serve as reservoirs of microbes from other parts of the
social network.

The social transmission of microbes can be considered across three broad forms11:27.51,62
(Figure 2; Table 2): (1) parental transmission that occurs in early life and is sufficiently
influential to warrant independent consideration as a form of social microbial transmission,
(2) direct social transmission in which animals acquire microbes horizontally via social
interactions, and (3) indirect social transmission in shared environments in which microbes
are transmitted between hosts via incidental contact with fecal matter or other host-
associated microbes with endurance mechanisms that enable persistence in the extra-host
environment. Overall, social environments can therefore exert significant effects on the
composition and function of animal microbiomes (Figures 1 and 2; Tables 1 and 2). In this
Perspective, we focus on direct and indirect social transmission in the context of the social
microbiome.

Microbiome composition is influenced by pairwise associations within social networks,2-
14,29.65 and the effects of social interactions on microbial composition can extend from

birth into adulthood®1:64.66 (Figure 2; Table 2). Recent human examples illustrate the
dynamic and nested nature of social effects on microbiome composition. Within households,
co-habitation leads to enhanced microbial strain sharing between mothers and offspring,16
between siblings, and between non-kin.15:64 Individuals within the same household typically
share 12% of their gut microbial strains, whereas strain sharing between individuals in the
same village is 4%-8%.1%29 In addition to strain sharing between individuals, network-level
characteristics of the household can affect the microbial composition of the inhabitants.

For instance, the relative abundances of certain bacterial genera within infants, including
Lactobacillus, Clostridium, Enterobacter, and Klebsiella, have been shown to be associated
with the size of the household and the number of siblings.8” The gut microbiome becomes
more stable and displays more adult-like features at approximately three years of age.58
Following this, the quantity of shared strains between pairs does not depend on kinship
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status (mother-infant, father-infant, partner-partner, or sibling-sibling), but rather on social
context.1® Moreover, the influence of co-habitation appears to be stronger than age in

strain sharing patterns among adult twins.2® This suggests that the strain sharing patterns
observed in adults are more dependent on social relationships than on the maternally derived
microbiome.

Signatures of the social transmission of microbes have been observed across a range of

host body sites, including the gut,10-15.17.29 gkin 69 and mouth.1%:15 Moreover, the microbes
at a particular body site may migrate to new sites. For instance, recent work has shown

that there is extensive transmission from the oral microbiome to the gut microbiome within
individual humans, 9 though in some cases such transmission is associated with pathologies
such as rheumatoid arthritis’! and inflammatory bowel disease.”? The specific taxa that

are socially transmissible and the degree of social structuring of the microbiome can vary
across body sites. For instance, one study found that individuals who display evidence of
social transmission of gut microbes do not always display evidence of social transmission
of oral microbes.10 In contrast, other work has found higher transmissibility of generally
aerotolerant oral microbes compared to the mostly anaerobic gut microbes, with the latter
being less likely to persist for sufficiently long in the oxygen-rich external environment

to colonize new hosts.1® Indeed, the longer the duration of co-habitation (e.g., partners

or parents with their offspring), the greater the similarity of the oral microbiomes of the
individuals.® Similarly, skin microbes of dogs and their owners show stronger evidence of
inter-specific transmission than gut microbes.#2 Overall, the effects of direct and indirect
social transmission on microbiomes vary amongst body sites: aerotolerant skin microbes
may be more readily transmissible between hosts through shared environments (indirect
social transmission), whereas anaerobic gut microbes may require more intimate social
contact to undergo transmission (direct social transmission). Within body sites, specific
bacterial taxa may be primed or better suited to social transmission. For instance, in
baboons, gut bacteria belonging to the Bifidobacterium and Fusobacterium genera show
stronger evidence of social transmission than other bacterial taxa.1# In contrast, the social
transmission of bacteria appears to be independent of bacterial taxonomy in humans.10 This
suggests that most microbial taxa in humans may be socially transmissible—at least in
principle. Regardless of the variation in the degree of social transmission of microbes across
body sites, across microbial taxa, and across host populations, the social transmission of
microbes appears to be a widespread and robust determinant of microbiome composition in
humans and non-human animals.

HOST HEALTH AND DISEASE IN THE CONTEXT OF THE SOCIAL MICROBIOME

Group living and differentiated social bonds confer numerous fitness advantages upon
individuals, including protection from predation, enhanced access to mates, and assistance in
acquiring and defending resources. The social determinants of health framework examines
the connections between sociality and both health and evolutionary fitness.18 Furthermore,
social context and social relationships, including social rank and connectedness, exert major
consequences upon individual health and wellbeing.18 It is therefore not surprising that
various aspects of the social environment—including social rank, social integration, and
early-life adversity—are amongst the strongest and most consistent predictors of individual
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morbidity and mortality.18 The strength of these links has drawn attention in both the social
and natural sciences that share common interests in the biological processes that connect
the social environment to animal health, disease outcomes, and mortality risk. Often,
research focuses on genetic, epigenetic, immune, and endocrine processes through which
the social environment interacts with individual physiological processes to affect health and
evolutionary fitness.18 Researchers are now beginning to highlight the potential role of the
microbiome in mediating the relationship between social interactions and host health status.
We develop here the concept that socially transmissible microbes and social-behavioral
drivers of microbiome composition may contribute to these effects.”3

Within the social determinants of health framework, one of the consequences of sociality

on health is the exposure to transmissible microbes. This includes the effects of both
pathogens and the rather more overlooked commensals and mutualists. With respect to
pathogens, a most venerable field of enquiry has long investigated the connections between
pathogen transmission and host sociality. For example, individuals living in larger groups,
with higher rates of social contact, operating in specific network positions or structures, or
engaging in longer and more intimate contact with conspecifics, face higher communicable
disease risk than isolated individuals, and as such, hosts may have evolved various social
behaviors to avoid or control pathogens.19-21.74 The transmission strategies of commensals
and mutualists are currently under-appreciated!?, but if they were to differ from the
transmission strategies of pathogens, this could potentially select for the evolution of
various social behaviors that benefit host health through microbial transmission. A difficulty
with this proposal is that pathogenic and non-pathogenic gut microbes often employ the
same, or similar, transmission strategies.1! Thus, although a wide range of social behaviors
—including grooming, co-feeding, mouth-mouth interactions, nursing, and coprophagy—
have been hypothesized to facilitate the transmission of bacteria that confer metabolic and
immunological benefits,22-28 it is unclear whether the transmission strategies of commensals
and mutualists are sufficiently distinct from those of pathogens, or sufficiently beneficial,

to favor the emergence of social behaviors that facilitate such transmission. Indeed, there
are alternative evolutionary explanations for many of these behaviors independent of their
effects on microbial transmission. Future research and modeling efforts on the differences in
the transmission strategies of mutualists, commensals, and pathogens may be able to shed
light on the relationship between social microbial transmission and the evolution of sociality.
A central question in this vein is whether there is sufficient variation in the transmission
strategies of mutualists, commensals, and pathogens for natural selection to favor the
emergence of social behaviors that facilitate the transmission of beneficial microbes but

not harmful ones. Of course, the evolution of social behaviors favoring transmission would
also depend on the relative benefits of commensals and mutualists versus the detriments of
pathogen exposure for the host, not only differentiation among routes of transmission.

CONSEQUENCES OF THE SOCIAL MICROBIOME FOR HOST HEALTH AND DISEASE:
ECO-EVOLUTIONARY MICROBIOME COMMUNITY PROCESSES

Several of the effects of the social transmission of microbes occur at the whole-microbiome
community level, including colonization resistance, the evolution of virulence and
transmissibility, and reactions to ecological disturbance (Figure 1B).
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Colonization resistance

Colonization resistance refers to the intrinsic capacity of an individual’s microbiome to
thwart invasive pathogen colonization and proliferation.”>7¢ Several common members
of the microbiome such as Clostridioides difficile (formerly classified as Clostridium
difficile) are pathobionts (i.e., opportunistically pathogenic), rendering invasion and
pathogenesis a matter of ecological context in many cases. Here, we consider a typical

or healthy microbiome as one that offers little opportunity for microbes to invade and
disproportionately colonize ecological niches. We predict that the social microbiome will
influence host colonization resistance.

