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Abstract

Background—In network biology researchers generate biomolecular networks with candidate 

genes or proteins experimentally-derived from high-throughput data and known biomolecular 

associations. Current bioinformatics research focuses on characterizing candidate genes/proteins, 

or nodes, with network characteristics, e.g., betweenness centrality. However, there have been 

few research reports to characterize and prioritize biomolecular associations (“edges”), which can 

represent gene regulatory events essential to biological processes.

Method—We developed Weighted In-Path Edge Ranking (WIPER), a new computational 

algorithm which can help evaluate all biomolecular interactions/associations (“edges”) in a 

network model and generate a rank order of every edge based on their in-path traversal scores 

and statistical significance test result. To validate whether WIPER worked as we designed, we 

tested the algorithm on synthetic network models.

Results—Our results showed WIPER can reliably discover both critical “well traversed in-

path edges”, which are statistically more traversed than normal edges, and “peripheral in-path 

edges”, which are less traversed than normal edges. Compared with other simple measures 

such as betweenness centrality, WIPER provides better biological interpretations. In the case 

study of analyzing postanal pig hearts gene expression, WIPER highlighted new signaling 

pathways suggestive of cardiomyocyte regeneration and proliferation. In the case study of 

Alzheimer’s disease genetic disorder association, WIPER reports SRC:APP, AR:APP, APP:FYN, 

and APP:NES edges (gene-gene associations) both statistically and biologically important from 

PubMed co-citation.

Conclusion—We believe that WIPER will become an essential software tool to help biologists 

discover and validate essential signaling/regulatory events from high-throughput biology data in 

the context of biological networks.
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Availability—The free WIPER API is described at discovery.informatics.uab.edu/wiper/

Author summary

In network analysis, the node centrality algorithms are widely used in node prioritization 

such as PageRank algorithm, HITS algorithm, K-kernel algorithm, etc. Although numeric 

successful stories were reported in discovering disease-specific markers assisted by node centrality 

algorithms, the limited topological features of edges in network analysis hinder the development 

of diagnostic and therapeutic techniques to target the interactions. We present WIPER (Weighted 

In-Path Edge Ranking) statistically and biologically significant biomolecular associations in 

biomolecular association networks derived from high-throughput biology studies. WIPER can 

also suggest the novel edges that may not have been well covered by previously conducted 

experiments.

INTRODUCTION

In network biology, characterizing biologically significant associations between different 

biomolecular entities, e.g., gene-gene associations or protein-protein interactions, has been 

an essential yet less well-researched topic than that of characterizing biological entities [1] 

such as genes or proteins. Intuitively, all understanding of biological mechanisms of action 

and gene or protein function will be improved with the characterization of a biomolecule’s 

associated partner genes/proteins [2]. There is no lack of biological problems which require 

the identification of significant biomolecular associations, including characterizing specific 

functional context of genes, proteins, or RNAs in relationship to each other [3,4], correlating 

structure of complex biomolecular systems to corresponding phenotypic functions [5,6], 

understanding how a system changes over time as network structures and dynamics change 

[7,8], identifying biological network control mechanisms [9], and developing diagnostic or 

therapeutic techniques to target biomolecules or biomolecular interactions of high interest 

[10,11]. Particularly in drug discovery, there is reported success in blocking RAS-ERK 

with DEL-22379 [12] in proliferating tumor cells, targeting AKT–BAD interactions [13], 

or blocking MDM2–p53 and/or CDK4–pRB [14] interactions to suppress tumor growth. 

However, current software tools developed towards finding network topological features 

typically focus on finding “node centrality” — suitable for ranking genes instead of 

gene-gene association relationships. There are limited choices for characterizing network 

topological features of edges, which include finding “betweenness centrality” of edges 

[15,16], calculating edge clustering coefficient [17], or aggregating edge weights from 

multiple data sources, e.g., gene ontology and gene co-expression [12,18]. Novel subunit 

knock-out transgenic techniques [19] have made it feasible to validate functional interactions 

in vitro without disturbing the interacting genes.

Most currently available software tools for edge prioritization involve direct application or 

minor extensions from classical network topology-based characterization techniques, such 

as edge betweenness centrality [15, 16], and edge clustering coefficient [17]. For these 

tools to accurately characterize biological networks, they must deal with challenges such 

as inherently noisy network data, missing edges or misconnected edges [20], e.g., while 

pragmatic computational approaches such as link prediction [21–25], can tackle network 

data noise, they do not provide insights on the relative significance of existing edges, or 
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estimate to what extent new links can be safely discovered based on existing network 

information [15–18]. Due to the lack of clear statistical model guidance, ranking biological 

edges reliably remains an open research topic today.

