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Abstract

The accuracy and interpretability of artificial intelligence (AI) are crucial for the advancement

of optical coherence tomography (OCT) image detection, as it can greatly reduce the man-

ual labor required by clinicians. By prioritizing these aspects during development and appli-

cation, we can make significant progress towards streamlining the clinical workflow. In this

paper, we propose an explainable ensemble approach that utilizes transfer learning to

detect fundus lesion diseases through OCT imaging. Our study utilized a publicly available

OCT dataset consisting of normal subjects, patients with dry age-related macular degenera-

tion (AMD), and patients with diabetic macular edema (DME), each with 15 samples. The

impact of pre-trained weights on the performance of individual networks was first compared,

and then these networks were ensemble using majority soft polling. Finally, the features

learned by the networks were visualized using Grad-CAM and CAM. The use of pre-trained

ImageNet weights improved the performance from 68.17% to 92.89%. The ensemble model

consisting of the three CNN models with pre-trained parameters loaded performed best, cor-

rectly distinguishing between AMD patients, DME patients and normal subjects 100% of the

time. Visualization results showed that Grad-CAM could display the lesion area more accu-

rately. It is demonstrated that the proposed approach could have good performance of both

accuracy and interpretability in retinal OCT image detection.

Introduction

Age-related macular degeneration (AMD) and diabetic macular edema (DME) are prevalent

eye conditions that are becoming more common among elderly individuals and those with

diabetes globally. These conditions can result in progressive vision loss and, in severe cases,

even blindness. With the global aging population, increased usage of electronic devices, and

growing numbers of diabetic patients, the prevalence of DME is on the rise [1, 2]. As the lead-

ing causes of irreversible vision loss worldwide, AMD and DME require reliable and accurate

diagnostic and monitoring tools [3–6]. Optical coherence tomography (OCT) has become a

critical imaging technique for diagnosing and tracking patients with AMD and DME, offering
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a noninvasive and touch-free solution. Its application could help healthcare professionals

detect these conditions early and initiate prompt and effective treatment plans, potentially

improving patient outcomes and quality of life [7–9].

OCT images are useful for diagnosing two common retinal pathologies, AMD and DME.

In AMD, the presence of drusen, changes in the retinal pigment epithelium, and the buildup

of subretinal and intraretinal fluid are key OCT findings. DME, on the other hand, is charac-

terized mainly by hard exudates or thickening of the center of the macula. In both cases, the

affected retina appears markedly different from that of a healthy individual [10]. Traditionally,

ophthalmologists have had to manually examine each cross-section of an OCT volume, result-

ing in a significant increase in workload and limited capacity to obtain accurate diagnoses

[11–13]. As a result, the need for automated identification of retinal pathologies through the

analysis of OCT images has become increasingly apparent.

Several automatic detection technologies that use OCT images have been developed to

identify specific retinal pathologies through either segmentation or classification. Ebrahim

Nasr Esfahani et al. [14] introduced a new edge convolutional layer (ECL) that accurately

extracts retinal boundaries in various sizes and angles with fewer parameters than the con-

ventional convolutional layer. Using this layer, they proposed the ECL-guided convolu-

tional neural network (ECL-CNN) method for automatic OCT image classification,

achieving an average precision of 99.43% for a three-class classification task. Anju Thomas

et al. [15] proposed an efficient algorithm for detecting AMD from OCT images using a

multiscale and multipath convolutional neural network architecture. Their proposed CNN

includes multiscale and multipath Convolutional Layers (CL), and they tested the combina-

tion of three datasets, achieving an accuracy of 0.9902. Maidina Nabijiang et al. [16] pro-

posed a novel attention mechanism called the block attention mechanism, which actively

explores the role of attention mechanisms in recognizing retinopathy features. The experi-

mental results showed that the proposed framework outperformed existing attention-based

baselines on two public retina datasets, OCT2017 and SD-OCT, achieving accuracy rates of

99.64% and 96.54%, respectively. However, these deep learning methods either required a

large amount of training data and weeks to achieve a classification accuracy when training

the CNN from scratch using raw images, or resulted in poor performance of classification

when using the feature-based transfer learning method without further optimization and

additional fine-tuning.