Commensal and mutualistic microbes contribute to colonization resistance via various
mechanisms. These include directly competing with each other and with pathogens for
space and nutrients, secreting antimicrobial molecules, altering the biochemical properties of
the gut environment, and training the immune system to distinguish between harmless and
potentially dangerous microbes!1:75.76 (Figure 3).

In mammals, some of the most common gut bacterial taxa are involved in maintaining host
colonization resistance’®7 and are also socially transmissible.1415 Socially transmissible
microbes can affect colonization resistance through processes involving specific taxa, as
well as emergent community properties of the whole microbiome. We consider four key
attributes of the microbiome that influence colonization resistance that can be affected by
social transmission processes#8:79: (1) the presence of specific microbial taxa important
for colonization resistance, (2) microbiome diversity, (3) microbiome stability, and (4)
microbiome similarity amongst hosts.

First, several host-associated microbes can be beneficial for host colonization resistance
via consuming resources necessary for pathogen survival or pathobiont overgrowth (i.e.,
competitive exclusion). For instance, commensal strains of E£scherichia coli consume many
of the same organic acids, amino acids, and other nutrients required for the growth of
pathogenic strains of enterohaemorrhagic £scherichia coli8981 Such competition from the
commensal strains inhibit the growth of the pathogenic strains. Microbial taxa can also
contribute to colonization resistance in context-dependent ways. For example, commensal
strains of Escherichia coli exert little effect on the growth of the pathogens Klebsiella
pneumoniae and Salmonella entericain a simple co-culture.82 However, they are crucial

as part of a more diverse microbial community where they contribute to the capacity of
other microbes to out-compete these pathogens through nutrient depletion.82 As another
example, depletion of dietary amino acids by commensal microbes in the mouse gut
supports colonization resistance against the highly transmissible pathogen Citrobacter
rodentium (used in murine models to mimic pathogenic Escherichia coli), which also
depends on these amino acids.83 Moreover, specific gut microbes may also protect the

host against pathogen colonization by altering the ecological conditions in the gut, creating
hostile environments for potential pathogens. For instance, Bifidobacterium spp. can prevent
pathogenic Escherichia coli from colonizing the gut by lowering the pH of the local
environment.84
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Second, the diversity of the microbiome may enhance its capacity to use all available

niche space, and thus resist colonization.8 This hypothesis is predicated on the ecological
theory that biodiversity is negatively associated with a community’s invasibility (i.e., the
vulnerability of a community to invasions).86 Consistent with this proposal, a recent study
found that the diversity of the gut microbiomes of gnotobiotic mice linearly increased

the microbiomes’ capacities to resist pathogen invasion.82 Diverse microbiomes harbor
many competing microbes, which help stabilize the community against perturbations*® and
occupy ecological niches that could otherwise be exploited by invaders.8% The ecological
niche space that most common bacterial pathogens might exploit can be saturated in a
high-diversity microbiome, with commensal and mutualistic gut microbes utilizing most
available nutrients, thereby holding pathogens and pathobionts at low abundances and
limiting invasions.’® Paralleling these theories, evidence from antibiotic treatment of humans
and mice supports the hypothesis that extreme reductions in microbiome diversity can render
hosts more vulnerable to pathogen invasion.8”

Considerable debate persists over the consistency and linearity of the correlation between
microbiome diversity and colonization resistance®8 and between microbiome diversity and
host health. Indeed, although high microbiome diversity is commonly associated with
better host health,89-93 several studies have also found that high microbiome diversity is
related to poor health outcomes?9:91.94 or is unrelated to health. Importantly, microbiome
diversity can be positively associated with some pathogens but negatively associated with
others.%° Similarly, the effects of social transmission on microbiome diversity are more
complex than a simple positive sociality-diversity association. Although social interactions
may increase diversity,12 extensive social interactions and large social groups may also
reduce diversity in some cases.2” For instance, a negative association between the degree of
social interactions and the average microbial diversity within individual hosts has recently
been demonstrated in free-living populations of red-bellied lemurs® and yellow-bellied
marmots.%8 This negative relationship can occur if, for instance, a particular microbial
lineage possesses a competitive advantage within hosts over other lineages. In socially
fragmented populations, such a microbe may only come to dominate the microbiome of a
few hosts, whereas in socially connected populations, the microbe is likely to spread to,
and proliferate within, most or all hosts. These variations hint at a complex relationship
between microbiome diversity and colonization resistance. Rather than a uniformly positive
relationship between colonization resistance and microbiome diversity, there may instead
exist a “tipping point” of diversity reduction that can unbalance the microbiome, creating
ecological niche space conducive to pathogen invasions.?”

Third, colonization resistance is inherently linked to the stability of the microbiome, an
emergent community property that may be influenced by social microbial transmission.
Generally, stable communities are expected to be more resistant to invasion than unstable
communities, because instability in community composition can create ecological niche
space, thereby providing opportunities for invasion.”®:86 |nstability is considered an aspect
of a dysbiotic microbiome state in humans,® and instability-associated perturbations may
lead to pathogenic overgrowth of some taxa. Indeed, opportunistic pathogenesis of
typically commensal microbes through overgrowth can be a causal mechanism underlying
diarrhea.%? For example, traveler’s diarrhea often appears without an obvious enteric
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pathogen, and instead seems to be attributable to commensal microbe overgrowth associated
with dysbiosis.1%0 These instability-driven invasions illustrate how pathogenesis may occur
due to sudden availability of niche space rather than the invasive tendencies of a pathogen
per se. The extent to which microbiome stability is influenced by social microbial
transmission is an understudied area. For instance, whether an individual’s position in a
social network shapes microbiome turnover (a common measure of stability) has not yet
been thoroughly explored, 192 likely due to a paucity of detailed longitudinal data from
natural host-microbiome systems. Some evidence suggests that social network instability
may be associated with gut microbiome instability. For example, amongst wild Verreaux’s
sifakas, individuals with more unstable social ties show higher gut microbiome turnover
rates.192 Unstable social ties could affect microbiome composition and stability, with
social stress contributing to the association between social instability and microbiome
instability. Unstable social relationships trigger hormonal stress responses which in turn
may lead to compositional changes’ and may in turn cause reductions in the stability of
the microbiome. Future research could experimentally manipulate social rank in model
animals and examine how social network position interacts with factors such as stress and
microbiome composition to affect host phenotypes, including colonization resistance.

