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Objective: Automated surgical step recognition (SSR) using AI has been a 
catalyst in the “digitization” of surgery. However, progress has been limited to 
laparoscopy, with relatively few SSR tools in endoscopic surgery. This study 
aimed to create a SSR model for transurethral resection of bladder tumors 
(TURBT), leveraging a novel application of transfer learning to reduce video 
dataset requirements.

Materials and methods: Retrospective surgical videos of TURBT were manually 
annotated with the following steps of surgery: primary endoscopic evaluation, 
resection of bladder tumor, and surface coagulation. Manually annotated videos 
were then utilized to train a novel AI computer vision algorithm to perform 
automated video annotation of TURBT surgical video, utilizing a transfer-learning 
technique to pre-train on laparoscopic procedures. Accuracy of AI SSR was 
determined by comparison to human annotations as the reference standard.

Results: A total of 300 full-length TURBT videos (median 23.96  min; IQR 
14.13–41.31  min) were manually annotated with sequential steps of surgery. 
One hundred and seventy-nine videos served as a training dataset for algorithm 
development, 44 for internal validation, and 77 as a separate test cohort for 
evaluating algorithm accuracy. Overall accuracy of AI video analysis was 89.6%. 
Model accuracy was highest for the primary endoscopic evaluation step (98.2%) 
and lowest for the surface coagulation step (82.7%).

Conclusion: We developed a fully automated computer vision algorithm for 
high-accuracy annotation of TURBT surgical videos. This represents the first 
application of transfer-learning from laparoscopy-based computer vision 
models into surgical endoscopy, demonstrating the promise of this approach in 
adapting to new procedure types.
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1 Introduction

A fundamental goal for the application of artificial intelligence 
(AI) in surgery has been automated surgical step recognition (SSR) 
from intraoperative video footage (Jin et  al., 2018). Automated 
detection of the step of surgery is the foundation for a variety of 
potential applications that may be offered by “intelligent” context-
aware computer-assisted surgery systems, such as intraoperative 
decision-support, surgical teaching and assessment, monitoring 
surgical progress, and linking intraoperative events to post-operative 
outcomes (Mascagni et  al., 2022). Although there has been 
considerable progress in SSR, most published studies have focused on 
laparoscopic procedures because of their standardized procedural 
workflow, visual clarity, and availability of large datasets needed for 
model training (Anteby et  al., 2021). However, there is a need to 
expand SSR technology beyond laparoscopy into diverse surgical 
modalities, including surgical endoscopy.

Urothelial carcinoma of the bladder is the 6th most common 
solid-organ malignancy in the US (Saginala et al., 2020). Consequently, 
transurethral resection of bladder tumor (TURBT) is a very commonly 
performed endoscopic surgery that is integral to bladder cancer 
diagnosis and management. TURBT is an ideal prototype for the study 
of SSR due to its structured sequence of definable steps that are largely 
standardized across surgeons and across tumor types. Similar to 
modern laparoscopic procedures, endourologic procedures generate 
high-quality videos that can be annotated for analysis. Moreover, SSR 
in TURBT has immediate demonstrable value in downstream 
applications such as operating room scheduling (Guédon et al., 2021), 
post-operative reporting (Khanna et al., 2023), and billing (Flynn and 
Allen, 2004). However, the unique challenges posed by endourologic 
procedures, including the complexity of urinary tract anatomy, 
potential camera view occlusion by blood and debris, variations in 
fluid medium textures, and patient-specific factors all necessitate the 
development of specialized algorithms and techniques for SSR in the 
endoscopic setting. Overcoming these challenges may serve as a 
valuable proof-of-concept for expanding the scope of SSR technology 
beyond just laparoscopy.

A significant challenge in developing SSR models for TURBT is 
the limited availability of large video libraries. Unlike laparoscopic 
procedures, which have benefitted from large public video libraries 
such as Cholec80 (Twinanda et al., 2017), surgical video libraries for 
TURBT must be curated de novo. The manual annotation of surgical 
videos is a labor-intensive process, impeding the development of video 
datasets large enough to achieve high levels of accuracy from SSR 
models (Hashimoto et al., 2019). Moreover, many surgical procedures 
are not performed frequently enough to collect sufficient surgical 
videos to train robust AI algorithms.