To overcome these limitations, machine learning techniques can be utilized to learn repre-

sentations through pre-training and have been employed for automatic classification of medi-

cal images [17–20]. In a study by Feng Li et al. [21], a deep transfer learning method was

employed to fine-tune the ResNet network pre-trained on the ImageNet dataset. The perfor-

mance of the approach was evaluated on a validation dataset, and metrics such as prediction

receiver-operating characteristic (ROC), sensitivity, accuracy, and specificity were computed.

The experimental results demonstrated the superior performance of the proposed approach in

detecting retinal OCT images, achieving a prediction sensitivity 97.8%, accuracy 98.6%, speci-

ficity 99.4%, and introducing an area under the ROC curve of 100%. Similarly, KARRI et al.

[22] fine-tuned a pre-trained convolutional CNN, GoogLeNet, to improve its prediction capa-

bility and identify salient responses during prediction to understand learned filter characteris-

tics. The fine-tuned CNN effectively identified pathologies compared to classical learning.

Another proposed method by SamanSotoudeh-Paima et al. [23] introduced a multi-scale

CNN based on the feature pyramid network (FPN) structure. Pre-trained ImageNet weights

were used to enhance the performance of the model from 87.2% ± 2.5% to 92.0% ± 1.6%.

Although the classification methods discussed above achieved promising results, their general-

ization capability to other fields is limited.
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The aforementioned recognition methods all utilize a single deep learning framework,

which offers greater flexibility due to its non-linear approach [24–26]. However, this flexibility

can also result in higher variance due to the randomized training algorithms used, which can

lead to different prediction results and make it challenging to develop a final model for predic-

tion. To address this issue, ensemble learning can be used, which involves training multiple

models and combining their predictions to reduce variance and improve overall accuracy [27–

29]. In fact, ensemble learning can often produce better predictions than any single model

[30]. For instance, Ashok et al. [31] proposed two computer-aided diagnosis (CAD) methods

that utilize ensemble deep learning models based on Inception-V3 and ResNet to classify OCT

images into four categories: normal, choroidal neovascularization (CNV), vitreous warts, and

DME. Similarly, Mousa Moradi et al. [32] demonstrated that stack-based ensemble deep learn-

ing can enhance the detection of both non-advanced and advanced AMD by comparing the

classification results of the base model and the ensemble model. Ai et al. [33] introduced a

novel global attention block (GAB) that enhances classification performance when integrated

with any CNN, resulting in a notable improvement of 3.7% accuracy compared with the Effi-

cientNetV2B3 model. Huang et al. [34] proposed FN-OCT, a fusion network-based algorithm

for retinal OCT classification that fuses predictions from InceptionV3, Inception-ResNet, and

Xception classifiers with CBAM, employing three fusion strategies. On the dataset from

UCSD, FN-OCT achieved 98.7% accuracy and 99.1% AUC, surpassing InceptionV3 by 5.3%.

Akinniyi et al. [35] proposed a multi-stage classification network using OCT images for retinal

image classification. Their architecture utilizes a pyramidal feature ensemble built on Dense-

Net for extracting multi-scale features. Evaluation on two datasets demonstrates advantages,

achieving high accuracies for binary, three-class, and four-class classification. Kayadibi et al.

[36] proposed a hybrid approach for retinal disease identification. It uses a fully dense fusion

neural network (FD-CNN) and dual preprocessing to reduce speckle noise, extract features,

and generate heat maps for diagnosis confidence.