Fourth, colonization resistance can be influenced by microbiome similarity between socially
interacting hosts. This is because social interactions increase the similarity of microbiomes
between hosts.10:15.29 Enhanced similarity of microbial communities across hosts could
theoretically both enhance or diminish colonization resistance, and we discuss each
possibility in turn. First, with respect to enhancing colonization resistance, a host may
display higher resistance to colonization by familiar microbes due to pre-acclimation of the
host’s immune system to those microbes. For example, many microbes that are typically
considered commensal or mutualistic can become pathogenic under certain conditions,
with Clostridioides difficile as a canonical example. The shift to pathogenesis may partly
depend on how acclimated the host is to a given microbe. Human studies suggest that
host-microbe interactions train host adaptive immunity, reducing pathogenesis caused by
familiar microbes.103 In contrast, unfamiliar microbes may be more likely to become
pathogenic.104 The degree of microbiome similarity amongst social partners may thus affect
the likelihood that microbes become pathogenic in the new host following transmission.
For example, imagine that a host interacts with a novel social partner whose immune
system is unaccustomed to the host’s commensals and mutualists. Such an interaction

may be more likely to lead to pathogenesis relative to interactions amongst hosts with a
history of social interactions and exchange of microbes. This is because familiar hosts are
expected to have more similar microbiomes and immune training. Second, high degrees

of microbiome similarity could also diminish colonization resistance. Specifically, because
social interactions enhance the similarity between microbiomes,10:15.29 this microbial
similarity may also confer advantages to pathogens that have developed mechanisms to
overcome or subvert colonization resistance. Individuals with microbiomes that closely
resemble the social microbiome may thus also be the most susceptible to invasions by
pathogens that have previously succeeded in invading similar microbial communities.
Studying pathogen transmission through social networks as a function of the degree of
similarity between an individual’s microbiome and the social microbiome should yield
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insights into the rate at which pathogens spread in the social microbiome. This would enable
assessments of whether transmission is positively associated with the degree of microbiome
similarity between hosts in the social network.

All social transmission effects on colonization resistance can be influenced by the various
social-ecological forces that contextualize the social microbiome (Figure 1A). For example,
larger and more heterogeneous groups should provide the maximum number of colonization
opportunities (level 2). Similarly, host species that are on average more social (level 4) may
experience higher rates of potentially invasive transmission events. However, they might also
possess greater intrinsic colonization resistance owing to the greater number of opportunities
they have for the transmission of non-pathogenic microorganisms. Because interacting with
others possessing dissimilar microbiomes can also enhance diversity by introducing new
microbes to a host, there is an inherent trade-off between “safe” sharing of commensal

and mutualistic microbes and acquiring more diverse (but potentially more dangerous)
microbes. Primate research suggests that distributing a set of familiar microbes amongst
social partners might help maintain diversity, as any microbe lost to local extinction in any
host can be reacquired through social contacts. Maintaining diversity could also reduce the
risk of acquiring completely unfamiliar microbes—which might possess greater potential for
pathogenesis—through social interactions.85:105.106

Evolution of virulence and transmissibility

Social transmission of gut microbes is expected to affect the evolution of virulence

among members of the social microbiome. Strict transmission of gut microbes within

host genealogies (i.e., vertical transmission) creates a situation in which the long-term
fitness of microbial lineages is dependent on the host.107 Under this scenario, strains that
severely decrease host fithess may decrease their own fitness and suffer an evolutionary
disadvantage relative to less pathogenic strains,198 unless impairing the host is central

to the fitness strategy of the microbe. One example of this phenomenon is the parasitic
fungus Ophiocordyceps unilateralis that controls and ultimately kills its ant hosts to enhance
the distribution of its spores.® The extraordinarily virulent rabies virus and the protozoan
parasite Toxoplasma gondii are prominent examples of microbe-mediated impairment of the
host. Overall, microbial control of host fitness is expected to evolve only rarely and under
very precise circumstances.8-10° Therefore a high degree of microbial dependence on the
host should typically favor reduced virulence. However, the possibility of social transmission
of microbes, especially amongst non-kin, may partially decouple microbial fitness from host
fitness. Opportunities to colonize multiple unrelated hosts could potentially increase the
long-term fitness of microbial lineages that exert deleterious effects, which might otherwise
have been disfavored by selection in microbial lineages that display high fidelity to host
lineages. Under this scenario, virulence could evolve if the negative effects of severe host
illness or death on microbial fitness are outweighed by the positive effects that virulence
yields for within-host microbial fitness.

Although increasing the opportunities for horizontal (social) transmission of microbes
may promote the evolution of virulence, evolutionary theory also predicts that increasing
opportunities for social transmission may in some cases select for reduced virulence in

Cell. Author manuscript; available in PMC 2024 March 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Sarkar et al.

Page 11

microbes that are both vertically and socially transmissible.}19 For instance, high rates of
social transmission can increase the prevalence of a microbe in a host population, thereby
reducing further opportunities for social transmission and decreasing the fitness of virulent
strains that rely on social transmission.110 Thus, the effect of social transmission on the
evolution of virulence in members of the social microbiome is certainly more complex than
a positive linear relationship between opportunities for social transmission and virulence.111
Transmission opportunities for many microbes (pathogens, commensals, and mutualists
alike) can be conceptualized in terms of varying social-ecological forces affecting the social
microbiome (Figure 1A). For example, transmission opportunities are likely maximized

by frequent and intimate social contacts and in more centrally networked individuals

(level 1). Transmission opportunities are also likely to be increased amongst groups of
larger size (level 2), between groups that have greater numbers of migrating individuals
(level 3), amongst more social species, species with greater average within-group genetic
relatedness, and in seasons and environments that promote close social interactions (level 4),
and under circumstances of greater inter-species contact (level 5). Notably, some of these
interactions may be indirect, resulting from multi-partite connections between individuals
and populations, as recently observed in bats.112 In these ‘cryptic’ connections, microbial
lineages are socially transmitted between hosts that never directly interact (i.e., indirect
social transmission; Figure 2; Table 2).

The social microbiome may also affect the evolution of traits critical for microbial
transmissibility. Long-term pathogen fitness is a function of the number of new hosts that the
pathogen can infect, and the same is likely true for gut-adapted commensals and mutualists.
A social network in which hosts are closely connected reduces the spatial and temporal
distance between potential hosts, and allows host-adapted microbes to transmit across the
social network with greater success than amongst more solitary hosts. This is especially
relevant for members of the gut microbiome, many of which are obligate anaerobic bacteria
that do not possess adequate endurance mechanisms for significant persistence in the
oxygen-rich external environment.11 Thus, a dense social network with many proximal hosts
should increase colonization opportunities for anaerobic gut bacteria. Indeed, where direct
social transmission of microbes has been studied, the bacterial taxa that are most socially
transmissible are also the least likely to persist in aerobic external environments, possessing
fewer mechanisms supporting extra-host survival.14

Endurance mechanisms such as sporulation facilitate bacterial survival in extra-host
environments.11 Sporulating bacteria are significantly more aerotolerant than non-
sporulating bacteria.113 Unlike obligate anaerobes, spore-forming bacteria can readily
disperse across individuals independent of direct social contact. Concordantly, gut microbes
transmitted through direct social contact between wild mice are mostly anaerobic, whereas
gut bacteria transmitted indirectly through shared environments are enriched in aerobic
spore-forming taxa.>! Genera containing sporulating bacteria appear to represent up to 30%
of the microbial abundance in the gut and are found across several prevalent bacterial
families, including Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. 11113 Notably,
the pathobiont Clostridioides difficile produces metabolically dormant and highly resistant
spores that facilitate both persistence within the host during hostile conditions and indirect
social transmission through shared environments.113

Cell. Author manuscript; available in PMC 2024 March 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Sarkar et al.

Page 12

The evolution of microbial endurance mechanisms, such as the capacity to form spores,

may be shaped by the degree of sociality of the host species. Regarding the relationship
between host sociality and the strength of selection for endurance mechanisms, one may
postulate two competing hypotheses. First, endurance mechanisms such as sporulation may
be selected against in microbes confined to host species that are solitary or have few social
partners. This is because social contact may be so sparse that opportunities for colonizing
another host are too limited to support the evolution of endurance mechanisms that enable
efficient indirect social transmission to new hosts. Second, evolutionary pressures may select
for enhanced endurance mechanisms in more solitary host species relative to social host
species, enabling microbes to persist in the environment to reach new, infrequent hosts via
indirect social transmission. Of course, acquisition of microbes from other sympatric species
(level 5; Figure 1A; Table 1) could also affect these kinds of outcomes. These hypotheses
could be empirically or meta-analytically tested by comparing the presence or absence of
endurance mechanisms amongst microbial lineages associated with host species that vary in
their degree of sociality while accounting for interactions with other sympatric species.