Recent advancements in AI technology provide hope that 
transfer-learning may offer the ability to reduce dataset size 
requirements for model-training (Neimark et al., 2021a). Similar to a 
surgeon-in-training’s ability to transfer knowledge and skills learned 
from one surgical procedure to another, machine learning models can 
be  pre-trained on one surgical procedure and then leverage that 
pre-training to more efficiently learn a different procedure, thereby 
reducing dataset requirements. While transfer-learning models 
pre-trained on one laparoscopic procedure have proven successful in 
attaining improved SSR accuracy in classification of a different 
laparoscopic procedure (Eckhoff et al., 2023), it remains unknown 

whether pre-training on laparoscopic procedures can effectively 
reduce the dataset requirements for procedures that significantly differ 
in both temporal and visual features, such as endourologic surgeries.

In order to bridge the progress made in laparoscopic SSR to 
endoscopic surgery, this study aims to develop a novel computer 
vision algorithm for automated detection of key steps in 
TURBT. Through leveraging pre-training on several different 
laparoscopic procedure types, this study also investigates the feasibility 
of applying transfer-learning to SSR between procedures that differ 
greatly in surgical content.

2 Methods

2.1 Video datasets

A retrospective review was performed to identify patients 
undergoing TURBT for clinically significant bladder tumors at two 
tertiary referral centers from December 2021 through December 
2022. Videos were included in the dataset if they consisted of TURBT 
conducted with monopolar or bipolar electrocautery. TURBTs 
utilizing laser technology as the primary resection modality or en bloc 
laser tumor resection were excluded, as both were infrequently 
performed in our dataset.

Surgical video was recorded and stored on a secure cloud-based 
server using an artificial intelligence surgical video platform (Theator, 
Inc.). To protect patient confidentiality, an algorithm automatically 
blurred the surgical video footage when it was outside of the body 
(Zohar et al., 2020). This study was approved by the Mayo Clinic 
IRB. All surgical videos were fully de-identified, and the requirement 
to obtain informed consent was waived by the IRB. The authors did 
not have access to information that could identify study participants 
at any point in the study.

All videos in this study were preprocessed in the same manner 
(Bar et al., 2020). Initially, videos were processed using FFmpeg 3.4.6 
on Ubuntu 18.04, and all video streams were encoded with libx264, 
using 25 frames per second (FPS). The video width was scaled to 480 
and the height was determined to maintain the aspect ratio of the 
original input video. The audio signal was removed from all videos. 
Segments at the beginning and end of the video not relevant to the 
procedure were trimmed. Videos were manually annotated by medical 
image annotators who specialize specifically in surgical video 
annotation. All annotations were performed with clearly defined and 
pre-specified criteria for surgical steps. A fellowship-trained urologic 
oncologist oversaw the annotation process. Every video was annotated 
by a human annotator, and then independently validated by a second 
human annotator. In prior studies using this annotation workflow, 
we have demonstrated a mean inter-rater reliability of 95.82 (standard 
deviation 3.85) (Khanna et al., 2024). Each second of video footage 
was annotated with one and only one surgical step.

2.2 Definitions of TURBT steps

Key surgical steps of TURBT, as outlined in Table 1, were defined 
using expert consensus among fellowship-trained urologic 
oncologists. These defined steps align with those documented 
previously in the literature and commonly referenced surgical atlases 
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(Wiesner et al., 2010; Smith et al., 2016). Figure 1 highlights the key 
visuo-spatial cues and anatomic relationships associated with each 
distinct surgical step in TURBT.

2.3 Measures

In determining the accuracy of the AI model, its label 
determination was compared to the manual human labels. Accuracy 
was defined as the ratio between the number of seconds of correct 
prediction to the overall number of seconds in the full-length video.

