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Abstract 
The high-throughput genomic and proteomic scanning approaches allow investigators to measure the quantification of genome-wide 
genes (or gene products) for certain disease conditions, which plays an essential role in promoting the discovery of disease mechanisms. 
The high-throughput approaches often generate a large gene list of interest (GOIs), such as differentially expressed genes/proteins. 
However, researchers have to perform manual triage and validation to explore the most promising, biologically plausible linkages 
between the known disease genes and GOIs (disease signals) for further study. Here, to address this challenge, we proposed a network-
based strategy DDK-Linker to facilitate the exploration of disease signals hidden in omics data by linking GOIs to disease knowns genes. 
Specifically, it reconstructed gene distances in the protein–protein interaction (PPI) network through six network methods (random walk 
with restart, Deepwalk, Node2Vec, LINE, HOPE, Laplacian) to discover disease signals in omics data that have shorter distances to disease 
genes. Furthermore, benefiting from the establishment of knowledge base we established, the abundant bioinformatics annotations 
were provided for each candidate disease signal. To assist in omics data interpretation and facilitate the usage, we have developed this 
strategy into an application that users can access through a website or download the R package. We believe DDK-Linker will accelerate 
the exploring of disease genes and drug targets in a variety of omics data, such as genomics, transcriptomics and proteomics data, and 
provide clues for complex disease mechanism and pharmacological research. DDK-Linker is freely accessible at http://ddklinker.ncpsb. 
org.cn/. 
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INTRODUCTION 
Human complex diseases such as cancers are caused by multiple 
genetic and environmental factors and involve considerably com-
plex pathological processes [1]. High-throughput experimental 
approaches are allowing researchers to study biological systems 
from a global perspective, generating a large gene list of interest 
(GOIs), such as SNP sites from genome-wide association study 
(GWAS) analysis, differentially expressed mRNA from transcrip-
tome data and differentially expressed proteins from proteome 
data [2, 3]. The GOIs contain deep insights into the complex nature 
of diseases, paradoxically, the growing landscape of diverse and 
interconnected information between genes often hinders the elu-
cidation of their biologic meaning and further translation studies 
[4, 5]. Routine bioinformatics analysis often stops after statistical 
analysis (such as differential gene expression analysis) and simple 
bioinformatics annotation [such as Gene Ontology (GO) analysis] 
[6]. Researchers have to manually review the in-depth domain 

knowledge in the massive volume of databases and publications 
to find disease signals, which are the most promising, biologically 
plausible linkages between the GOIs and known disease genes [7]. 
It is usually time-consuming and often laborious to perform these 
personalized data analyses for human diseases [8]. Interpreting 
the biology of large interesting gene list (ranging from hundreds 
to thousands of genes) is still a challenging and formidable task 
[9]. 

In fact, the disease proteins (the products of disease genes) 
are not randomly dispersed within the interactome, but tend to 
interact with each other [10]. On the other hand, despite two 
proteins can be involved in the same biological pathway without 
a physical interaction, it has been noted that proteins associated 
with identical or similar diseases are more likely to share the same 
topological structure or have similar neighbors in protein inter-
action networks [11]. Protein–protein interaction (PPI) network is 
considered to represent a platform through which researchers
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have the opportunity to systematically identify disease-related 
genes based on the relationships between genes with similar 
functions [12]. 

Many network-based algorithms have been successfully used 
to discover candidate disease gene products [11, 13–17]. Among 
them, network diffusion-based and network embedding-based 
algorithms can utilize network features to discover nodes with 
strong interactional tendency or similar topological structure [18, 
19]. As a popular network diffusion method, random walk with 
restart (RWR) simulates random walks starting from seed nodes 
(such as known disease genes) [13, 20]. Networking embedding 
methods offer avenues to learn the latent features or embed-
dings for network nodes, including matrix factorization based 
(e.g. Laplacian and HOPE), random walk–based (e.g. Deepwalk 
and Node2Vec) and neural network (e.g. LINE and SDNE)–based 
strategies [21]. Matrix factorization embedding techniques such 
as Laplacian eigenmap have shown promising results for a variety 
biomedical graph analysis task [22, 23]. HOPE considers the high-
order proximity of the network to preserve the graph structure 
[24]. Deepwalk and Node2Vec are Embedding techniques using 
random walks to generate sequences of nodes and then feed the 
sequences into the Skip-gram mode to learn node representations 
[25]. As a neural network-based algorithm, LINE directly models 
node embedding vectors by approximating the first-order prox-
imity and second-order proximity of nodes, which can be seen 
as a single-layer MLP (multilayer perceptron) model [22]. These 
popular algorithms can quantify the similarity between genes 
in biological networks (such as the PPI network) and have been 
successfully utilized to discover candidate disease gene products, 
but they can’t construct the linkages to known disease genes. 
Therefore, we aim to employ these network-based algorithms to 
establish linkages between omics data and disease knowledge, 
enabling the exploration of disease signals. 