In this work, we report the development of WIPER (Weighted In-Path Edge Ranking), a 

new computational algorithm to help researchers prioritize both statistically and biologically 

significant biomolecular associations in biomolecular association networks derived from 

high-throughput biology studies. We developed WIPER with the following practical 

characteristics:

1. WIPER can take the input of weighted edges and rank them in a probabilistic 

network.

In contrast, a conventional “edge betweenness” measurement that simply counts the number 

of shortest paths for any given edge would not be useful in practice. This makes WIPER a 

more pragmatic tool to solve biomedical problems such as finding a therapeutic strategy by 

“targeting the right interactions in the interactome” [11].

2. WIPER is compatible with network-based “node ranking” techniques and comes 

with a statistical model for significance filtering of results.

We achieve this by performing a three-step process which includes transforming the edge 

ranking problem to a node ranking problem and evaluating the statistical significance of 

scored edges using a statistical model using a best-fit probability distribution. The built-in 

statistical model enables WIPER users to quickly focus on top-ranked edges for subsequent 

biological interpretations [15–17].

3. WIPER can predict novel edges in the network.

The newly discovered interactions may represent novel biological mechanisms subject to 

hypothesis development.

In the remainder of this article, we will describe how WIPER works (Figure 1), what 

parameters may affect WIPER performance, WIPER edge scores, and their statistical and 

biological significance. We will apply WIPER to two real-world biomedical case studies to 

show its potential applications in future network biology research.

RESULTS

The WIPER rank in simple synthetic models illustrate the edge topological importance

In the synthetic models of the triangle, square, pentagon, hexagon, linear and a small 

scale-free network, WIPER provides the edge ranks according to the traversal paths. In 

close graphs (triangle, square, pentagon and hexagon models in Figure 2), WIPER equally 

weights the edges. In open graphs (the linear model in Figure 2), WIPER put the symmetric 

center edge to the first, and decrease the ranking of the edge towards each terminal of the 

symmetric graphs. In the small scale-free network, WIPER retrieves the highest-ranked edge 

highly traversed in the paths of the fully connected edge-to-edge (network in Figure 2). The 

peripheral edge would be ranked to the lowest due to the edge are less traversed than normal 

edges.
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Synthetic network shows a moderate correlation between WIPER and edge betweenness 
centrality and WIPER outperforms the four edge indexes

In this synthetic network case study, WIPER discovers topological important edges with 

statistical significance different from the betweenness centrality (B.C.) ranked edges. The 

linear regression of the WIPER score and B.C. shows a moderate positive correlation with 

R-square equal to 0.623 (Figure 3B). The WIPER score distribution of the synthetic network 

follows the normal distribution in the scenario described in Section “Infer novel edges of 

Method”, both top-tier edges and bottom-tier edges are statistically evaluated (Figure 3C). 

We compared the WIPER and B.C. ranked edges in three ranking tiers, top-tier (top 25%), 

mid-tier (mid 50%) and bottom tiers (bottom 25%). In the WIPER top-tier edges, WIPER 

ranks the “bridge edge” g:h (marked red in Figure 2A,C) the first with p-value = 0.008. 

Although both WIPER and B.C. reports the same edges in the top-tier, the orders are 

different. WIPER ranks both b:g (2nd in WIPER) and f:g (2nd in WIPER) edges higher than 

h:i (4th in WIPER) and h:m (5th in WIPER) due to a larger number of edges (11 edges) in 

the left subnetwork than the number of edges (9 edges) in the right subnetwork. Therefore, 

the edges b:g and f:g in left subnetwork are ranked higher since more accumulatively 

traversal paths weights in the left subnetwork than the right subnetwork. B.C. ranks the 

edge h:i (2nd in B.C.) higher than the other edges simply because of the higher counts of 

shortest paths passing by. In other words, the edge contains a higher number of degrees 

of the two endpoints. In the mid-tier edges e.g., edge i:l (marked green), WIPER reports 

non-significance due to the many local interchangeable traversal paths. In other words, the 

edges traversed paths are normal as the baseline. WIPER reports the edges a:b and a:f (tied 

6th in WIPER) better than edge b:c and e:f (tied 8th in WIPER) because the edges linking 

to the hub node a tend to receive a higher traversal path weight from other nodes. In the 

bottom-tier edges e.g., edge j:k, WIPER reports high significance indicating that the impact 

of removing the peripheral edges will probably isolate a node in the network. Due to the 

ranking’s difference existing in such small synthetic network between WIPER and B.C., we 

expect that WIPER will outperform B.C. cascade in the real-world complex network models. 