In this paper, our most prominent contribution is the development of an explainable trans-

fer ensemble model to effectively identify age-related fundus macular degeneration, which is

an ensemble architecture based on migration learning. The proposed ensemble architecture

helps the model to reduce the variance in predictions compared to a single independent

model. We conducted various experiments to optimize the model and evaluate its perfor-

mance using standard evaluation metrics. We investigated the effect of pre-training on the net-

work by comparing experiments on the original and weighted networks. We also conducted

experiments to study the performance of the model with different combinations of sub-net-

works. Finally, this paper illustrates the learning content of the model through Class activation

mapping (CAM) as well as gradient—weighted Class Activation Mapping (Grad-CAM) visual-

ization. The following section provides detailed description of the proposed method. Section 3

discusses various experiments performed to evaluate the proposed method. Section 4 discusses

the paper. Finally, section 5 concludes our work.

Materials and methods

In this section, we propose an explainable deep ensemble learning model based on migration

learning, which has three basic models and a prediction block as shown in Fig 1. The details

are described in the following subsections.

OCT image data

In this study, we designed and evaluated the proposed algorithm using a publicly available

dataset [37]. The dataset consisted of normal, dry AMD, and DME categories, each of which
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included 15 subjects with multiple images per subject. The data list is shown in the Table 1,

and Fig 2 displays example from each class.

To facilitate downstream work, we pre-process the images. Its general operations include

image noise removal, image quality improvement, image resizing, data enhancement, histo-

gram equalization, contrast processing etc. However, in order to avoid overfitting and improve

the generalization ability of the classifier, we exclude operations such as image denoising and

equalization. In this paper, the image preprocessing process involves data enhancement

through horizontal and vertical flip as well as rotation within a range of -15˚ to 15˚. Then the

image is normalized. Finally, the image is normalized to a uniform size of 224*224 pixels.

Pre-trained CNN models

In this section, we will provide details on the CNN models utilized in this study and the corre-

sponding training approach. To select the most appropriate architecture, we assessed various

convolutional CNN models, including Alexnet, Efficientnet_v2, and Resnet34. Alexnet [38–

40] consists of a total of eight layers, which comprise of five convolutional layers and three

fully connected layers. It deploys rectified linear units (ReLU) in lieu of tanh functions and

overlapping pooling to prevent overfitting during training. ResNet-34 is a well-known model

within the deep residual learning framework (ResNet) [41], representing a relatively shallow

network. It is primarily composed of 16 basic units, one product layer, and one fully connected

layer, totaling 34 layers. Efficientnet_v2 [34] is a family of image classification models that pro-

vide improved parameter efficiency and faster training speeds compared to previous models.

Efficientnet_v2 leverages Neural Architecture Search (NAS) to optimize the model size and

Fig 1. Organizational structure of the proposed explainable ensemble deep learning method for OCT image

detection.

https://doi.org/10.1371/journal.pone.0296175.g001

Table 1. Data list.

AMD DME Normal

people number 15 15 15

picture number 723 1101 1407

https://doi.org/10.1371/journal.pone.0296175.t001
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training speed, scaling to deliver swift training and inference. Table 2 summarizes the number

of parameters for each of these three CNN models.

To explore the impact of migration learning on the prediction of fundus lesion types based

on CNN networks, we compared the prediction performance of pre-trained models and re-

trained models of the three frameworks mentioned above. On the one hand, we trained the

three frameworks from scratch. To reduce the stress of training from scratch, we loaded the

parameters of the pre-trained model trained from the ImageNet [42] database.

The ensemble models

In this subsection, the performance of the ensemble model for predicting fundus lesions from

OCT images is observed by 5-fold cross-validation. An ensemble model is an algorithm that

combines the prediction results of two or more CNN models. The model proposed in this

paper consists of a basic module and a prediction module. The basic module consists of three

mutually independent CNN networks, namely Alexnet, Efficient_V2, and Resnet34. Each net-

work is loaded with pre-trained weights, all use the same training set data and test set data, and

all have hyperparameters of 100 epochs, 32 batch sizes, and 224*224 input channel sizes. The

prediction results of the three networks (see Eq 1) are fed into the prediction module as the

output of the basic model, which is mathematically represented as following:

Oi
mj
¼ ðpi

1mj
; pi

2mj
; � � � ; pikmj

Þ ð1Þ

Fig 2. Examples of OCT images from the normal (column 1), AMD (column 2), and DME (column 3) datasets.

https://doi.org/10.1371/journal.pone.0296175.g002

Table 2. Parameters of the studied CNN models.