Reactions to ecological disturbance

Ecological disturbances refer to transient environmental events that precipitate significant
ecosystem and ecological change (e.g., floods, forest fires, hurricanes).}14 One definition of
ecological resilience is the extent to which a disturbed ecosystem recovers and returns to or
resembles its pre-disturbance state.115 Principles from disturbance ecology and ecological
resilience in macroecological systems can also be fruitfully applied toward understanding
microecological processes, including host-microbe interactions.®? Disturbances to the
ecology of the microbiome, including exposure to a new diet, antibiotic exposure, illness, or
infection, can result in the loss of endogenous microbial populations and their replacement
with other microbial populations (Figure 4). For instance, antibiotic-induced disturbances
and subsequent microbial losses allow ecological niches in the gut to become available for
colonization, leaving the host vulnerable to invasion by foreign and potentially pathogenic
microbes or to the unrestrained growth of pathobionts such as Clostridioides difficile.116

Exposure to a social network of conspecifics may enhance the microbiome’s resilience

by providing a metacommunity of socially available microbes from proximal hosts to
facilitate post-disturbance recolonization (Figure 4). For example, in humans, even short
courses of antibiotics precipitate substantial reductions in bacterial diversity,117-121 and the
microbiome can remain perturbed for months or years after antibiotic exposure.118.119.121
Although early-life antibiotic-induced disruption of the gut microbiome can exert lifelong
consequences, 122 antibiotic-mediated perturbations are often mild amongst adults, with the
microbiome tending to return to stable, largely preexposure states fairly quickly following
the cessation of antibiotic treatment.57:120.121,.123 The capacity of the adult gut microbiome
to return to baseline states following perturbation probably reflects mechanisms of host
control but may also be facilitated by the dense social networks that provide numerous
opportunities for social microbial transmission. Exposure to human-associated microbes
from the surrounding social network and environment may compensate for losses in
commensal and mutualistic microbial populations following antibiotic treatment. However,
such a pattern may be more likely to hold for familiar social partners. In contrast, exposure

Cell. Author manuscript; available in PMC 2024 March 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Sarkar et al.

Page 13

to unfamiliar social partners after antibiotic treatment may result in pathogenesis, owing to
the potential transmission of new microbes for which the individual lacks immune tolerance.
These dynamics might be tested in experimentally tractable social species such as mice and
bees in which antibiotic-treated animals are exposed to familiar or novel social partners after
antibiotic exposure.

Various social-ecological forces from across the five levels of the social microbiome (Figure
1A) could influence the probability of successful recovery from disturbance. Microbial
transmission from conspecifics may covary positively with the extent to which the individual
is networked in a social group and the frequency and intimacy of social contacts (level 1),
the size of the social network (level 2), and the number of interactions across more distant
components of social networks (level 3). On average, more social species (level 4) may be
expected to experience more rapid post-disturbance recolonization.

Nevertheless, the microbiome is generally resilient to perturbations.#8.79 An important area
of research, therefore, is to understand the relative contribution of social transmission to
microbiome resilience compared to other biological mechanisms (e.g., host immunity).
This question could be empirically examined in model organisms by exposing hosts to
standardized antibiotic treatment while manipulating host social structure (e.g., housing
animals individually or in groups of varying size). Supporting the importance of

social transmission in microbiome resilience, antibiotic-induced ablation of the honeybee
microbiome increased mortality, but seven days of exposure to other hosts from the

hive partially restored bacterial composition in antibiotic-treated bees.124 In contrast,

bees housed individually remained depleted of bacteria relative to antibiotic-free control
bees.124 Similarly, recovery of the mouse gut microbiome after antibiotic treatment was
accelerated when antibiotic-treated mice were co-housed with untreated mice, which served
as microbial reservoirs.125126 Hence, social partners may contribute to the resilience of
the gut microbiome following antibiotic-induced disturbance. Colony models of rodent
social networks could be used to examine microbiome recovery from disturbance in
settings that more closely mimic natural social environments. It may be that more central
individuals who have more social interactions are able to recover more rapidly than more
peripheral individuals by virtue of enhanced microbial transmission and acquisition (Figure
4). Nevertheless, because individuals who are more integrated within social networks tend
to have better health in general,18 careful treatment will be required to experimentally
disentangle the two processes.

CONSEQUENCES OF THE SOCIAL MICROBIOME FOR HOST HEALTH AND
DISEASE: MICROBIAL TRANSMISSION-BASED PROCESSES

Although several host health-related effects of social microbial transmission are based on
processes at the whole-microbiome community level, sociality also drives the transmission
of specific microbes that affect host health and disease, including the transmission of
microbes with metabolic and immune effects, inter-specific transmission, the transmission of
antibiotic-resistant microbes, and the transmission of viruses (Figure 1B).
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Transmission of microbes with metabolic and immune effects

Social interactions may promote the transmission of specific microbes that exert appreciable
effects on host metabolism and immunity. For example, a study in baboons tested the
transmission of microbes through host social and grooming networks.3> “Core” microbial
taxa often contribute toward generating crucial ecosystem services for their hosts, including
the digestion of complex carbohydrates, the synthesis of vitamins, and the production

of short-chain fatty acids (SCFAs) such as butyrate, the primary energetic substrate for
colonocytes.”8127-129 Gijyen their significant contributions to the host, it was thought that
the abundance of core microbes within hosts would be too important for host health

to depend on host social interactions.3° Contrary to this expectation, the presence and
abundance of these core microbes (including the mutualistic genera Bifidobacterium and
Faecalibacterium) were predicted by social group membership and social behavior. Socially
transmissible gut microbes may also contribute to the host’s capacity to exploit a particular
niche. For instance, desert woodrats consume tannin-rich plants that are metabolized by

gut microbes such as Enterococcus faecalis,3° a socially transmissible taxon.13! These
microbes are necessary for the appropriate degradation of tannins, and their absence predicts
the body mass reduction and liver damage typically associated with tannin consumption.130
This is also one route through which the social transmission of microbes may facilitate host
adaptation to novel dietary resources. This proposal could be experimentally investigated

by cohousing rodents that lack microbes capable of degrading diet-derived xenobiotics with
rodents that possess such bacteria. We predict that rodents lacking these bacteria will acquire
them via direct and indirect social transmission, and will be better able to tolerate the
xenobiotics. Such a phenomenon has important implications for understanding host range
expansions. Socially transmissible microbes that enable hosts to exploit new resources and
niches could eventually facilitate the dispersal of hosts into new ecologies.

The microbiome also plays a crucial role in shaping and regulating host immunity,*° and
specific socially transmissible microbial taxa may affect the general immune status of the
host (Figure 3). For instance, a recent study of wild macaques found that host sociability
was positively correlated with the presence of mutualistic gut bacterial genera such as
Faecalibacterium, which confer anti-inflammatory and other beneficial effects on health.132
However, less sociable macaques displayed increased levels of the genus Streptococcus,
whose members include several pathogens and pathobionts.132 Through SCFA-mediated
signaling, effects on barrier function, and other mechanisms, gut microbes can modulate a
broad range of host immune cell populations (Figure 3; Table 3), and microbiome-immune
interactions can exacerbate or protect the host from both enteric diseases and various
extra-enteric diseases including cancer, autoimmune diseases, and viral infections including,
potentially, SARS-CoV-2.4133.134 Common microbial metabolites such as SCFAs (which
are also produced by socially transmissible microbes) can exert significant effects on host
immunity. For instance, SCFAs induce regulatory T (Tyeg) cells in the colon, conferring
resilience against colitis in mouse models.135:138 |ndividual bacterial species also affect

the frequencies of diverse immune cell types.137 Several of these microbes also interact
with drugs and can alter drug metabolism, with consequences for host drug responses

and treatment outcomes (Table 3). Crucially, microbes that exert these effects have also
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been observed to be socially transmissiblel0:14-16.3551 (Figure 3; Table 3). These lines of
evidence point to the possibility of immune effects of socially transmissible microbes.