Additionally, Jaccard coefficient of edges, Bridgeness index of edges and reachability index 

of edges are inferior to WIPER and B. C. Both Jaccard coefficient of edges and Bridgeness 

index of edges are not well-performed in finding the critical edges due to the local manner 

ranking. (Jaccard coefficient measures the shared neighborhoods and Bridgeness index of 

edges is built on the cliques finding). The reachability index of edges is not as sensitive as 

other indexes of edges when dealing with undirected graphs.

The parameters effect on the WIPER ranking illustrated in the synthetic network

We illustrate the parameters influence the WIPER ranking using the synthetic network in 

Figure 4. First, we intend to detect addition dimension of heterogeneity (the original input 

weight) influence on the UFC score and to what extent. We remain all the original input 

weight of the edge on 0.9, and solely independently decrease the original input weight of 

the specific edges, g:h edge (ranked the first in the original ranking list), i:l edge (ranked the 

eleventh in the original ranking list), and j:k edge (ranked the last in the original ranking list) 

in Figure 4B. Once a decrease of g:h original weight from 0.9 to 0.8 can tremendously lower 

the g:h WIPER rank from the first position to the 9th position. And the same original weight 

decrease of a WIPER ranked mid-tier edge i:l will lower the edge ranking to the bottom. 
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Hence, the original weight of the edge can influence the edge ranks other than the network 

topology. The cutoff of in-path edge-to-edge maximum hop distance in traversal paths can 

yield a different range of the UFC score in Figure 4C. When the maximum hop distance 

is set equals to half of the network longest hopping distance, the UFC score range reaches 

the highest value. The increased iteration of ant colony smooths the UFC score range until 

to a balanced state that UFC score ceases changing regardless of the increasing iteration in 

Figure 4D.

Time complexity estimatimi using the Barabási-Albert models

Using the Barabási–Albert models, we find that the increasing time of distance calculation 

is slow compared to the ranking calculation due to the parallel processing of the distance 

calculation shown in Figure 5. In the fitted model of the ranking algorithm, the adjusted 

R-square of the fitted second-degree polynomial is 0.98.

The WIPER top-ranked edges remain in the robustness test

In the re-rank of the chosen edge under the other edges’ initial weight randomization for 

100 times, we can evaluate the chosen edge’s WIPER ranking robustness. Since the chosen 

edge initial weight is equal to the mean of the other edges’ initial weights, the chosen edge 

initial weight ranking is in the middle. WIPER helps to reveal the topological importance of 

the chosen edge by boosting the chosen edge’s WIPER ranking in Figure 6. The previously 

top WIPER ranked edge g:h remains in the first place in the robustness re-rank test with the 

mean of ranking = 4.

WIPER suggests novel signaling paths potential significant for cardiomyocyte 
regeneration and proliferation

In Figure 7, we show the result by applying WIPER to an experimental dataset of 

differentially expressed genes generated from the cardiac transcriptome profiles of age-

matched (28 days old) postnatal pigs which underwent myocardial infarction at postnatal 

day 1 and 14 [26].

Using WIPER, we identified the network of syndecan-1 (SDC1) as an important regulator 

of regenerative capability. Syndecan-1 is one of the main components of the glycocalyx, 

a glycoprotein that covers the lumenal surface of endothelial cells. Levels of SDC1 serves 

as a clinical marker for heart failure, highlighting the significance of vascular integrity 

in maintaining the extra-cellular matrix microenvironment following cardiac injury [27]. 

Looking at the edges directly connecting to SDC1, we see direct connections to the genes 

ITGA8 and MMRN1, encoding for integrin subunit alpha 8 and multimerin-1, respectively. 

Both proteins play critical roles in vascular cell membranes [28]. RARRES2, encoding for 

the secreted chemokine chemerin (also known as retinoic acid responder protein 2), also 

shows a direct edge to SDC1 as well as ITGA8 and MMRN1. Taken together, WIPER is 

able to accurately form relationships and highlight the importance of membrane signaling 

in the maintenance of microenvironment integrity at the vascular-ECM interface, following 

myocardial infarction. Further refinement of WIPER and analysis of more timepoints will be 

required to identify the critical factors which allow for cardiac regeneration.
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Alzheimer disease WIPER ranked edge validation using co-citations in PMED

In Alzheimer disease genetics candidate networks, WIPER highlights the valuable novel 

PPIs partially reported in indirectly regulatory mechanisms. WIPER reports 337 regular PPIs 

and 62 novel PPIs with p-value ⩽0.05. In the PubMed co-citation enrichment analysis, 22 

out of 73 regular top-ranked regular PPIs are over-representative which is one time larger 

than the amount of 10 bottom-ranked regular PPIs. 6 out of 73 regular top-ranked novel PPIs 

are over-representative which is two times larger than the amount of bottom-ranked novel 

PPIs in Figure 8. The PubMed score distribution indicates that the difference between the 

bottom-ranked novel and the top-ranked novel PPIs is not significant with p-value = 0.88 

using the t-test. The difference between bottom-ranked regular and top-ranked regular PPIs 

is significant with p-value = 0.01. Further, four novel PPIs SRC:APP, AR:APP, APP:FYN, 

and APP: NES are reported both statistically and biologically important shown in Table 1. 