Model Parameters (Millions) Input image size

Alexnet 61.1 3 x 224 x 224

Efficientnet_v2 20.2 3 x 224 x 224

Resnet34 21.3 3 x 224 x 224

https://doi.org/10.1371/journal.pone.0296175.t002
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Where the letter i stands for the ith sample. Model mj predicts the probability that the sam-

ple belongs to category k, denoted as pi
kmj
; j 2 f1; � � � ;Ng.

The prediction module uses a soft voting scheme to predict the class of the samples, namely

calculating the average of the inputs as the final result, as shown in Eq 2.

Oi
Ensemble ¼

PN
j¼1

pi
1mj

N
;

PN
j¼1

pi
2mj

N
; � � �

PN
j¼1

pi
kmj

N

" #

ð2Þ

Where Oi
Ensemble denotes the probability that the sample belongs to each category. Oi

Ensemble

passes through softmax layer, and has the following equation:

pi
j;Ensemble ¼

Oi
j;Ensemble

P3

j¼1
Oi

j;Ensemble

ð3Þ

The catergorical loss function is used to calculate the loss between the ground truth and the

predicted label. This cross entropy loss function is depicted as follows:

Loss ¼ �
1

Ndata

XNdata

i¼1

X3

c¼1
ðyTi;clogðp

i
c;EnsembleÞÞ ð4Þ

To increase the interpretability and intuitiveness of CNN network predictions, two popular

visualization methods are used. One such technique is the CAM [43], which displays the con-

tribution distribution of model output through a heat map. The heat map uses color to repre-

sent the contribution, where red represents a large contribution and blue represents a small

contribution. However, CAM relies on a global average ensemble layer [44], which is a draw-

back. Another technique called Grad-CAM [45] overcomes this limitation by not requiring

changes to the existing model structure, making it applicable to any CNN-based architecture.

We use both methods to visualize feature maps, with Grad-CAM helping to understand what

the model is learning. Unlike CAM, Grad-CAM is a class-specific localization technique that

uses gradient information from the last convolutional layer of the CNN to understand the

interest decisions of each neuron. The Grad-CAM visualization can be mathematically

described as follows:

L ¼ ReLUð
X

k
a
cm
k Ak

mÞ ð5Þ

a
cm
k ¼

1

z

X

i

X

j

@ycm

@Ak
m;ij

ð6Þ

The weight a
cm
k represents a partial linearization of the deep network downstream from Ak

m,

and capture the importance of featrue map k from cm target class of model m.

Experimental settings

The K-fold cross validation is used to give a more accurate measurement for model perfor-

mance. The entire data set available in this assessment methodology is divided into K-sub

parts during the training itself (K = 1,2,3,. . .). Each sub-section will then be viewed as a valida-

tion set for each iteration. The K value used in this work is 5. The performance of the experi-

ments in this study was evaluated by accuracy, precision, recall, and F1 score [46]. Their
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mathematical equations are given as following:

Accuracy ¼
TPþ TNþ FPþ FN

TPþ TN
� 100 ð7Þ

Precision ¼
TP

TPþ FP
� 100 ð8Þ

Recall ¼
TP

TPþ FN
� 100 ð9Þ

F1 score ¼
TPþ TNþ FPþ FN

TPþ TN
� 100 ð10Þ

where True positive (TP) and true negative (TN) indicate accurately classified records, while

false positive (FP) and false negative (FN) indicates information that has been wrongly classi-

fied. All simulations are carried out on a Nvidia 3060 GPU with 12 GB memory.

Results

In this section, we explain the set of experiments conducted to evaluate our method and also

validated its overall robustness and adaptability.