Inter-specific transmission and zoonoses

Zoonoses and zoonotic spillovers are long-standing concerns across biomedicine and
public health, and featured prominently in debates concerning the origins of SARS-CoV-2.
Microbial transmission between animals of different species is readily interpretable as a
level 5 process of the social-ecological forces that contextualize the social microbiome
(Figure 1;Table 1). Inter-specific microbial transmission occurs in a range of settings. For
example, anole lizards, coyotes, and sparrows residing in urban environments harbor gut
bacterial lineages that are typically found in humans.16° Other cases include microbial
transmission across predator-prey networks,*? and microbial transmission via interactions
with domesticated animals.#2 Such interactions between host species have well-recognized
potential for inter-host pathogen transfer. For instance, spending time in pig farms increased
the abundance of harmful microbes in human visitors.44

More generally, host species living in close contact with one another and potentially sharing
microbes66 may allow for a decoupling of host and gut microbial fitness. Such decoupling
could potentiate the emergence of virulence in members of the social microbiome. Many of
the most virulent human diseases such as Ebola and acquired immune deficiency syndrome
(AIDS) are the result of zoonotic infections from other host species.187 Many kinds of
interactions can result in such infections. For instance, hunting and consuming bushmeat
increases the risk of acquiring zoonotic viruses, which introduces pathogens into human
social networks.167 Similarly, several human viral, bacterial, and eukaryotic pathogens can
infect and cause disease in other species, including various great apes.168

Although research in this area has focused on zoonoses and the negative consequences of
inter-specific microbial transmission, there may also be some benefits. For instance, amongst
sympatric species living in close proximity, such interspecific transmission may enhance

the microbial diversity of individuals and social groups.166 Similarly, interacting with
livestock may contribute to increased microbial diversity of the human gut microbiome.169
As discussed earlier, diverse social microbiomes represent ecological communities that may
be able to better resist potential pathogens via colonization resistance’®:76 and also via

direct and indirect suppression of pathogens such as viruses in the host.134 In some cases,
these inter-specific interactions may also exert beneficial effects on immune physiology.

For instance, exposing mice to dog-associated house dust enriched beneficial Lactobacillus
Johnsonii, dampened biomarkers of inflammation, and protected the mice against subsequent
respiratory infection and pathology.*3 These kinds of proposals could be investigated by
colonizing germ-free mice with a mixed or more diverse microbiome comprising microbes
from a few other host species and testing resistance to pathogen colonization compared

to mice colonized with microbes from a single host species (the former group may show
greater resistance to an experimentally introduced pathogen). We could similarly measure
pathogen resistance in germ-free mice colonized with “naturally” mixed host microbiota
samples from farms, watering holes, or other contexts in which several animals exchange
microbes. Such experiments would help us better understand whether there are beneficial

Cell. Author manuscript; available in PMC 2024 March 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Sarkar et al.

Page 16

effects of microbiomes that include microbes from diverse host species. Overall, although
most research on the inter-specific transmission of microbes focuses on disease risk, there is
simultaneous potential for inter-specific microbial transmission to yield hidden benefits for
hosts that warrants further investigation.

Transmission of antibiotic resistance

The development of antibiotic resistance is an ancient adaptation that enables bacteria

to compete with one another.170 However, the widespread exploitation of antibiotics for
medical and agricultural purposes is driving the emergence of antibiotic resistance to levels
that pose serious public health risks. Much research on antibiotic resistance has focused

on either intrahost development of antibiotic resistance following exposure to antibiotics or
acquisition of antibiotic-resistant bacterial genes via lateral gene transfer.170

Here, we discuss how the different social-ecological forces shaping the social microbiome
(Figure 1A; Table 1) can be exploited to examine the dispersal of antibiotic-resistant
microbes at various levels in novel ways. For instance, at level 1, individuals sharing

a household are predicted to acquire antibiotic-resistant microbes from co-habitants
undergoing antibiotic treatment. This may become exacerbated under longer courses of
antibiotics that last for many months or years. Two observations support such a proposal.
First, bacteria belonging to the Bacteroidales order are amongst the most transmissible
within households.18 Second, Bacteroidales members act as reservoirs for antibiotic
resistance genes.1’1 Thus, some of the most transmissible species and strains may also

be highly effective at spreading antibiotic resistance. At level 2, cultures, societies, and
countries differ in the extent to which they use antibiotics, creating culture-dependent
transmission landscapes for antibiotic-resistant microbes and genes. At level 3, humans
traveling over long distances can experience different degrees of exposure to antibiotic-
resistant microbes and genes. At level 5, the transfer of antibiotic-resistant microbes and
genes has been observed between humans and other animals sharing environments.172 For
instance, companion animals are a potential source of antibiotic-resistant microbes and
genes.1”3 Furthermore, individuals working with antibiotic-exposed agricultural animals or
in environments inhabited by these animals show evidence of microbiome remodeling and
the acquisition of antibiotic-resistant microbes and microbial genes.**4> There are at least
three primary concerns over such acquisitions’4: First, the antibiotic-resistant bacteria may
directly infect humans. Second, the adaptation of resistant strains following initial infections
from livestock may lead to sustained transmission in humans. Third, antibiotic resistance
genes emerging in livestock may be acquired by human pathogens via lateral gene transfer
between bacteria. All such routes may contribute to a hidden, socially transmissible layer
of antibiotic resistance. The implication, of course, is that such transmission may render
future antibiotic treatment less effective for an individual’s social contacts and caregivers.
The possibility and magnitude of such an effect demand further empirical enquiry.

Transmission of viruses and the social virome

Nearly all organisms are hosts to multiple viruses. Apart from pathogenic viruses such as
SARS-CoV-2 and human immunodeficiency virus that cause acute disease, multicellular
organisms also harbor intrinsic viral populations—viromes—that consist of two distinct
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components: host-adapted commensal or conditionally pathogenic viruses that replicate in
host cells, and a much larger contingent of bacterial viruses (bacteriophages, or phages)
and archaeal viruses that infect the prokaryotic members of the host microbiome (Figure 3).
These viral members are also a part of the individual microbiome, and the social virome
forms a part of the social microbiome.2’

In humans, common members of the host-adapted virome include endogenous retroviruses
(i.e., components of viral genomes that are integrated with the human genome),
anelloviruses, pegiviruses, polyomaviruses and papillomaviruses, parvoviruses, and
herpesviruses.1”® Although some of these viruses (papillomaviruses and herpesviruses, in
particular) are associated with pathology and cause sporadic disease, including several
types of cancer,17® most do not appear to be associated with any pathology. For instance,
anelloviruses — an enigmatic group of small viruses with single-stranded DNA genomes
that are nearly ubiquitous in humans’7 — have not yet been shown to contribute to any
disease. Some non-pathogenic or conditionally pathogenic viruses could even be considered
mutualistic in specific contexts because of certain benefits they confer upon the host. For
example, coinfection with human pegiviruses is associated with less virulent AIDS178

and Ebola infection.17® Generally, host-adapted viruses may be involved in shaping host
immunity. In this vein, anelloviruses are thought to contribute to training the human
immune system during development.189 Furthermore, infecting germ-free mice with murine
norovirus facilitated typical immune development and promoted homeostasis in germ-free
mice, while uninfected mice displayed aberrant developmental patterns characteristic of
germ-free status.181 Thus, some host-adapted viruses can mimic the developmental effects
of bacterial colonization of the host. The spread of these host-adapted viruses can occur via
multiple routes and should be affected by social interactions. Some of these viruses, such
as anelloviruses, can be transmitted via blood,’” and therefore their transmission should
be subject to several of the same processes discussed in levels 1-5 of the social-ecological
forces shaping the social microbiome (Figure 1A; Table 1).