The Src-mediated phosphorylation of Mint2 regulating the APP endocytic sorting pathway 

has been validated in transgenic mouse models of AD [29]. Therefore, the SRC and APP 

association WIPER found could help to understand a novel mechanism for regulating Ap 

secretion. The report of Fyn increasing the nonpathological cleavage of amyloid precursor 

protein (APP) in Alzheimer’s disease (AD), explains the relationship between APP and FYN 

[30].

DISCUSSION

In this work, we developed the WIPER algorithm to prioritize statistically and biologically 

significant biomolecular associations in any network model, which may be developed 

downstream of a high-throughput biological experiment such as RNA-sequencing analysis 

of case vs. control conditions or whole-genome sequencing analysis of single-nucleotide 

variations (SNVs) of a particular cohort. Distinct from yet compatible with node-ranking 

algorithms, WIPER examines the global connectivity of the condition-specific networks 

constructed by connecting significant genes/proteins from the genomic or functional 

genomic analysis to assign new scores to each edge, based on conceptually how well each 

edge may be traversed “in-path” by computational simulation experiments. WIPER does 

not attempt to solve this problem with a new method incompatible with well-established 

node-ranking techniques; instead, it converts the edge-ranking problem and solves it with 

best known node-ranking techniques. The current WIPER algorithm is more sensitive than 

edge betweenness centrality in finding edges that are in critical usage paths. Our pragmatic 

statistical models work in both synthetic examples real-world case studies to extract known/

unknown biomolecular associations essential to specific biological conditions.

For future work, we expect to remove two limitations of WIPER. One is to remove the 

lack of edge directionality constraint of the current algorithm. This is relatively trivial 

to achieve, given that our technique may work with traversing both the bi-directional 

paths and uni-directional paths. Second is the automated recommendation of statistical 

models. In the Supplementary Materials, we simulated more than 17 network construction 

scenarios in real-world network biology situations. We discovered that the logUFC follows 

the first model (Figure 9A) significantly more frequently than the second model (Figure 

9B). However, more robust solutions to automatically select the best-fit statistical model 

Yue et al. Page 6

Quant Biol. Author manuscript; available in PMC 2024 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



will improve the accuracy of reported results. We expect WIPER as a major tool of mining 

important associations in biomedical network modeling.

METHODS

An overview of the WIPER algorithm

In this study, we refer to the terms “gene” and “node” interchangeably, so do we to the terms 

“interaction”, “association”, and “edge”. In addition, we use the following symbols to denote 

the mathematical entities:

• G: denotes the input graph in general. V denotes the node set, E denotes the edge 

set.

• ei,j: the original (and novel) edge between two nodes i and j. We would use single 

lower-case italic characters to denote nodes.

• G: the (original) matrix storing the node-to-node adjacency. The primary 

assumption is that all entries in G are between 0 and 1, and higher values imply 

stronger associations. We denote Gi,j the (i,j) entry (or the original edge weight) 

between two nodes i and j. We use upper-case bold characters to denote matrices, 

and the upper-case bold-italic character to denote one entry in matrices

• D: the node-to-node optimal path matrix computed using a Dijkstra [31]-like 

algorithm. Both rows and columns in D and G correspond to nodes. Similar to G, 

we denote Di,j the optimal path score between two nodes i and j.

• X: the edge-to-edge traversal path distance matrix, which is among the proposed 

novel ideas. Rows and columns in X correspond to an original (and novel) edge. 

We denote X(ei,j, ek,l) the distance between two edges ei,j and ek,l.

• W(ei,j): the ranking score of the edge between two nodes i and j, which is 

computed iteratively. Ws(ei,j) is the ranking score computed at iteration s.

In this study, the networks are all undirected graphs and G, D and X are all symmetric 

matrixes.

WIPER ranks edges based on the construction of the edge-to-edge network and accumulated 

weights from every connected edge through traversal paths. WIPER calculation is a three-

step process, computing the node-to-node optimal path, transforming the node-to-node path 

to edge-to-edge traversal network, and ranking edge based on the edge-to-edge network. 