The pre-training improves the baseline

To more comprehensively compare the impact of pre-training on model performance, we

used three different CNN networks, Alexnet, Efficientnet_v2, and Resnet34. Figs 3–5 illustrate

the performance comparison of three CNN networks between with and without pretrain in

each class. One can see that the performance of all classes is significantly improved after load-

ing pre-training parameters. In contrast, DME class has the best performance among them.

The overall performance of all three networks is calculated and demonstrated in Tables 3 and

4. It is observed that the performance of all three networks was improved after loading pre-

training parameters. Among them, the Resnet34 network loaded with pre-training has the

strongest recognition ability, with an average AUC of 99.6%. The Efficientnet_v2 network has

the most obvious improvement, with an AUC increase of 9.22% and a verification rate increase

from 74.51% to 95.37%. After loading pre-training, the standard deviation (SD) of Alexnet,

Efficientnet_v2, and Resnet34 models decreased by 3.45%, 2.97%, and 2.1%, respectively. Fig 6

makes the accuracy comparison of three CNN models. It also demonstrates the Resnet34 net-

work loaded with pre-training has the strongest recognition ability. This suggests that pre-

training has improved the robustness of these models.

Analysis of the effectiveness of ensemble models based on pre-training

methods

To evaluate the predictive performance of the ensemble model more completely, we compared

it with the individual networks both overall and in a single category. Table 5 summarizes the

performance of the three CNN models alone and the ensemble model. We observed that the

ensemble model obtained the best classification performance with precision: 97.9±1.89, recall:

97.89±1.89. 97.89±1.89, F1_score: 97.88±1.9, AUC: 99.82±0.21. The ensemble model com-

pared Alexnet, Efficientnet_v2 and Resnet34, and the F1 score has a significant improvement

of 2.38, 2.55 and 1.17. Fig 7 shows the accuracy of the three CNNs models and the ensemble

model. We observe that the ensemble model not only improves the accuracy, but also further
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improves the robustness of the model. Comparing Alexnet, Efficientnet_v2, and Resnet34, it

improves the classification accuracy by 2.38%, 2.52%, and 1.15%, and reduces the standard

deviation by 0.47%, 0.91%, and 0.15%. Table 6 shows the performance of the three CNN mod-

els and the ensemble model in the three categories, AMD, DME and normal. We can see that

the ensemble model improves the classification performance of each category. Especially for

the normal category, the F1 score of the ensemble model is 98.57%, which is the maximum

among all experiments. The ensemble model demonstrated the greatest improvement in rec-

ognizing DME, achieving an increase in F1 score of 3.55%, 3.69%, and 1.86% compared to

Alexnet, Efficientnet_v2, and Resnet34, respectively.

Fig 3. Performance comparison of three CNN networks between with and without pretrain in AMD class.

https://doi.org/10.1371/journal.pone.0296175.g003
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In addition to comparing with existing Alexnet, Efficientnet_v2, and Resnet34 CNN mod-

els, we further compared it with other existing methods. In [47], Wang et al. used N-Gram-

Based Model for OCT classification, and the optimal accuracy obtained was 93.3%, and the

AUC was 99.85%. In [48], the authors applied the Surrogate-Assisted CNN model for OCT

classification, and obtained an accuracy of 95.09% and an AUC value of 98.56%. The optimal

accuracy of the algorithm recommended in this article is greater than 98%, and the AUC is

greater than 98.8%. It is significantly better than the above two models. This fully demonstrates

the effectiveness of the proposed ensemble learning method.

Model visualization

To increase the interpretability of the results even more, we visualized them using CAM and

Grad-CAM, examples of which are shown in Fig 8. Where (a) to (c) are AMD, DME, and Nor-

amal, the first column is the original image, the second column is the heat map of CAM, and

the third column is the heat map of Grad-CAM. The highlighted areas in the heat map are

shown in red and the weak areas are shown in blue. We observe that CAM is more blurred,

while Grad-CAM shows finer information and more accurate details about the location and

boundaries of the target lesion.