Also to alleviate the bottleneck in interpreting omics data, we 
proposed the DDK-Linker strategy to explore and annotate disease 
signals by linking GOIs from omics data with known disease genes. 
DDK-Linker is designed to analyze GOIs from multi-omics data 
(such as genome, transcriptome and proteome data). It employed 
six network-based methods to reconstruct gene distance within 
the PPI network, aiming to identify disease signals in omics data 
with shorter distances to disease genes. Moreover, with the sup-
port of our established disease knowledge base, in-depth bioin-
formatics annotations were supplied for each identified disease 
signal. We further utilized the R Shiny framework to develop an 
interactive interface that integrates six network-based algorithms 
and a high-confidence disease knowledge base for disease signals 
recommendation and annotation. The proposed strategy, together 
with an automated GOIs linkage workflow and an interactive 
interface, significantly reduces disease omics data interpretation 
time from months to mere minutes. 

RESULTS 
Overview of DDK-Linker 
We proposed the strategy DDK-Linker to satisfy the urgent 
needs of the disease-specific signals identification from high-
throughput datasets (Figure 1A). Specifically, DDK-Linker focus 
on establishing the linkage between GOIs from disease omics 
data and disease genes (Figure 1B). To realize the pipeline 
interpretation of omics high-throughput data, DDK-Linker first 
maps the GOIs and known disease genes in a specific disease to 
the PPI network (Figure 1C). Then, the six network-based methods 
(Random Walk with Restart [26], Deepwalk [27], Node2Vec 

[28], LINE [29], HOPE [24], Laplacian [23]) are employed to 
measure the distance between GOIs and disease genes, thereby 
unveiling disease signals characterized by shorter gene distances 
(Figure S1). In network diffusion, transfer probability was used to 
measure the gene distance in the network (Figure 1D), while in 
network embedding, cosine similarity was used to quantify this 
distance (Figure 1E). Importantly, DDK-Linker not only presents 
the high confidence disease signals, but also provides GO, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway and other 
biological items to interpret each disease signal, which provide 
important clues for uncovering disease mechanisms (Figure 1F). 

Evaluation of the gene distance to identify the 
disease signals based on six different network 
analysis methods 
Here, we introduce gene distance to represent the strength of 
linkages between genes. For network diffusion algorithm, transfer 
probability is employed to represent the effective connectivity 
between genes, and for network embedding algorithms, we use 
cosine similarity to represent the topological similarity between 
genes. 

To examine whether transfer probabilities and cosine similar-
ity are suitable gene distance index for discovering disease signals, 
we measured differences in gene distances generated by these 
six network methods between disease genes and non-disease 
genes. Following Nguyen et al.’s methodology, we chose genes with 
scores exceeding 0.3 in the DisGeNET [30] database as known 
disease genes [31–33]. As for the non-disease genes, we followed 
the same procedure outlined in previous literature [34, 35]. We 
randomly selected an equivalent number of genes from outside 
the DisGeNET database to the known disease genes, forming the 
negative dataset. We ultimately selected 465 diseases with more 
than 15 disease genes. 