In the edge-to-edge network, we define the maximum hop distance and the traversal path 

confident score cutoff to limit the number of edge-to-edge connection in X. In the network 

example in Figure 1, we set the maximum hop distance equal to 0 and the traversal path 

confident score cutoff equal to 0. There will be no connection between ei,j and eg,i since 

there at least one hop between the two edges. All the connections in the edge-to-edge 

network are passed the traversal path confident score cutoff, therefore no connection will be 

removed from X. We demonstrate the overall WIPER workflow by using a simple 11-node 

network example in Figure 1. First, from G, we calculate the D. Second, we use D to 

compute X. X allows ranking edges similarly to ranking nodes in the network. Third, we 
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calculate WIPER edge score, p-value and rank edges. Among many available node ranking 

algorithms using the network, we choose [32] (ant-colony). In summary, the novelty in this 

work is how to “transform” the edge-ranking problem such that we can apply a node ranking 

method to solve for (from G to X). The following sections describe each step.

Compute the node-to-node optimal paths in D

We compute the node-to-node path weight using the product of the original independent 

edge weights (e.g., the confidence of protein-protein interaction in [20]). We score the path i 
->k1 ->k2 ->· · ·->kt ->j, traveling from node i to j through nodes k1, k2, …, kt as

ρi, k1, k2, …, kt, j = Gi, k1Gkt, j ∏
τ = 1

t − 1
Gkτ, kτ + 1 .

(1)

Since all original edge weights are between 0 and 1, trivially we have the path scores for all 

paths are less than or equal to 1. This allows defining the optimal path Di,j as the maximum 

path score of every path from i to j.

Di, j = max
k1, k2, …, kt

ρi, k1, k2, …, kt, j

= max
k1, k2, …, kt

Gi, k1Gkt, j ∏
τ = 1

t − 1
Gkτ, kτ + 1 .

(2)

Equations (1–3) allows applying Dijkstra’s algorithm [33] to compute the highest weighted 

paths within the path length if the user provides. For a brief mathematical proof, if we 

construct another network G’ having the same node and edge to G, but with edge weight

G′i, j = − ln Gi, j .

(3)

Then G’ edge weights are always positive. Therefore, the negative logarithm path score in G

−ln ρi, k1, k2, …, kt, j = − ln Gi, k1Gkt, j ∏
τ = 1

t − 1
Gkτ, kτ + 1

= − ln Gi, k1 − ln Gkt, j − ∑
τ = 1

t − 1
ln Gkτ, kτ + 1

= G′i, k1G′kt, j + ∑
τ = 1

t − 1
G′kτ, kτ + 1

(4)

Becomes the path length in G’. Since the Dijkstra’s algorithm would find the pairwise 

shortest paths in G’, it would also find the optimal path in G.
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Compute the edge-to-edge distance in X

We transform the node-to-node path weight to edge-to-edge traversal path weight though 

joining the edge endpoints that maximizing the probabilities. For any pair of edges ei,j, 
ek,l, the edge-to-edge distance between them is defined by the maximum value of the four 

optimal paths bridging the edges’ endpoints, as follows

X ei, j, ek, l = Di, j × Dk, l × max Di, k × Di, l × Dj, k × Dj, l

(5)

Rank edges from X

We adopt the node ranking algorithm to the edge ranking using the constructed edge-to-edge 

network represented Here, the damping parameter σ in Equations (8 and 11) is adjustable 

for the user. In the synthetic network models, we set σ = 0.2. In the chronic myeloid 

leukemia pathway and adult pig heart case studies, we use σ = 0.i5. In addition, we continue 

updating Equation (10) until s = 200. To make multiple models comparable, WS scores are 

normalized by dividing the medium of the WS distribution (named as Usage of Fold Change 

score (UFC)).

Estimate the p-value for each edge ranked

For each edge, we estimate the ranking p-values from the distribution of UFC scores. 

Since the UFC score are driven by the accumulation of many small percentage in X. In 

WIPER, we apply the “ant-colony” ranking paradigm [32], which is primarily designed 

for discovering the optimal path. To assign the initial score W0 to each edge through the 

edge-to-edge network, we utilize the formula described in Ref. [34]:

W 0(ei, j) = e2 × ln(∑em, n ∈ Γi, j X(ei, j, em, n)) − ln(N Γ i, j)) .

(6)

In which Γi,j denotes the set of ei,j’s neighbors (non-zero entry to ei,j in X), and N(Γi,j 

denotes the total number of ei,j’s neighbors.

We treat the updated weights (ranking score) in each iteration by adding the “information 

flow”. Δ represents the “outflow” information and ΔT represents the ‘inflow’ information in 

the ant-colony paradigm

W s = W s − 1 − σΔW s − 1 + σΔTW ′s − 1,

(7)

where σ is a damping factor (0 < σ⩽ 1) representing the probability of a node continuing the 

“information flow”, similar to Random Walk. W′ s−1 is the WS connected neighborhood 

WIPER score at iteration s−1. The matrix “outflow” information Δ and the ‘inflow’ 

information ΔT are computed as
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Δ = Δ ei, j, ek, l = X ei, j, ek, l
∑em, n ∈ Γi, j X ei, j, em, n

,

(8)

ΔT = Δ ek, l, ei, j = X ek, l, ei, j
∑em′, n′ ∈ Γk, l X ek, l, em′, n′

.