2.4 Step recognition models

The dataset was split into separate sets for training, internal 
validation, and testing. The algorithm development process involved 
using the training dataset and periodically evaluating the model’s 
accuracy on the internal validation dataset. The model was never 
trained nor exposed to any videos from the test dataset, thus 
preserving the integrity of the test cohort in assessing model accuracy.

Our TURBT step detection AI tool follows a similar structure to 
a previously developed algorithm in our group for recognizing 
surgical steps (Bar et al., 2020). However, the current algorithm is 

unique to the TURBT cohort. Algorithm development consisted of 
two overarching elements. Firstly, a deep feature extraction model 
generated a representation for each second of the surgical video. 
Second, a temporal model learned to predict surgical steps based on 
the sequence of learned features from the extraction model. To 
enhance the performance of our algorithm and to reduce size 
requirements of our datasets, we utilized a transfer-learning technique 
from our previous work on laparoscopic cholecystectomy, 
appendectomy, and sleeve gastrectomy.

The initial stage in algorithm development entailed constructing 
a feature extraction model. Within this step, we  utilized a Video 
Transformer Network (VTN) to process the complete video as a 
sequential arrangement of images (frames), spanning from the initial 
frame to the final frame (Neimark et  al., 2021b). The Video 
Transformer Network (VTN) incorporates attention-based modules 
to effectively capture spatial and temporal information within the 
input video. The model underwent fine-tuning specifically for the 
step-recognition task, with further training carried out utilizing the 
TURBT video dataset. Once the fine-tuning process was completed, 
the resulting model was employed as a feature extractor for the 
TURBT videos. The identified features were subsequently utilized as 
input for the temporal model.

The temporal model was a Long Short-Term Memory (LSTM) 
network (Goodfellow et al., 2016). This particular variant of Recurrent 

TABLE 1 Overview of the step definitions of the intravesical portion of TURBT.

TURBT step Description Start point End point

Primary evaluation Primary endoscopic evaluation, wherein key anatomic 

landmarks including the location of the bladder trigone, 

ureteral orifices, visualization of all bladder walls and 

initial tumor evaluation and identification is performed.

This step is initiated when the endoscope 

first enters the urethra.

This step ends once resection of a 

bladder tumor is initiated.

Resection of bladder 

tumor

Resection of visible bladder tumors. Smaller papillary 

tumors can often be resected in one swipe at their base, 

whereas larger sessile tumors can require several swipes.

This step is initiated when bladder 

tumor resection starts with 

electrocautery.

This step ends when resection action 

using electrocautery is definitively 

stopped and no additional tissue is being 

resected.

Surface coagulation and 

hemostasis

The resection site is evaluated for hemostasis. 

Cauterization of the edges and the base is performed as 

needed. Bladder emptying should be performed, and the 

site inspected with flow turned off.

This step is initiated when the resection 

site is being observed for hemostasis and 

electrocautery is being used to achieve 

hemostasis.

This step ends with the exit of the 

resectoscope from the bladder, which 

marks the completion of the surgery.

FIGURE 1

Surgical video footage demonstrating key visual cues associated with each distinct step of surgery. (A) Primary evaluation including visual evaluation of 
tumor, (B) resection of bladder tumor, and (C) surface coagulation and hemostasis.
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Neural Network (RNN) possesses the capability to effectively handle 
extensive sequences by incorporating the present temporal 
representation alongside the retention of pertinent historical 
information, which significantly influences the ultimate predictions 
of the model. Considering that video data is subjected to post-surgical 
processing, we employed a bidirectional Long Short-Term Memory 
(LSTM) architecture to handle the video in dual directions, 
encompassing both start-to-end and end-to-start processing. The 
hidden dimension was configured as 128, accompanied by a Dropout 
layer with a probability of 0.5. A linear layer was then employed to 
map from the hidden LSTM space to the three TURBT steps. For 
training, we employed a cross-entropy loss function and trained the 
network for 100 epochs, utilizing an SGD optimizer with a learning 
rate of 10−2.