Secondly, we computed the respective gene–disease gene dis-
tance (DDD) and disease gene–non-disease gene distance (DND) 
for each disease. Finally, the differences between DDD and DND 
for one disease were assessed through t-tests and ratio values 
[mean (DDD)/mean (DND)]. The results reveal that the gene dis-
tance (transfer probability) obtained from the RWR algorithm 
shows DDD is smaller than DND in 79.7% of diseases (with 
P-value <0.05 and ratio > 1, Figure 2A). Furthermore, gene dis-
tances computed by other five network embedding algorithms 
(Deepwalk, Node2Vec, LINE, HOPE, Laplacian) also exhibit sig-
nificant differences between DDD and DND in the majority of 
diseases (Figure 2B). Notably, the HOPE algorithm demonstrates 
excellent performance in over 95% of diseases. This indicates that 
the cosine similarity between genes obtained through network 
embedding method can represent the distance characteristics 
between disease genes. 

To access the effectiveness of gene distances calculated based 
on six network algorithms for discerning disease genes, we 
hypothesized a strong association between the probability of 
candidate genes becoming disease genes and their distances 
from known genes. Therefore, we evaluated the area under the 
curve (AUC) using leave-one-out cross-validation (LOOCV) to 
estimate the performance of six gene distances in disease gene 
discovery. The AUC serves as an indicator of the effectiveness of 
the corresponding assessment system. An ideal test with perfect 
discrimination (100% sensitivity, 100% specificity) has an AUC 
of 1.0, while a non-informative prediction holds an area of 0.5, 
suggesting that it may be achieved by sheer guess. The closer 
a test’s AUC is to 1.0, the greater its overall effectiveness. The 
results indicate that the AUC for all six algorithms exceeded 0.5

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae111#supplementary-data
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Figure 1. Illustration for the identification of disease signal from high-throughput omics experiments. (A) High-throughput experimental approaches 
such as gene expression microarrays or quantitative proteomics generate GOIs (such as DEGs/proteins). (B) The volcano plot illustrates the distribution 
of GOIs. (C) Disease signals are the most promising, biologically plausible linkages between the known disease genes and GOIs. (D) Diffusion strategy 
was developed to reconstruct the gene distance in the PPI network by transition probability. (E) Embedding strategy was established to reconstruct the 
gene distance in the PPI network by embedding vector cosine similarity. (F) The underlying diseases knowledge base. 

across all diseases ( Figure 2C). Among them, the HOPE algorithm 
shows the highest average AUC across the 1750 diseases, while 
the LINE algorithm has the lowest average AUC. Notably, for 
the five algorithms excluding LINE, most diseases show AUC 
values concentrated between 0.7 and 0.9. These strongly suggest 
that gene distance calculated using network-based algorithms 
can identify disease genes. Therefore, gene distance serves as 
a valuable metric to measure the connections between genes, 
facilitating the discovery of disease signals. 

The principle of ‘guilt-by-association’ (GBA) [36], which states 
the biological entity’s function is inferred by examining its direct 
neighbors, has been foundational for network-based inference 
algorithms, including network diffusion [37]. A straightforward 
analysis using the direct neighbors’ approach can provide the 
examination of the relationship between potential disease genes 
and known disease genes through raw network distance. In a PPI 
network, if a gene is connected to a greater number of disease 
genes, it is considered to have a stronger association with this 
disease. We also examined the effectiveness of the direct neighbor 
method in discovering disease genes. Our findings reveal that 

direct neighbors’ approach performs poorly in some diseases 
as it only considers adjacent genes, with an AUC less than 0.5 
in 598 out of 1750 diseases (Figure 2D). Furthermore, we con-
ducted pairwise t-tests to compare the performance between the 
direct neighbor algorithm and the six network-based algorithms 
across different diseases. We found significant differences (P-
value <0.01) between the direct neighbor algorithm and network-
based algorithms. This demonstrates that the six network-based 
methods have an advantage in describing gene distance and iden-
tifying disease signals compared to the direct neighbor method. 