Grad-CAM generates heatmap-like results, highlighting the image areas where the model

activates a specific category, offering insights into spatial locations. However, Grad-CAM

Fig 4. Performance comparison of three CNN networks between with and without pretrain in Normal class.

https://doi.org/10.1371/journal.pone.0296175.g004
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results can sometimes appear coarse, complicating the identification of precise features guid-

ing the model’s decisions. In contrast, LIME [49] specializes in interpreting individual predic-

tions, offering explanations that pinpoint pixel regions influencing each prediction. The two

approaches complement each other: LIME delivers detailed, granular explanations, while

Grad-CAM provides intuitive spatial information. Together, they may create a more compre-

hensive understanding of the model’s decision-making process.

Discussion

This paper describes a new method for identifying macular lesion types based on OCT images.

The method successfully identifies cases of AMD, DME and Normal. The proposed method

does not rely on segmentation of the internal retinal layers, but utilizes an easy-to-implement

ensemble classification method based on a pre-training approach.

Fig 5. Performance comparison of three CNN networks between with and without pretrain in DME class.

https://doi.org/10.1371/journal.pone.0296175.g005

Table 3. Performance of three CNN networks without pretrain (Mean±SD).

Model Precision Recall F1_score AUC

Alexnet 79.17±8.11 78.69±7.83 77.98±8.44 92.02±3.89

Efficientnet_v2 74.80±8.64 74.51±8.09 72.80±9.11 89.87±3.66

Resnet34 89.35±5.63 88.80±5.75 88.75±5.78 97.35±2.49

https://doi.org/10.1371/journal.pone.0296175.t003

PLOS ONE Explainable ensemble learning method for OCT detection with transfer learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0296175 March 22, 2024 10 / 17

https://doi.org/10.1371/journal.pone.0296175.g005
https://doi.org/10.1371/journal.pone.0296175.t003
https://doi.org/10.1371/journal.pone.0296175


It is noted that the model is robust to the input and that exactly the same algorithm parame-

ters are used in all experiments. As explained in Section 2.1, we did not perform image

improvement operations such as denoising, and also cropped all input images to a fixed image

size. However, our algorithm still achieves perfect sensitivity and high specificity

In Section 2.2, to create the ensemble-based architecture, we used a basic module consisting

of three CNN models and a prediction module. Experimental results on the same dataset show

that the ensemble network improves the classification accuracy compared to a standalone

Table 4. Performance of three CNN networks with pretrain (Mean±SD).

Model Precision Recall F1_score AUC

Alexnet 95.58±2.33 95.51±2.36 95.5±2.35 99.48±0.44

Efficientnet_v2 95.53±2.67 95.37±2.8 95.33±2.84 99.09±0.69

Resnet34 96.84±1.96 96.74±2.04 96.71±2.08 99.6±0.39

https://doi.org/10.1371/journal.pone.0296175.t004

Fig 6. Accuracy comparison of three CNN models between with and without pretrain. (A) Mean value. (B)

Standard deviance value.

https://doi.org/10.1371/journal.pone.0296175.g006
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single CNN model. In addition, the method avoids the use of a large number of example

images and more convergence by loading network parameters pre-trained on the ImageNet

dataset, and achieves comparable performance.

The visualization of Grad-CAM also shows the ability of the model to learn different fundus

lesion types. Due to the ensemble approach of the proposed model, the training and testing

time is longer compared to a stand-alone single model. In addition, the memory requirements

for training the model are high. This is a drawback of the model.

Table 5. Performance of three CNN models and ensemble model with pretraining (Mean±SD).