(9)

In the Equation (8), Γi,j represents the set of edge ei,j’s neighbor edges. In the Equation (9), 

Γk,l represents the set of edge ek,l’s neighbor edges.

For each edge, we can rewrite Equation (7) as

W s ei, j = W s − 1 ei, j − σ W s − 1 ei, j ∑
Γ i, j

Δ ei, j, ek, l − ∑
Γ i, j

Δ ek, l, ei, j W s−1 ek, l .

(10)

changes e.g., sub-network groups, which become additive on a log scale, we take a log2-

based transformation of UFC and denoted as logUFC. We denote Mo, M and IQR as the 

mode of the logUFC histogram, the median and the interquartile range [31] of logUFC 
distribution. The bin size of the logUFC histogram is determined by 0.2×IQR. We anticipate 

two scenarios as follows:

The difference between Mo and M is within 0.5×IQR (Figure 9A). Here, we expect that 

the distribution of logUFC would have a bell-shape, similar to a normal distribution in a 

biological network (non-small cell lung cancer network using HAPPI-2 4-stars and above 

[20] described in [35]). The mean of the normal distribution is estimated using M, and the 

standard deviation σ of the normal distribution is estimated using IQR/1.34 due to the fact 

that a normal distribution can be trivially perturbed to maintain its Q1 and Q2 σ scores at 

0.67 and −0.67. Then, the p-value for edge ei,j would be computed as [36]

p(ei, j) = 1
2πσ2∫logUFC(ei, j)

∞
e− (x − M)2

2σ2 dx .

(11)

If logUFC (ei,j)>M, we calculate using right tail model. Otherwise, we calculate using the 

left tail model.

We expect that most of the case studies would be computed in the fitted normal distribution, 

as shown in the Supplementary Materials all KEGG cancer pathways’ edge ranking.

The difference between Mo and M greater than 0.5×IQR occurs when a scale-free network 

has been given (Barabási–Albert network of 1,000 nodes generated using Randomizer 
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v1.3) [37] (Figure 9B). In this case, since it is difficult to expect the distribution shape 

of logUFC(ei,j), we compute the p-value empirically as

p ei, j = logUFC > logUFC ei, j
logUFC

(12)

Here, |logUFC > logUFC(ei,j)| denotes the number of edges (including novel edges) having 

higher ranking a score than ei,j. |logUFC| denotes the size of X matrix (the total number of 

edges, including the novel ones).

Infer novel edges

The novel edges are inferred by using the node-to-node global optimal distance score in 

D-matrix and ranking of the Ws. The original novel edge candidate list consists of the edges 

for those node-to-node global optimal distance score no less than the mean of the input edge 

weights. To avoid false positives, we consider the empirical significant regular edges are the 

top 5% ranked in each tail of the distribution. We set the same criteria to extract the novel 

edge candidates which are the top 10% node-to-node global optimal distance ranked edges 

in the initial regular edge list. After merging the regular edges and novel edges into the 

X-matrix, we perform the same steps as regular edge calculation, thus generating the novel 

edge candidate list ordered by WS. Then we estimate the p-value of novel edges using the 

step described in Section “Estimate the p-value for each edge ranked of Method”.

Prepare dataset for case-studies

In this work, we illustrate the usage of WIPER in synthetic models and two real-world 

case studies. In the simple synthetic model case studies, we show the WIPER ranked 

edges from different synthetic models in Figure 2. To mimic a biological signaling 

pathway, we also created a jointed sub-network model containing a “bridge” edge g:h 
(factor-receptor in the membrane) linking two complex signaling sub-networks together. 

The two subnetworks represent the signaling pathways in extra-cellular and intracellular 

shown in Figure 3A. Generally, the edge prioritization performance between WIPER and 

four other edge indexes, edge betweenness centrality [15,16], indexes of the edges [38], 

Jaccard coefficient [39], Bridgeness index [40], and Reachability index [41] are evaluated 

based on their topological properties. The original edge weight is set to be 0.9. The network 

layers are generated by “breadth-first search algorithm” [42]. In the postnatal pig heart 

case study, we show the potential of using WIPER for discovering novel edges in solving 

a largely unknown phenomena of mammalian cardiac repair. We download the significant 

differentially-expressed genes from RNA sequencing data in [26]. These genes are results 

from comparing among the postnatal pig heart (day 28) tissues receiving cardiac injury 

at postnatal day 1, 3 and 14. We query STRING database v.10 [43], under the sus scrofa 

portion, to construct the network among these genes. This network contains 95 nodes and 

120 edges. In the Alzheimer disease case study, we apply WIPER for disordered genetic 

associations discovery using the genetic candidates downloaded from AlzGene [44]. We 

generate an AD genetic disorder’s network consisting of 680 nodes and 7,273 PPIs retrieved 
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from HAPPI-2 database [20] with the quality no less than 3-star. Then, we apply WIPER to 

generate a rank-ordered regular edges list and novel edge lists.