The efficiency varies among different gene 
distance in identifying disease signals 
Considering the distinct molecular mechanisms and pathways 
involved in various disease classes, we classified all diseases into 
eight disease categories based on disease ontology. We compared 
the performance of the six gene distance in various disease types 
by calculating the average AUC for each disease type. The results 
indicate that, in metabolic diseases, the Deepwalk and HOPE algo-
rithms outperform the others. For infectious diseases, RWR and
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Figure 2. Evaluation of the gene distance for disease signals based on six different network linkage algorithms. (A) For the RWR algorithm, transfer 
probability was used to measure the distance between genes. The scatter plot depicts the distance difference between DDD and DND among diseases, 
with each point corresponding to one disease. DDD: distance between disease gene and disease gene. DND: distance between non disease gene and 
disease gene. Ratio = mean (DDD)/mean (DND). P-value was obtained by t-test. (B) For the five embedding algorithms, cosine similarity was used to 
measure the distance between genes. It reflects the distance differences between DDD and DND in various diseases, with each point representing one 
disease. (C) AUC for gene distances from six algorithms to distinguish disease gene among 1750 diseases. Histograms were used to describe the AUC 
distribution. (D) AUC for control method (guilt by association) to distinguish disease gene among 1750 diseases. 

HOPE show better performance. RWR also demonstrates excellent 
performance in cell proliferation–related diseases and neurolog-
ical diseases ( Figure 3A). Additionally, genetic diseases perform 
poorly across multiple algorithms (RWR, Deepwalk, Node2Vec 
and Laplacian), possibly due to the stochastic nature of genetic 
mutations in genetic diseases. 

To explore potential associations between the effectiveness 
of different algorithms in diseases, simple linear regression was 
employed to calculate the correlations between the AUC of each 
network algorithm. The analysis revealed that Deepwalk exhibits 
the strongest correlation with Node2Vec (correlation coefficient of 
0.71) and a relatively high correlation coefficient of 0.61 with RWR 
(Figure 3B). Additionally, the HOPE algorithm shows correlation 
coefficients exceeding 0.5 with RWR, Deepwalk and Node2Vec. 
On the other hand, Laplacian demonstrates low correlations with 
other algorithms, with the lowest correlation coefficient with RWR 
being only 0.13. This may be attributed to the embedding principle 
of the Laplacian algorithm, which differs from other methods as it 
utilizes matrix factorization for node embedding [23]. These find-
ings underscore the associations and distinctions among different 
algorithms, suggesting that, in practical analyses, algorithms with 
strong correlations can potentially be interchangeable. 

In the correlation analysis of different algorithms, we observed 
the lowest correlation between RWR and Laplacian. Hence, con-
sidering the potential complementarity of the two algorithms in 
exploring disease signals, we combined the Laplacian with RWR to 
explore disease signals and calculated the AUC for this integrated 
method. Interestingly, across various disease categories, we found 
a significant improvement in the AUC when combining the two 
methods compared to using a single algorithm (Figure 3C). This 
enhancement may be attributed to the differences in how net-
work embedding (Laplacian) and network diffusion (RWR) meth-
ods correlate nodes. The integration of these two algorithms 
improves prediction accuracy in some diseases, highlighting the 
capability of the integration to compensate for the limitations of 
individual methods. 

To integrate six network-based algorithms, we built a consen-
sus score that groups together all six independent scores. First, 
we ranked genome-wide candidate disease genes according to 
each independent score. Then, we used the average rank from 
these six independent scores to establish the consensus score. 
Leave-one-out cross-validation and the ROC curve were used to 
assess the efficacy of the combined method based on consensus 
score in identifying disease genes across 1750 diseases. The results
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Figure 3. The efficiency varied among different gene distance in identifying disease signals. (A) Difference in the disease signal detection efficiency of six 
algorithms across eight disease categories. (B) Pairwise correlation between the efficiency of different methods for exploring disease signals. r: Pearson  
correlation coefficient. (C) Combining of algorithms can improve the effectiveness of exploring disease signals for certain diseases. AUC comparison 
for various methods (RWR, Laplacian, combined RWR with Laplacian) through different type of diseases. ARMS: alveolar rhabdomyosarcoma, CML: 
chronic myeloid leukemia, EC: esophageal cancer, GBC: gallbladder cancer, BAVD: bicuspid aortic valve disease, DCM1A: dilated cardiomyopathy 1A, 
HCM1: hypertrophic cardiomyopathy 1, VD: vascular disease, ALS2: amyotrophic lateral sclerosis type 2, EIEE: early infantile epileptic encephalopathy, 
GD: generalized dystonia, SPD: secondary Parkinson disease, HCM: hypercalcemia, LD: Leigh disease, PCD: pyruvate carboxylase deficiency disease, 
gast: gastroenteritis, AS: ankylosing spondylitis, CSM: congenital structural myopathy, MFM: myofibrillar myopathy, ∗: P-value <0.05. (D) AUROC for the 
combined method based on consensus score to distinguish disease gene among 1750 diseases. Histograms were used to describe the AUROC distribution. 
(E) Number of the diseases where consensus score outperforms individual score or any single scores. CM: Combined method based on consensus score, 
RWR: random walk with restart, DW: Deepwalk, NV: Node2Vec, Lap: Laplacian methods, CM > ALL: the consensus score exceeds any single scores. 
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indicate that the consensus score generally outperforms all single 
scores, with 85% of diseases achieving an AUC value exceeding 
0.8 (Figure 3D). Furthermore, we found that for each independent 
score, more than half of the diseases performed worse than the 
consensus score in identifying disease genes (Figure 3E). Specif-
ically, in 740 diseases (42.3%), the AUC of the consensus score 
exceeded that of any single score, showing satisfactory predictive 
performance. 