The bulk of the host virome consists of viruses targeting the microbiome. Bacterial
populations are universally controlled by the bacteriophages that infect them, and the

host microbiome is no exception.182:183 Although the viral component of the microbiome
remains incompletely characterized, advances in metagenomics have led to the discovery of
numerous previously unknown groups of bacteriophages, some of which are highly abundant
in the human gut. For instance, Crassvirales viruses infect members of the Bacteroidetes
phylum, a major component of the human gut microbiome comprising bacteria that are
difficult to cultivate.184185 The challenges of cultivating Bacteroidetes members mean their
associated bacteriophage communities remain relatively poorly characterized.

Phage-prokaryote associations are highly specific, with phage lineages usually infecting
a very narrow range of prokaryotic hosts. To some extent, all microbiome-immune
interactions (Figure 3) could reflect various bacteriophage-bacteria interactions. In other
words, any bacterium is engaged not only in interacting with the host and competing

with other bacteria, but also with adapting to bacteriophage presence and coordinating
antiphage defenses.186 Thus, all or most bacterial effects on the host should be considered
in the context of a tri-partite system of interactions comprising bacteria-host interactions,
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bacteria-bacteria interactions, and bacteria-bacteriophage interactions.18” There can be little
doubt that bacteriophages and archaeal viruses exert profound bottom-up control upon

the microbial populations they infect, alongside the top-down control exerted by the host
immune system. Explorations of host-bacteria-bacteriophage interactions and their role in
host health and disease are important avenues for research.

Because bacteriophages most likely accompany any bacterial transmission, bacteriophages
should be subject to the same social-ecological processes across levels 1-5 that shape

the social microbiome (Figure 1A; Table 1). Several recent studies have found evidence

of such phenomena. For instance, pursuant to findings of socially structured gut bacterial
communities in baboons, host social groups can also be distinguished on the basis

of their bacteriophage communities.183 Paralleling results for bacterial composition,
grooming intensity between baboons predicts bacteriophage community similarity, even
after controlling for genetic relatednessi83 (level 1; Figure 1A; Table 1). Such parallels
between bacterial and bacteriophage dynamics have also been observed in human studies.
For instance, in studies of adult monozygotic twins, bacteriophage diversity is closely
correlated with bacterial diversity.188 Furthermore, as with bacteria, the infant virome bears
a signature of birth mode, with vaginally delivered infants displaying more diverse viromes
than infants delivered via caesarean section.189 Finally, as with the bacterial members of

the gut microbiome,3! bacteriophage composition also changes during senescence.190 These
findings highlight the parallels between bacteriophage and bacterial transmission and within-
host dynamics in the social microbiome.

Bacteriophages can beneficially affect host health. For instance, amongst individuals

with Vibrio cholera infection, those harboring bacteriophages that infect Vibrio cholera
experience less virulent disease.191 These beneficial effects may also extend to
psychological domains such as cognitive performance. For example, some bacteriophages
infect bacteria that can impair host cognition, leading to enhanced host cognitive
performance.192 This pattern has been observed in humans and experimentally demonstrated
in mice and flies.192 Conversely, bacteriophages could harm host health by infecting
bacteria that are beneficial for the host, or by infecting commensal and mutualistic bacteria
that compete with pathogens and pathobionts.293 Overall, bacteriophage transmission
likely comprises an under-investigated component of health and disease. Indeed, because
bacteriophages are seldom quantified or intentionally controlled in studies, it is worth
considering the possibility that many of the physiological effects currently attributed to the
bacterial component of the microbiome arise in part from the myriad interactions between
bacteria and their associated bacteriophages.

A more complete understanding of how microbial transmission affects host health requires
explicit incorporation of the virome. For instance, the inclusion of viral persistence and
replication strategies such as lysis-lysogeny switching and broader ecological processes
such as predator-prey dynamics could further enhance our understanding of microbial
transmission, assembly, succession, resilience, and functional effects in hosts. Overall,

the types of social interactions that drive the transmission of microbes between hosts are
expected to entail the concomitant transmission of the phages that infect those microbes.
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The transmission of viruses means that the social microbiome also comprises an inextricable
social virome, with implications for host health that offer many opportunities for discovery.

IMPLICATIONS OF THE SOCIAL MICROBIOME FOR COMMUNICABLE AND
NON-COMMUNICABLE DISEASES

The potential effects of socially transmissible microbes may also be relevant in the

context of communicable diseases and non-communicable diseases. While communicable
diseases have declined during the epidemiological transition, non-communicable diseases
have become more prevalent and now account for ~75% of all deaths globally.194195
Using the themes and principles developed in this Perspective, we propose that the social
transmission of microbes may enhance or reduce host susceptibility to both communicable
and non-communicable diseases (Figure 5), and thus that non-communicable diseases may
harbor an under-appreciated communicable component.

Social transmission of microbes and communicable diseases

Socially transmissible microbes may modulate the risks and effects of communicable
diseases. For example, microbes can facilitate viral infection of the host, including via
enhancing the stability of virions as they bind to host cells or suppressing host antiviral
responses.134 To the extent that such microbes are transmissible, host responses to viral
infection may be at least partially a function of socially acquired microbes. Furthermore,
because gut microbes that are transmissible interact with and modulate host vaccine
responses (Table 3), the host’s vaccine-mediated resistance to various bacterial and viral
pathogens could be at least partly influenced by socially acquired microbes.

The social transmission of antibiotic-resistant microbes and microbial genes could

also enhance the recipient’s resistance to antibiotic treatment during future bacterial
infection. Indeed, recent /in vitro evidence suggests that even non-antibiotic drugs such

as antidepressants may drive the emergence of antibiotic resistance at clinically relevant
concentrations.19 This could potentially create further opportunities for the social
transmission of antibiotic-resistant microbes. For instance, we can imagine a hypothetical
scenario in which one household member is under treatment for major depressive disorder.
Not only is the patient at risk of developing antidepressant-mediated antibiotic resistance,
there is also the possibility that these antibiotic-resistant microbes will be transmitted

to other household members. This creates a route via which the treatment of a non-
communicable disease may affect the outcomes of treatments for communicable diseases
in the patient’s social network.

The social transmission of microbes could also contribute to the mitigation of communicable
diseases. Socially acquired microbes could contribute to colonization resistance, thereby
protecting the host against various bacterial pathogens and reducing the risk and severity
of disease (Figure 3). The protective effects of socially acquired microbes against
communicable diseases are well known in insects. For instance, in bumblebees, hosts gain
gut bacteria via contact with the feces of nestmates after pupal eclosion, and these bacteria
provide protection against parasitic infection by the virulent trypanosomatid Crithidia
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bombi97 This principle was recently extended to the design of synthetic probiotics

to protect hosts. Synthetic symbionts administered to honeybees enhanced resilience to
Nosema ceranae, a microsporidian parasite frequently associated with colony collapse
disorder.198 Crucially, the synthetic probiotics spread among co-housed bees, a phenomenon
with implications for hive-wide protection.198