3 Results

A total of 300 full-length TURBT videos were included, which 
were subdivided into training (n = 179), internal validation (n = 44), 
and test (n = 77) cohorts. Each surgical video contained all three 
intravesical steps of TURBT. The mean duration of surgical videos in 
the dataset was 32.21 min with a SD of 25.68 min. Table 2 details the 
length of each individual TURBT step.

Overall accuracy for the complete AI model in determining 
TURBT step on the test dataset was 89.6%. Per-step accuracy for (1) 
primary evaluation (2), tumor resection, and (3) hemostasis was 98.2, 
90.2, and 82.7%, respectively. As demonstrated in Figure 2, errors in 
labeling were most often attributed to a misclassification between 
temporally adjacent steps.

4 Discussion

We developed an AI-powered computer vision algorithm for 
automated detection of key surgical steps during TURBT with high 
accuracy. To our knowledge, this represents the first demonstration of 
a comprehensive surgical step recognition algorithm in the field of 
endourology. Through leveraging pre-training on laparoscopic 
procedures toward SSR of endoscopic surgery, the algorithm presents 
a novel application of transfer-learning to entirely different surgical 
modalities characterized by substantial variation in visual and 
temporal content from the pre-training data. The overall accuracy of 
this model is concordant with those previously reported for 
laparoscopic procedures, thus providing evidence for the versatility 
and applicability of SSR beyond its initial application in laparoscopic 

surgery to utility in surgical endoscopy (Cheng et al., 2022; Jumah 
et al., 2022; Takeuchi et al., 2022, 2023).

This study highlights the ability of pre-trained SSR models to 
extrapolate overarching patterns across diverse procedures, thereby 
reducing the need for extensive training datasets and improving the 
efficiency of model development. During an early iteration of the 
current model developed from a preliminary cohort of only 108 full-
length TURBT videos (with a train-test-validate split of 62, 19, and 27 
respectively), the model’s overall accuracy was 86.3%, similar to the 
89.6% overall accuracy of the final model developed from the 
complete 300 video dataset. This underscores the significant potential 
of applying transfer learning techniques in training new SSR models, 
including across entirely different surgical modalities. Endourologic 
and laparoscopic procedures differ greatly in both the medium of 
operation, anatomical targets, instruments used, actions performed, 
and the order in which maneuvers are performed. Despite vast 
differences in data characteristics, the current SSR model effectively 
utilized shared temporal and visual patterns between laparoscopic and 
endourologic surgical steps to achieve high accuracy.

Application of transfer-learning may reduce the need for curation 
of large datasets, which must be laboriously annotated by surgical 
experts. Training on a wide array of surgical procedures that exhibit 
disparate data characteristics may allow for the extension of SSR to 
procedures that are less commonly performed and accordingly lack 
large-scale video data. Moreover, in the future, context-aware 
computer-assisted surgery (CA-CAS) systems are predicted to aid 
surgeons in real-time intraoperative decision-making (Bodenstedt 
et al., 2020). Thus, it is critical for CA-CAS systems to leverage prior 
training to successfully interpret individual surgeon techniques, 
unexpected surgical events, and unique patient anatomy. Not only is 
transfer-learning a promising strategy to increase the robustness of 
SSR models, but it also serves as a conceptual framework for further 
development of future CA-CAS systems.

The accuracy of this spatiotemporal model fared well in the first 
two steps of the procedure, achieving 98.2 and 90.2% accuracy, 
respectively. However, it exhibited lower accuracy on the last step of 
surface coagulation and hemostasis (82.7%). This step was a 
considerably short step with a median time of 6.3 min. Previous 
research has shown that SSR classification errors occur most 
frequently due to misclassification of temporally adjacent steps, 
particularly at the beginning or end of a step (Bar et al., 2020). Given 
the relatively short length of the surface coagulation and hemostasis 
step, the transitional boundary between this step and the preceding 
step accounts for a relatively greater proportion of the final step’s 
overall duration. Accordingly, errors in step classification attributable 
to temporal shift likely contributed to an inflated SSR inaccuracy for 

TABLE 2 Median duration of each step of the TURBT among the train-test splits of the video dataset.