Interactive application was established to mine 
disease signals from disease omics data 
To accommodate diversity of opinions and to enable researchers 
to conveniently explore disease signals in omics data, we 
developed an interactive application, DDK-Linker, which can 
be accessed without requiring login credentials and support 
mainstream web browsers, including Microsoft Edge, Chrome, 
Firefox and Safari. We also provided DDK-Linker’s corresponding 
R package for convenient local usage. 

Input and customize parameters 
Benefiting from the establish of high confidence disease 
knowledge base, DDK-Linker realizes analysis in specific disease 
(Figure 4A). Users can designate one disease by providing its name 
in disease ontology. Currently, DDK-Linker contains 1750 diseases. 
An embedded plug-in can help users select the disease name 
through approximate string matching. Users could input a disease 
name directly, and DDK-Linker can help users match the standard 
disease name. 

The next step is for users to input GOIs derived from high-
throughput omics. Users can do this by pasting the GOIs into 
the submission box according to the specified format. To support 
different types of gene lists derived from multi-omics data, DDK-
Linker accepts five types of gene identifiers: Entrez Gene Symbol 
and Entrez Gene ID for genes, RefSeq RNA ID for mRNA and 
Uniprot and Refseq protein AC for proteins. For the mapping of 
gene, mRNA and protein identifiers, we utilized the id mapping 
file (version 20240118) from the UniProt database. 

Users will then select a few parameters that will be used to 
perform linkage analysis and generate the results. First, users 
can select one or more network-based methods (DDK-Linker pro-
vided six algorithms) to discover disease signals according to 
their needs. Besides, to meet different requirements, users can 
customize a cutoff value to select genes as known disease genes 
that are used in the linkage strategies. In addition, DDK-Linker 
presents the performance (AUC) of six algorithms in various 
diseases in the drop-down box for algorithm selection. When 
users designate one disease, users can choose the corresponding 
method based on the AUC scores of different algorithms. 

Results pages 
After submitting, DDK-Linker performs the linkage analysis to 
discover disease-associated signals, presents the list of candidate 
disease–associated genes in submitted genes and illustrates their 
linkages with known disease genes (network view, right panel). 
For candidate disease–associated genes, we provided annotations 
of gene molecular functions and biological pathways. We have 
developed gene filtering functions based on GO functions and 
KEGG pathways, and users can use this function to further select 
their interested gene sets from top-ranked candidate genes. Addi-
tionally, in the candidate disease–associated genes table panel, we 
provide a score indicator. This score is calculated as the average of 
the rankings assigned by the user selection algorithm. This score 
could serve as an indication of the similarity between candidate 

disease genes and known disease genes, and the genes with higher 
rankings are more likely to be closely related to the disease and 
have higher priority for experimental verification. Considering 
that DDK-Linker aims to mine novel disease–associated genes 
from omics data, known disease genes were excluded from result 
list to avoid potential misleading. For known disease genes in sub-
mitted list, the corresponding supporting literature information is 
presented in the table below. Users can also download all analysis 
results of DDK-Linker by clicking on download buttons. 