Among mammals, protection from disease has been shown to be a transmissible phenotype:
when gut microbes sourced from humans showing differential susceptibility to enteric
infections were transferred into germ-free mice, the recipient mice recapitulated their
donor’s resistance traits when exposed to Citrobacter rodentium infection.13° Specifically,
when the most susceptible mice (i.e., mice colonized with microbes from the most
susceptible humans) were co-housed with the most resistant mice (i.e., mice colonized with
microbes from the most resistant humans), the susceptible mice became more resistant but
the resistant mice did not become more susceptible to Citrobacter rodentium infection13?
(visualized in the “rescue” scenarios in Figure 5). In addition, endogenous microbial
populations interact with pathogenic eukaryotic-adapted viruses in ways that may suppress
viral infection — for example, by interfering with virions as they attempt to attach to host
cells.134 The transmission of bacteriophages could also reduce the virulence of certain
infectious diseases as exemplified by the beneficial effects of bacteriophages on Vibrio
cholera infection in humans.1®1 Moreover, some research suggests that bacteria from the
socially transmissible bacterial genera Bifidobacterium, Lactobacillus, and Streptococcus
(Table 3) may be associated with protection against malaria.19% As in insects, the

social transmission of microbes may thus protect mammalian hosts against infections

or limit their severity via multiple mechanisms. Furthermore, the design of synthetic,
transmissible probiotics for bees'9 also has implications for similar approaches targeting
humans, and designing transmissible probiotics and treatments might be feasible for human
communicable diseases. For example, certain probiotics can drive Staphylococcus aureus
decolonization, with beneficial effects on human health.29° If probiotics administered to
targeted hosts can colonize the hosts and are transmissible across hosts, this could present
opportunities as well as novel ethical dilemmas for the management of communicable
diseases.

Socially transmissible microbes and non-communicable diseases

Non-communicable diseases have canonically been considered to arise from non-
transmissible risk factors, including genetic and lifestyle features. However, non-
communicable diseases may also possess a communicable component arising from the
social transmission of microbes,?8 and this could be involved in both exacerbating and
mitigating disease risk.

Numerous conditions originally classified as non-communicable are now undergoing
evaluation for their microbial correlates and causes, including metabolic

conditions,? atherosclerosis, 2% various cancers,2%2 and brain-related syndromes and
conditions.145:203.204 Transplanting feces from patients to germ-free animals demonstrates
that donor microbes can drive the emergence of a range of clinically relevant phenotypes in
naive recipients. However, many of these studies involve transferring whole gut microbial
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communities from donor to recipient rather than the transmission of selected members of the
microbiota via social interactions. Moreover, several microbes that are socially transmissible
can also interfere with the metabolism of drugs intended for the treatment of cancer and
various other non-communicable diseases including Parkinson’s Disease, cardiovascular
disease, and depression (Table 3). Thus, the next step is to test whether microbes that are
associated with disease or which intefere with drug metabolism are socially transmissible.

Empirical support is growing for the general hypothesis that many non-communicable
diseases may possess communicable components because the microbes that shape host
susceptibilities, outcomes, and responses to treatment are socially transmissible. For
example, in a mouse model of autism, the social transmission of segmented filamentous
bacteria during pregnancy was shown to interact with maternal immune activation to induce
maternal T17 cell populations that in turn drove social behavioral deficits in offspring.14°

Socially transmitted microbes may also confer some protection against non-communicable
diseases. For instance, household size, which is expected to correlate positively with within-
group microbial transmission (level 2, Figure 1A), was negatively associated with incidence
of inflammatory bowel disease.29% A form of this epidemiological pattern was also observed
in mouse studies wherein mice living in larger groups displayed enhanced resilience to
colitis induced by dextran sulphate sodium compared to mice living in smaller groups.20°
This protection was associated with shifts in microbial composition attributable to increased
group size.205

With respect to metabolic conditions, co-housing mice harboring gut microbes from human
twins discordant for obesity led to biased transfer of lean twin-derived microbes, which
protected the mice with the obese twin’s microbes from gaining weight3 (visualized in

the “rescue” scenarios in Figure 5). However, these protective effects were diet-dependent,
manifesting only when recipient mice were fed chow or diets relatively low in fat and high
in fruits and vegetables. This suggests that social transmission of microbes and lifestyle
factors such as diet may interact to shape host health outcomes. Similarly, co-housing

also improved outcomes for immune checkpoint blockade therapy in melanoma: when
therapy-resistant mice were co-housed with therapy-responsive mice, the resistant mice
displayed improved treatment outcomes that were attributable to social acquisition of
beneficial microbes from the responsive mice.2%6 Notably, the responsive mice did not
become unresponsive to therapy,2%6 suggesting social transmission of benefits without
obvious costs in this case. Furthermore, host responses to cancer treatments are associated
with microbial composition, and microbes important to host responsiveness are socially
transmissible (Table 3). Thus, the treatment of non-communicable conditions such as cancer
may be influenced at least in part by the actions of socially transmissible microbes.

Our argument is not, of course, that conditions traditionally considered non-communicable
should be reclassified as communicable based on the possibility of disease-mediating social
transmission of microbes, or that microbes from a less healthy individual will necessarily
predispose their social contacts to developing disease. Indeed, from ecological theory and
the empirical pattern that health-associated microbiomes tend to be more diverse and
resilient,3:139.206 the effects of transmission may be more likely to occur in the direction
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of “rescue” than “takeover” (Figure 5). Of course, beneficial transmission does not always
occur,145 and such possibilities warrant further investigation.28 Whether social transmission
of non-pathogenic microbes tends to exacerbate or diminish non-communicable-disease risk
remains an open question. Likewise, the relevance to humans remains to be established,

as most studies to date have been performed in laboratory mice exhibiting coprophagic
behaviors that can be expected to facilitate high-fidelity social transmission. Overall, social
exposure to, and acquisition of, disease-associated or protective microbes could enrich or
diminish the probability of developing clinical phenotypes, respectively, with the degree

of modulation likely interacting with host-specific features such as genetics and lifestyle
(Figure 5). It is of course possible that the magnitude of the effects of socially transmissible
microbes on host health and disease may be no more than small - at this stage we must
learn more. Nonetheless, these effects are worth investigating as contributors to the social
determinants of health and possibly for their role in social evolution.

CONCLUSIONS: SOCIAL TRANSMISSION OF MICROBES AND HUMAN

HEALTH

In this Perspective, we have applied the social microbiome concept (Figure 1A; Table

1) to examine the implications of the social transmission of microbes for host health,
disease, and social evolution. Socially transmitted microbes can affect a broad range of
processes relevant to host health that can be categorized in terms of eco-evolutionary
microbiome community processes and microbial transmission-based processes (Figure 1B).
Crucially, socially transmissible commensals and mutualists may modify disease risk for
both communicable and non-communicable diseases (Figure 5). If non-communicable
disease risks and outcomes can indeed be affected by socially transmissible microbes,

we must consider the possibility that non-communicable diseases possess a communicable
component.?8 Investigating the relevance to humans and the mechanisms via which socially
transmissible microbes alter the risk of developing communicable and non-communicable
diseases may facilitate the emergence of both knowledge and therapies concerning these
diseases.

Understanding the transmission ecologies of pathogenic and non-pathogenic microbes will
be an important area of research!!: if pathogens, mutualists, and commensals exploit at
least somewhat different transmission strategies, or differentially change host behavior
(e.g., pathogens triggering social isolation and sickness behavior), then particular social
structures could exert distinct effects on the transmission of pathogenic versus mutualistic
or commensal microbes. This presents differential targets for natural selection with
implications for social evolution. Moreover, the microbes that disperse over host social
networks include not just bacterial and viral components — as we have discussed here —

but also archaeal, fungal, and various eukaryotic microbiome members. In other words, the
social microbiome comprises not only a bacterial component and a social virome, but also a
social archaeome, a social mycobiome, and a social eukaryome.