Evaluate time complexity

We estimate the time complexity of WIPER separated into two parts, the optional traversal-

path distance calculation, and edge ranking. In the first part, the Dijkstra’s algorithm and 

maximum likelihood are applied, and the time complexity is O((v + e) log v + v2), the v is 

the number of the vertexes in the network, the e is the number of the edges in the network. 

In the second part, the ant-colony algorithm and statistical analysis are applied. Since the 

default edge-to-edge network is fully connected, the time complexity is O(e2), the e is the set 

of edges.

To evaluate the time consumption, we use the Barabási–Albert model provided by 

Randomizer v1.3 [37]. We construct five networks (10 nodes and 16 edges, 50 nodes and 96 

edges, 100 nodes and 196 edges, 150 nodes and 296 edges, and 200 nodes and 396 edges) 

and set the parameters as “ant colony” algorithm, 200 iteration, traversal path confident 

score cutoff equal to 0, and unlimited maximum hop distance in WIPER. The running time 

test is performed by the server with GNU/Linux 4.4.0–139-generic, 8 Intel(R) Xeon(R) 

E5–2630 v4 CPUs.

Ranking robustness evaluation

To evaluate the robustness of the WIPER ranking, we perform a four-step procedure to 

generate the chosen edge’s WIPER ranking under randomization. Firstly, we choose an 

edge from the edge list and assign the edge with the initial weight of 0.7. We preserve 

chosen edge initial weight and randomize the other edges’ initial weights by using a normal 

distribution of mean = 0.7 and standard deviation = 1 for 100 times. Secondly, we run the 

WIPER algorithm to generate the WIPER ranking and extract the chosen edge’s WIPER 

ranking. Thirdly, we independently perform all the edges in the edge list and repeat the first 

and second steps. Fourthly, we generate the distribution of the extracted chosen edge WIPER 

rankings and re-rank the chosen edges based on the mean.

Validate the rank-order edges by co-citations in PMED

To demonstrate the rank-order edges with biological significance, we have applied a co-

citation enrichment analysis using the hypergeometric test. We built Equation (13) using a 

similar principle to the pathway co-membership association in [45]. Briefly, the significant 

edge PubMed score implies that the likelihood of observing articles containing both of the 

edge nodes is statistically higher than random. In a specific disease study, assuming that 

an edge consists of gene a and gene b is statistically significant, we estimate the biological 

significance using the disease, gene a, gene b as keywords in searching the PMED citations. 

In the Equation (13), we calculated the Co-citation PubMed score using the background 

citations for the disease denoted as N, the jointed citations of disease and gene a represented 

as K, the jointed citations of disease and gene b represented as n, the jointed citations of 

disease, gene a and gene b as k. In the Alzheimer disease case study, we take both regular 

and novel edges for an amount equal to 10% of the novel PPIs (73 PPIs), and perform the 

cocitation enrichment analysis.
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PubMed score = − log ∑
t = k

min(n, K)
K
t

N − K
n − t
N
n

(13)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The WIPER algorithm—an illustration of how it works.
Here, we use graph visualization to represent the content of each matrix. In the D-matrix, the 

red number representing edges whose optimal path (with the maximum length of 2) value is 

different from the original edge weight, and the edge e(i,k), with path value = 1, is considered 

the novel edge. We also highlight two edges e(i,h) and e(h,k), which are the major reasons 

for the highlights. The edge scores in red are the updated edge weights using Dijkstra-like 

algorithm.
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Figure 2. The synthetic models’ networks and the list of WIPER scores in each synthetic model.
In the triangle model (A), the square model (B), the pentagon model (C)and the hexagon 

model (D), all edges are equally weighted using the WIPER scores. In the linear model (E) 

and the network model, WIPER ranks the edges according to the contribution of the full 

connected edges through the traversal paths.
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Figure 3. A synthetic network case-study shows moderated correlation between WIPER and 
edge betweenness centrality.
Color edges are the highest-ranked ones from WIPER. (A) The network layout. (B) 

Correlation between WIPER and edge betweenness centrality. (C) Comparisons between 

WIPER and four other indexes of edges.
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Figure 4. A synthetic network case-study shows the parameter effect on the WIPER rank.
Color edges are the highest-ranked ones from WIPER. (A) The network layout. (B) The 