Number of 
videos

Median operative 
duration 

(minutes  ±  IQR)

Median duration 
primary evaluation 

step 
(minutes  ±  IQR)

Median duration 
bladder tumor 
resection step 

(minutes  ±  IQR)

Median duration 
surface coagulation 

step 
(minutes  ±  IQR)

Full dataset 300 23.96 (14.13–41.31) 3.75 (1.8–7.22) 11.09 (5.25–24.47) 6.33 (3.85–11.03)

Train 179 24.18 (14.23–43.46) 3.9 (1.78–8.0) 11.45 (5.42–21.85) 6.82 (3.87–11.61)

Validation 44 23.1 (15.08–33.39) 3.57 (2.02–5.62) 15.08 (7.21–22.58) 5.35 (3.41–8.83)

Test 77 25.38 (14.03–48.5) 3.47 (1.76–7.28) 9.57 (4.74–27.15) 6.18 (4.04–10.1)
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this model. Moreover, this step encompasses substantial content 
variance depending on the extent of bleeding, ranging from simple 
observation of the surgical resection bed to the requirement for 
extensive hemostasis involving electrocautery. The use of 
electrocautery for hemostasis is visually similar to the use of 
electrocautery for resection of small residual tumors in the prior step, 
thus the boundary between the two steps is further obfuscated by 
similarities in visual features of tasks performed.

The conditions under which transfer-learning is appropriate and 
feasible remain to be established. Eckhoff and Ban et al. found that 
transfer-learning demonstrates limitations in recognizing steps with 
low procedural overlap and resemblance of visual features to the 
pre-training dataset (Eckhoff et al., 2023). This is likely attributable to 
a combination of low feature similarities to the pre-training dataset 
and due to relative underrepresentation of the step in the 
training dataset.

Indeed, laparoscopic procedures exhibit notable disparities in 
both spatial and temporal patterns when compared to endoscopic 
procedures. Unique characteristics define the beginning and ending 
points in laparoscopic procedures, exemplified by the clear and 

obvious distinctions between temporally adjacent steps like urethral 
transection and vesicourethral anastomosis in radical prostatectomy. 
These two steps differ in terms of the instruments employed (scissors 
versus suturing needles), camera angles, and anatomical relationships 
(Khanna et  al., 2023). In contrast, the features observed between 
resection and coagulation steps of TURBT display close similarities, 
as they involve the same tools, similar actions, and the same 
anatomical region of the bladder. This distinction highlights the 
difficulty in training SSR models for endourologic procedures, thus 
providing context to the relatively high accuracy of the current model. 
Future iterations of this model could strive to improve detection of the 
surface coagulation step by attempting to train the model to 
distinguish between resectoscope activation for tumor removal (which 
involves a dynamic surgical instrument and active resection of tissue) 
versus for tissue coagulation (which often involves a more static 
surgical instrument and no visible tissue being removed from the 
bladder wall).

The applications of SSR models are broad and numerous. Modern 
laparoscopic, endoscopic and robotic surgery produces vast amounts 
of video footage. However, much of this videographic information is 

FIGURE 2

A confusion matrix comparing the surgical step predicted by the AI algorithm (horizontal axis) to the true labels as determined by human video 
annotation (vertical axis). Numbers in dark blue represent the accuracy of AI for predicting that particular surgical step, whereas numbers in white or 
light blue represent the proportion of inaccurate predictions for each surgical step.
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lost. Analysis of surgical videos currently requires resource-intensive 
review by surgeons. Through automatic video annotation, SSR can 
greatly expedite the review process, enabling surgeons to quickly 
assess crucial aspects of a procedure. This technology has practical 
applications in facilitating surgical documentation (Khanna et al., 
2023), as an integral tool for surgical training (Garrow et al., 2021), 
and to augment operating room logistics and staffing (Garrow 
et al., 2021).