Disease signals identified 
For each candidate disease–associated gene, a network view 
was designed to present its related disease signals (the linkage 
between candidate disease–associated genes and known disease 
genes) (Figure 4B). The central node is the candidate disease 
genes, and the surrounding nodes are the known disease genes 
detected through linkage analysis. There are two types of linkages 
representing different link methods: a solid green line represents 
the linkage from network diffusion algorithm. A brown dashed 
line represents the linkage from network embedding algorithm. If 
users want to obtain the detailed scores of the linkage methods, 
they can click the central node in the network view, which will 
lead to the page of detailed information for the candidate disease 
gene (Figure 4C). The disease signal annotation page can also be 
presented by clicking the surrounding known disease gene nodes 
(Figure 4D). To facilitate further analysis by users, we provide 
three network view files: HTML, XGMML and Cytoscape style 
xml. Users can download these files and make personalized 
modifications in Cytoscape locally. 

Detailed information to interpret disease signals 
First, users can further find the score of the selected algorithm 
to see which algorithms are involved in this disease signals 
(Figure 4D). To help users understand biological mechanism and 
generate hypotheses, we also collected abundant bioinformatic 
annotations for each disease signal, including the GO term [38], 
KEGG pathway [39], drug [40], phenotype term [41] and  PPI  
networks [42]. Generally speaking, the biological function of the 
living cell is a result of numerous interacting molecules; it cannot 
be ascribed to just a single molecule. The shared KEGG terms 
indicate that the candidate and known disease genes participate 
in the same biological function, while the shared GO terms reveal 
the biological processes, cellular components and molecular 
functions implicated in this disease. We aim to construct the 
relationship between candidate disease genes and drugs to 
find disease-related drugs through drug annotation. Serving 
as crucial bridges between medical experimental discoveries 
and clinical practices, phenotypes contribute significantly to 
translational medicine. The shared phenotype terms suggest that 
the candidate disease genes may act on this phenotype together 
with known genes. PPI networks have the potential to elucidate 
the complex relationships between candidate disease genes and 
known disease-associated genes. Users could obtain more details 
about the interaction by clicking on STRING hyperlinks in this 
detailed information page (Figure 4D). 

Local installation of DDK-Linker 
For the utilization of DDK-Linker on a local computer, the entire 
pipeline for disease signal discovery has been implemented in 
R using Shiny (http://shiny.rstudio.com) to facilitate its usage. 
Currently, there is no explicit limit to the number of simultaneous 
users. Users can install the DDK-Linker R package (π-DDK-Linker)

http://shiny.rstudio.com
http://shiny.rstudio.com
http://shiny.rstudio.com
http://shiny.rstudio.com
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Figure 4. DDK-Linker interactive interface allows users to uncover disease signals. (A) The input interface accepts the disease name designated by users 
and the related gene list of interest from a high-throughput omics dataset. The user can customize parameters, such as disease gene confidence score 
and network linkage algorithms. DDK-Linker can present power scores for each disease under different algorithms. (B) Network view for disease signals 
shows the linkages between candidate disease–associated genes and known disease–associated genes. The central node represents the candidate disease 
gene from GOIs and the surrounding nodes are the known disease genes. There are two types of linkages representing different link algorithms: the solid 
line represents the association from network diffusion strategy, and the dashed line represents the association from network embedding strategy. Users 
can click each node/edge to view detailed annotations of the corresponding linkage (C, D). (C) Bioinformatics annotations for the candidate disease– 
associated gene. (D) Detailed information for certain disease signal between candidate disease–associated gene and known disease–associated gene. 
The inset graph shows the graph to illustrate this linkage in KEGG pathway. 

along with R itself on their local computer (R is freely download-
able from http://r-project.org/ for all major operating systems). 
Once installed locally, the complete analysis workflow of π-DDK-
Linker can be executed on the local computer. 

USE CASE: DDK-LINKER UNCOVERS THE 
KEY DISEASE SIGNALS FROM PROTEOMICS 
AND GWAS DATA IN ALZHEIMER’S DISEASE 
Today, the presence of these amyloid plaques and neurofibril-
lary tangles are still essential for the pathological diagnosis of 

Alzheimer’s disease (AD) [43]. In recent years, various omics stud-
ies, including genomics, transcriptomics and proteomics, have 
revealed the mechanisms leading to neuronal death and identi-
fied biomolecular markers associated with AD [44]. Here, we used 
DDK-Linker to uncover the disease signals from plasma proteome 
and GWAS AD gene lists  (Figure 5). 