UFC rank changes according to the solely independently decreasing the original edge weight 

of the specific edge (g:h, i:l and j:k edges). (C) The violin plot of the UFC score distribution 

influenced by the in-path edge-to-edge maximum hop distance cutoff. (D)The UFC score 

range is influenced by the iteration of the “ant-colony” algorithm.
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Figure 5. Time complexity evaluation using the Barabási–Albert model.
The x-axis is the input network’s number of edges. The y-axis is the time consumption using 

the unit of second.
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Figure 6. The re-rank of the edge under the initial weight randomization for 100 times.
The x-axis is the assigned edge with remained initial weight as 0.7. The y-axis is the WIPER 

rank. The box plot middle line is the medium, the upper line is 75%, the bottom line is 25%. 

The bar is the standard deviation. The red spot is the mean.
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Figure 7. 
WIPER can help discover novel paths (highlighted in red) among genes differentially 

expressed among postanal pig hearts. The nodes represent the differentially expressed genes 

(DEGs) generated from the cardiac transcriptome profiles of age-matched (28 days old) 

postnatal pigs which underwent myocardial infarction at postnatal day 1 and 14. The edges 

represent the protein-protein interactions of the DEGs using STRING database with quality 

no less than 0.75.
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Figure 8. The PubMed score distribution of regular and novel significant PPIs reported by 
WIPER.
The x-axis is the categories of WIPER bottom-ranked novel edges, WIPER top-ranked novel 

edges, WIPER bottom-ranked regular edges, and the WIPER top-ranked regular edges. 

The y-axis is the PubMed score. The red dot represents the edge’s PubMed score in each 

category. The violin plot represents the distribution of the edge’s PubMed scores. The 

number across the two categories is the p-value of PubMed score t-test between the two 

categories.

Yue et al. Page 23

Quant Biol. Author manuscript; available in PMC 2024 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. An illustration of two scenarios about logUFC distribution in two typical network 
models.
(A) The non-small celi lung cancer model PPIs’ logUFC distribution tends to be a normal 

distribution given the |M−Mo|⩽0.5 × IQR. (B) The Barabási–Albert model edges’ logUFC 
distribution tends to be a non-normal distribution given the |M−Mo| > 0.5 × IQR.

Yue et al. Page 24

Quant Biol. Author manuscript; available in PMC 2024 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yue et al. Page 25

Ta
b

le
 1

Si
gn

if
ic

an
t n

ov
el

 P
PI

s 
w

ith
 c

o-
ci

ta
tio

n 
Pu

bM
ed

 s
co

re
s

E
dg

e
D

eg
re

e
W

e
U

F
C

R
an

k
p-

va
lu

e
P

ub
M

ed
 s

co
re

SR
C

:A
PP

26
2

25
2.

11
2.

96
8

1.
00

E
–0

3
3.

65

A
R

:A
PP

22
2

24
8

2.
91

11
1.

38
E

–0
3

1.
35

A
PP

:F
Y

N
22

6
22

3.
18

2.
62

37
4.

75
E

–0
3

1.
47

A
PP

:N
E

S
17

8
17

9.
01

2.
1

26
0

3.
28

E
–0

2
0.

54

PA
R

K
2:

A
R

11
0

17
6.

5
2.

07
29

1
3.

68
E

–0
2

0.
47

E
SR

1:
PS

E
N

1
13

4
16

8.
6

1.
98

40
8

5.
15

E
–0

2
1.

25

A
R

:C
D

K
5

11
9

16
6.

31
1.

95
44

6
5.

58
E

–0
2

0.
61

Quant Biol. Author manuscript; available in PMC 2024 March 22.


	Abstract
	Author summary
	INTRODUCTION
	RESULTS
	The WIPER rank in simple synthetic models illustrate the edge topological importance
	Synthetic network shows a moderate correlation between WIPER and edge betweenness centrality and WIPER outperforms the four edge indexes
	The parameters effect on the WIPER ranking illustrated in the synthetic network
	Time complexity estimatimi using the Barabási-Albert models
	The WIPER top-ranked edges remain in the robustness test
	WIPER suggests novel signaling paths potential significant for cardiomyocyte regeneration and proliferation
	Alzheimer disease WIPER ranked edge validation using co-citations in PMED

	DISCUSSION
	METHODS
	An overview of the WIPER algorithm
	Compute the node-to-node optimal paths in D
	Compute the edge-to-edge distance in X
	Rank edges from X
	Estimate the p-value for each edge ranked
	Infer novel edges
	Prepare dataset for case-studies
	Evaluate time complexity
	Ranking robustness evaluation
	Validate the rank-order edges by co-citations in PMED

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Table 1