Furthermore, just as human cultural evolution has generated behaviors and practices that
restrain the spread of pathogens,207 cultural evolution may also favor the emergence
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of behavioral patterns and practices to facilitate the transmission of commensal and
mutualistic microbes between humans. All organisms and the environment are connected
to some degree via microbial transmission, which is also a basic premise of the One
Health view of the health of humans, other animals, and the environment. Elucidating
these microbial connections may thus also be useful beyond human disease contexts and
aid in the management of global health challenges. Ultimately, viewing social microbial
transmission through a broader lens — one accommodating commensals and mutualists
as well as pathogens — can help us better understand microbial signals influencing the
social determinants of health and the pleiotropic roles of transmissible microbes in social
evolution.
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Figure 1. Social-ecological forces shaping the social microbiome and the implications of socially
transmitted microbes for host health and disease

(A) Processes at different social-ecological scales influence the social microbiome. Blue
and green circles denote unique host individuals. These processes need not be mutually
exclusive.

(B) Health-relevant processes predicted to be affected by the social transmission of
microbes. These can be categorized under two broad dimensions: eco-evolutionary
microbiome community processes, and microbial transmission-based processes. The
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visualizations of these processes are simplified for convenience, and greater nuance is
provided in the text. These processes need not be mutually exclusive.
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Figure 2. A metacommunity framework for microbiome assembly and microbial transmission in
the social microbiome

The microbiome is assembled in a host through microbial intra-community interactions
(microbe-microbe interactions) occurring in a selective context mediated by host physiology
and genetics (host-microbe interactions) and ultimately defined by transmission. Microbe-
microbe interactions are visualized in the microbiome inset, where “+” indicates
cooperative interactions (e.g., cross-feeding) and “~" indicates antagonistic interactions
(e.g., competition). Social transmission can occur via independent pathways that create
distinct ecological landscapes for microbes across hosts: direct social transmission (solid
purple arrows) and indirect social transmission (dashed purple arrows). Direct social
transmission involves microbial exchanges between microbiotas enabled by social contact.
Indirect social transmission increases microbiome similarity between hosts that overlap

in geographical space, though the hosts themselves may not come into direct contact.
Maternal transmission (orange arrow) from body sites including the vagina, gut, and

skin is an important form of social transmission that drives early microbiome assembly

in infants. The infant microbiome shown here has fewer nodes and edges, representing
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that it is simpler and less diverse at this developmental stage. The infant microbiome is
strongly shaped by maternal transmission, but also receives both direct and indirect social
microbial transmission. In addition to social transmission, some members of the microbiome
can be acquired directly from the environment independent of social transmission (green
arrows), as exemplified by microbial transmission from the soil microbiome to the gut.>3
Environmentally acquired microbes are typically generalists and are not strictly adapted

to living within animal hosts. They comprise a minority of host-associated microbes in
mammals and many other animal species.
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Figure 3. Interactions between socially transmissible gut bacteria and the host immune system
The upper half of the figure visualizes colonization resistance conferred by commensal

and mutualistic gut bacteria through physical space occupation, secretion of antimicrobial
molecules (shown here by the upward movement of antimicrobials) and nutrient absorption
(shown here by the downward movement of nutrients such as fibers, proteins, and organic
acids to represent the competition that pathogens and pathobionts face from the commensals
and mutualists). Though we list bacteria as either mutualists and commensals or pathogens,
these features are matters of ecological context. For instance, Clostridioides difficile is
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a pathobiont, commensal under most circumstances but capable of pathogenesis under
circumstances of low ecological competition. Similarly, there are also both commensal and
pathogenic strains of Escherichia coli (the latter is shown here). All bacterial communities
are regulated by bacteriophages, which themselves should be socially transmissible

when the bacteria they infect are transmitted. Bacteriophages regulate bacteria via lysis
(wherein viruses replicate in bacterial cells, ultimately killing the cell and releasing new
virions) and lysogeny (wherein the viral genome integrates with the bacterial genome

and replicates alongside the bacterium). In other words, bacterial effects on the host are
tri-partite functions of bacteria-host interactions, bacteria-bacteria interactions, and bacteria-
bacteriophage interactions. Many bacteriophages are highly adapted to specific bacteria,
shown here by the matching of colors between bacteriophages and bacteria. The lower half
of the figure illustrates examples of how various socially transmissible bacterial taxa can
affect multiple immune processes, including cell types and molecules. Similarly, a given
immune process can be sensitive to the actions of various bacteria known to be socially
transmissible. For example, dendritic cells, which can extend into the lumen and sample

the local environment to trigger subsequent immunological effects,”’ can be affected by
Bacteroides fragilis, Candidatus Savagella (segmented filamentous bacteria), Clostridium
ramosum, and Enterococcus faecalis. These kinds of interactions exert downstream effects
on host health and confer resilience against enteric and extra-enteric disease. Bacteria can
influence multiple immune cells. For example, Bacteroides fragilis also inhibits iNKT cells,
which can exacerbate colitis. Bacteria also produce short-chain fatty acids (SCFAS) such

as acetate, propionate, and butyrate, which serve as energetic substrates in the gut and in
distal tissues and interact with various immune processes such as the induction of Tyeq

cells. SCFAs are important not only for colonic energy salvage, with butyrate alone meeting
60-70% of the energy demands of the colonic epithelium,’® but also for gut barrier integrity.
The host is also colonized by several eukaryotic-adapted viruses, including pegiviruses and
allenoviruses.
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Figure 4. Stability landscape of the gut microbiome in the social microbiome
Stability landscapes provide useful views of how microbiomes react to, and recover from,

ecological disturbances such as antibiotic exposure.23 Curved gray lines indicate possible
stability landscapes of an individual’s microbiome resulting from the combined effects

of within-host dynamics and inter-host microbial transmission. Deeper valleys represent
higher stability (i.e., lower instability). Undisturbed, recovered, and antibiotic-disturbed
states are shown. Orange and purple arrows represent transitions between undisturbed (pre-
disturbance) and antibiotic-disturbed states and between antibiotic-disturbed and recovered
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states, respectively. Fewer opportunities for social interaction may be hypothesized to

result in higher transition peaks between disturbed and recovered states, corresponding

to greater difficulty in moving from disturbed to recovered states. Conversely, increased
social interactions may provide a greater number of opportunities for microbes from the
social microbiome to recolonize the host, resulting in shallower valleys and transition peaks,
indicating greater ease in moving from disturbed to recovered states. When hosts are socially
isolated, disturbed microbiome states may be as stable as undisturbed states due to lack of
transmission from individuals with undisturbed microbiomes, as shown in (A). If the host
with a disturbed microbiome is socially connected to many healthy hosts, the undisturbed
state is expected to be more stable than the disturbed state, as shown in (B), given the effects
of social transmission of gut microbiota from healthy hosts.
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Page 43

Social microbial transmission between two individuals—a relatively unhealthy individual
with a high-risk microbiome (A, red) and a relatively healthy individual with a low-risk
microbiome (B; blue)—can result in a range of outcomes. The first three scenarios (i.e.,
total takeover, total rescue, and no change, indicated by the darker arrows) can be useful

to consider as hypothetical extremes, but the latter three transmission scenarios (partial

take-over,28 partial rescue, and partial takeover and rescue, indicated by the lighter arrows)
are more likely. The purple silhouettes illustrate the intermediate health status conferred
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by hybrid microbiomes resulting from social transmission. The degree to which socially
acquired microbes alter gut microbiome structure and function can then modulate the degree
of disease risk. On the right-hand side, we highlight the health outcomes associated with
each kind of microbial change within individuals A and B. Interactions between the gut
microbiome and various non-microbial factors (e.g., genetics, lifestyle, current health status)
shape the expected risk of developing disease phenotypes, and responses of individuals to
social microbial transmission (movement from A to A" and B to B”) are expected to vary
based on the microbiome profiles of the individual’s social contacts. We only show a limited
number of scenarios here. There are of course multiple other possibilities, including varying
degrees of “takeover” and “rescue” and varying degrees to which A" and B’ return to their
previous states (A and B) over time. The magnitude of these hypothesized effects must be
determined empirically.
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