Analysis of AD proteomics dataset 
Plasma proteins are increasingly recognized as potential biomark-
ers for AD. A study systematically analyzed the plasma proteome

http://r-project.org/
http://r-project.org/
http://r-project.org/
http://r-project.org/
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Figure 5. Exploration of GWAS and proteomic data for disease signals of AD based on reconstructed gene distances. (A) Proteome (the dataset from 
‘Alzheimers Dement. 88:102’): DDK-Linker identified FLT1 and IGFBP3 as candidate genes. FLT1 and IGFBP3 interact with VEGFA and IGF1, respectively. 
Additionally, TF and INPP5D exhibit similarity associations with IGFBP3 and FLT1, respectively. These identified genes can be confirmed by the manual 
curation. Both IGFBP3 and FLT1 have been reported to be involved in the pathological process of amyloid plaques and tau phosphorylation in AD. (B) 
GWAS (the dataset from ‘Nat Genet. 53:1722’): the linkage between RIN3 (from GWAS datasets) and BIN1 as potential AD signals by DDK-Linker. In fact, 
RIN3 was validated to promote amyloid-β deposition. 

to discover novel AD blood biomarkers and established high-
performance diagnostics for AD [ 45]. Here, we use the dataset 
that includes 429 human plasma proteins derived from the 
differentially expressed genes (DEGs) analysis of patients with 
AD versus healthy controls. We used the combination linkage 
algorithm (‘RWR’ and ‘Deepwalk’, which have demonstrated the 
best performance in AD) to identify the disease signals. The 
known AD genes (such as TF, IGF1, VEGFA and INPP5D, indicated 
in green in Figure 5) sourced from the DisGeNET database 
(DisGeNET score > 0.3) were used as seed genes in algorithms. 
After submission, DDK-Linker performed the linkage analysis 
to discover disease-associated signals (307 candidate disease– 
associated genes) in submitted genes. Among the top 20 high-
confidence candidate genes, two most promising and biologically 
plausible genes were identified: FLT1 and IGFBP3 (Figure 5A). FLT1 
has exhibited disease signal with the known disease gene VEGFA 
(both RWR and Deepwalk algorithms) and INPP5D (Deepwalk 
algorithm) in DDK-Linker. Therefore, it is speculated that FLT1 
participates in similar disease processes. In fact, FLT1 was found 
to be the receptor of VEGFA, associating with amyloid plaque 
[46]. INPP5D has also been reported to be related with amyloid-β 
(Aβ) deposition in AD patients, just like FLT1 [47]. We also found 

the disease signal IGFBP3-IGF1 and IGFBP3-TF, candidate disease 
gene IGFBP3 is linked to known disease genes IGF1 and TF (both 
RWR and Deepwalk algorithms). By the bioinformatics annotation 
page, we noted all these three genes (IGFBP3, IGF1 and TF) share 
the same GO term of ‘phosphorylation’. The most common 
primary characteristics of AD is that neurofibrillary tangles are 
largely composed of hyper-phosphorylated tau [48]. Both IGF1 
and TF have been reported to be related with neurofibrillary 
tangles [49, 50]. Thus, we inferred that IGFBP3 may be related 
to tau phosphorylation. These linkages provided us crucial 
clues for further experiments. Interesting, IGFBP3 has also been 
found to affect the tau phosphorylation by binding to IGF1 [50]. 
Furthermore, DDK-Linker also identified some genes that could 
potentially become novel biomarkers for AD. The gene PTPN6 
ranked sixth in candidate AD-associated genes, and recently, 
Kiratikanon et al. pointed out that PTPN6 is a promising biomarker 
for AD [51]. 

Analysis of AD GWAS dataset 
Wightman et al. identified 38 independent risk loci by GWAS, 
and we found candidate disease–associated genes in this gene
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list [52]. DDK-Linker presents the disease signals between the 
candidate disease gene RIN3 and known disease gene BIN1 is 
also noteworthy (Figure 5B). In fact, it has been demonstrated 
that BIN1 directly interacts with RIN3 to initiate endocytosis, a 
process essential for the cleavage of β-amyloid precursor protein 
to generate Aβ, which is the critical component of senile plaques 
in AD [53]. 