Model Precision Recall F1_score AUC

Alexnet [38] 95.58±2.33 95.51±2.36 95.5±2.35 99.48±0.44

Efficientnet_v2 [34] 95.53±2.67 95.37±2.8 95.33±2.84 99.09±0.69

Resnet34 [41] 96.84±1.96 96.74±2.04 96.71±2.08 99.6±0.39

Ensemble 97.9±1.89 97.89±1.89 97.88±1.9 99.82±0.21

https://doi.org/10.1371/journal.pone.0296175.t005

Fig 7. Accuracy performance of three CNNs models and ensemble model. (A) Mean value. (B) Standard deviance

value.

https://doi.org/10.1371/journal.pone.0296175.g007
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Table 6. Performance of three CNNs models and ensemble model with pretraining to each class (Mean±SD).

Model Precision Recall F1_score AUC

(a) AMD class

Alexnet 96.8±3.31 95.66±1.42 96.19±1.47 99.81±0.13

Efficientnet_v2 95.75±4.81 94.35±6.55 94.82±3.05 98.96±1.41

Resnet34 96.94±4.06 98.26±1.62 97.57±2.49 99.94±0.09

Ensemble 98.32±2.49 97.87±1.34 98.07±1.19 99.97±0.04

(b) DME class

Alexnet 94.65±3.98 91.97±2.48 93.27±2.93 98.96±0.85

Efficientnet_v2 94.56±4.89 92±5.73 93.13±3.84 98.81±0.86

Resnet34 98.25±1.61 91.95±4.23 94.96±2.74 99.43±0.45

Ensemble 97.48±2.05 96.19±3.2 96.82±2.56 99.64±0.38

(c) Normal class

Alexnet 95.69±2.55 98.01±3.71 96.79±2.35 99.63±0.5

Efficientnet_v2 95.91±2.97 98.69±1.53 97.27±2.07 99.57±0.48

Resnet34 95.57±2.54 99.66±0.49 97.56±1.45 99.76±0.18

Ensemble 97.97±1.81 99.18±1.66 98.57±1.68 99.85±0.19

https://doi.org/10.1371/journal.pone.0296175.t006

Fig 8. Performance comparison between CAM and Grad-CAM. (A) AMD OCT image. (B) DME OCT image. (C)

Normal OCT image.

https://doi.org/10.1371/journal.pone.0296175.g008
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Our proposed approach exhibits promising results in the detection of retinal OCT images.

However, it is crucial to acknowledge certain limitations. In this study, our primary focus was

on detecting fundus diseases, specifically dry AMD and DME. Nonetheless, it is essential to

consider the various other retinal diseases that may emerge within a clinical setting. The per-

formance of the model and its applicability to other diseases still remain uncertain.

In our future work, we intend to enhance the dataset in order to improve generalization

and encompass a broader spectrum of retinal diseases. Additionally, our aim is to perform

practical validation in a clinical setting by seamlessly integrating artificial intelligence models

into existing clinical workflows and effectively utilizing them. This will facilitate the incorpo-

ration of deep learning models into routine clinical practice.

In addition, in exploring the future trajectory for ensemble CNN models, it is evident that

their potential extends across various domains and problem landscapes. One promising ave-

nue for advancement lies in tailoring ensemble architectures to specific problem rather than

pursuing a one-size-fits-all domains approach. This necessitates a shift towards domain-cen-

tric modifications wherein ensemble structures are customized to capture nuanced features

inherent to the problem at hand. Moreover, challenges persist in enhancing the diversity and

robustness of ensemble constituents while ensuring computational efficiency. To address these

challenges, future Endeavors could focus on designing novel strategies to enhance diversity

among individual models within ensembles and optimize their integration for improved pre-

dictive performance.

Conclusions

In this paper, a new method is developed to accurately detect retinal diseases using deep

migration learning based on an integrated network. The proposed method outperforms the

results obtained using a single network in diagnosing retinal OCT images. In addition, the pro-

posed method is fully automated. It can assist ophthalmologists in making diagnostic deci-

sions. Future work in this study is to translate the proposed method into software that can be

used by specialists in medical centers as a screening tool and to provide second opinions.

Finally, we expect that the proposed approach could be potentially applied to medical image

classifications, such as chest X-rays and MRIs, to assist clinicians in making diagnostic

decisions.
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