It has been shown that intraoperative performance is strongly 
linked to post-operative outcomes (Birkmeyer et al., 2013). Based on 
an intuitive understanding of this principle, surgical research has often 
operationalized surgical performance by relying on largely surrogate 
metrics, such as length of surgery, estimated blood loss, or hospital 
length of stay. While these metrics have been associated with post-
operative outcomes in numerous studies, ultimately they are still only 
surrogates for what actually transpires in the operating room. In 
comparison, video-based metrics provide more granular insight into 
intraoperative workflow, and may be  more strongly linked to 
postoperative outcomes. As highlighted by a series of recent studies 
by Kiyasseh et  al., further insight into intraoperative details can 
ultimately assist surgeons in refining their skillsets and improving 
surgical outcomes (Kiyasseh et al., 2023a,b). The current study of SSR 
in TURBT builds the foundation for future efforts to glean insights 
into endourology surgical practice and the impact of intraoperative 
events on postoperative outcomes.

Strengths of this study include the use of data from two tertiary 
medical centers. Training a SSR model with a limited dataset could 
lead to over-fitting and subsequently reduce the generalizability of the 
model. Therefore, videos from different medical institutions and 
surgeons should be included to ensure adequate heterogeneity in the 
dataset. Furthermore, this study introduces a computer-vision-based 
algorithm that is trained exclusively on visual data. While previous 
research has made extraordinarily promising progress in the 
application of deep learning techniques to interpret intraoperative 
content (Hung et al., 2019; Ma et al., 2022), many prior studies rely on 
kinematic data collected through additional hardware that tracks 
surgical tool trajectories based on angles of instrument joints, 
economy of motion, and instrument speed (Hung et al., 2018). In 
contrast, by relying solely on visual data, this SSR model offers a 
practical advantage in terms of implementation. It eliminates the need 
for significant capital investment in hardware acquisition and can 
be seamlessly applied to any surgical platform, thereby reducing the 
barrier to adoption and facilitating its integration into existing 
operating room settings. Prior studies utilizing data inputs from the 
da Vinci robotic surgical platform (Intuitive, Inc.) cannot be applied 
beyond robotic surgery into other valuable domains, such as 
laparoscopic or endoscopic surgery.

Study results should be  interpreted in the context of 
methodological limitations. The steps of TURBT were split into three 
steps during the intravesical part of TURBT, but there is potential to 
divide TURBT into a different schema of steps. Specifically, there was 
consideration to split the resection step into distinct steps for active 
tumor resection and bladder chip collection. However, it was 
determined that active tumor resection and bladder chip collection 
represented repetitive tasks within the overarching objective of 
removing all visible tumors, thus these were deemed to 
be encompassed into a single surgical step. Additionally, the training 
dataset for this model excluded laser resection and en bloc resection, 

which do not represent the standard of care and are performed 
infrequently. Nonetheless, it is important to acknowledge that the 
practices, techniques and surgical videos used in this study may have 
limited application to surgeons who utilize those techniques. However, 
video data for this study incorporated several surgeons with a variety 
of different surgical techniques, so it is anticipated that the external 
validity of this model will be adequate. Further, we demonstrated that 
utilizing transfer learning from laparoscopy to endoscopy resulted in 
a high-accuracy model for TURBT, but we did not develop a separate 
TURBT model without transfer learning to serve as a comparison. 
Future efforts should include a comparison that does not employ 
transfer learning, as this would help further our understanding of the 
incremental benefits attributable to transfer learning approaches. 
Finally, the current dataset had very few examples of rare surgical 
events, such as bladder perforation or resection of the ureteral orifices, 
which provides an opportunity for further refinement of this 
algorithm in larger datasets in the future.

5 Conclusion

In conclusion, this study presents a novel AI surgical step 
recognition tool capable of automatically classifying the steps of a 
TURBT based solely on surgical video. This technology leveraged 
transfer-learning by pre-training on laparoscopic procedures to 
reduce the size of TURBT datasets required for the current study. This 
technology has numerous potential applications in surgical education, 
operating room logistics and operations, and correlating intraoperative 
events with surgical outcomes, all of which warrant further study.
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