Here, we analyzed two gene lists from plasma proteome and 
GWAS to explore the AD disease signals through DDK-Linker. 
Further biological annotations of the top disease signals indicate 
involvement in the formation of amyloid plaques and neurofib-
rillary tangles, providing plenty of clues for further mechanism 
study. 

CONCLUSION AND DISCUSSION 
In this study, we proposed the strategy DDK-Linker to address 
the urgent need for the disease-specific signals identification 
from multiple omics datasets, such as genomics, transcriptomics 
and proteomics. We conducted an extensive literature review 
and found six algorithms (Random Walk with Restart, Deepwalk, 
Node2Vec, LINE, HOPE, Laplacian), which have been widely used in 
disease gene prediction (see Supplementary Tables S1 and S2 for 
more details on the application of the six algorithms). Utilizing 
these six network-based algorithms, we recalculated the dis-
tances between genes within the network, determining the con-
nectivity strength between GOIs and disease genes. This enabled 
the identification of disease signals most closely correlated with 
the respective diseases. 

DDK-Linker demonstrates satisfactory performance on Dis-
GeNET dataset. To further assess its robustness and effectiveness, 
we also used another training set, DISEASE, to train and test our 
DDK-Linker system. Using the same protocol as that used for 
DisGeNET, we found that the results of DDK-Linker on DISEASE 
were consistent through leave-one-out cross-validation and ROC 
analysis. Among the 810 diseases in DISEASE, all six algorithms 
show satisfactory performance in predicting disease genes (Fig-
ure S2). 

To help users choose a suitable algorithm for their GOIs, we 
presented the predictive efficacy (AUC) of six algorithms on 1750 
diseases in the algorithm selection drop-down box of the DDK-
Linker input panel. When users designate one disease, they can 
choose the corresponding method based on the AUC scores of 
different algorithms. In addition, we also assessed the predictive 
efficacy of six algorithms in different types of diseases. We first 
grouped the 1750 diseases into eight major categories accord-
ing to the Disease Ontology and selected five major categories 
(cell proliferation diseases, mental health diseases, anatomical 
entity diseases, syndromes and metabolic diseases), each of which 
included over 50 diseases, for subsequent analysis. Then we cal-
culated the proportion of the most suitable algorithm (highest 
AUC) for each type of disease. We found that there is certain 
correlation between the algorithm and the type of disease. For 
example, RWR performs better in diseases of cellular proliferation 
and mental diseases, while HOPE algorithm performs best in 
metabolic diseases (Figure S3). All these instructions on regarding 
which diseases are more suitable for DDK-Linker will help users 
use DDK-Linker more effectively. 

In the future, we will continue to update DDK-Linker to alle-
viate the bottleneck in the interpretation of omics data. There 
are two main directions. First, we will develop new methods 
for calculating gene distance. The current software only uses 
PPI networks to calculate gene distance. We plan to apply gene 

knowledge graphs to this process, which contain more protein 
feature information beyond protein interactions, such as function 
annotations and family classification information. We expect 
that these new embedding methods based on knowledge graphs 
can provide a more accurate description of gene distance. Sec-
ond, we will expand the use of gene distance for discoveries 
beyond disease gene associations. Currently, DDK-Linker mainly 
uses gene distance to establish associations between GOIs and 
known disease genes. However, the framework of DDK-Linker can 
be expanded for the discovery of gene–drug/phenotype associa-
tions. The current version of DDK-Linker does not include known 
drug/phenotype-related genes, which could serve as seed genes 
to identify novel gene–drug/phenotype associations. We plan to 
incorporate this information into DDK-Linker. 

Key Points 
• We developed a network-based strategy DDK-Linker to 

link high-throughput omics genes (GOIs) with disease 
genes by reconstructing gene distances in a PPI network. 

• We assessed the performance for discovering disease 
signal of six network algorithms across 1750 diseases. 

• DDK-Linker is designed to efficiently discover and anno-
tate disease signals hidden in high-throughput data. 

• DDK-Linker is supposed to greatly accelerate the speed 
of specific disease omics data interpretation. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxford 
journals.org/. 
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