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C A N C E R

SF3B1 mutations provide genetic vulnerability to 
copper ionophores in human acute myeloid leukemia
Céline Moison1*, Deanne Gracias1, Julie Schmitt1, Simon Girard1, Jean-François Spinella1,  
Simon Fortier1, Isabel Boivin1, Rodrigo Mendoza-Sanchez1, Bounkham Thavonekham1,  
Tara MacRae1, Nadine Mayotte1, Eric Bonneil1, Mark Wittman2, James Carmichael2, Réjean Ruel1, 
Pierre Thibault1,3, Josée Hébert1,4,5, Anne Marinier1,3*, Guy Sauvageau1,4,5*

In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 com-
pounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through 
structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule 
called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based 
noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that 
iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the 
mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in 
SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression par-
tially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link 
ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose 
SF3B1 mutations as a biomarker for future copper ionophore–based therapies.

INTRODUCTION
Copper is an essential transition metal for all living organisms (1). 
It acts as a cofactor in multiple enzymatic reactions due to its redox 
properties which enhance catalytic functions (2). Dysregulation of 
intracellular copper concentration is highly detrimental, as exemplified 
by Wilson’s and Menke’s diseases, two life-threatening genetic disorders 
in which mutations in copper transporter cause intracellular copper 
accumulation or deprivation, respectively. In cancer, increased copper 
levels have been reported both in serum and in tumor cells and 
are associated with enhanced proliferation and tumor burden (3–6). 
Therapeutic approaches have thus emerged to disrupt copper ho-
meostasis by using either copper chelators or ionophores (7). Cop-
per ionophores are copper-binding small molecules capable to cross 
the plasma membrane, causing intracellular copper accumulation 
and ultimately triggering cuproptosis, a noncanonical cell death 
program (8).

Insights into the mechanism involved in cuproptosis were proposed 
in a recent publication (8), where the functional link between 
copper overload and its impact on cellular respiration was reported. 
The authors found that copper-induced cell death primarily involves the 
binding of this cation to lipoylated enzymes [e.g., Dihydrolipoamide S-
Acetyltransferase (DLAT), Dihydrolipoamide  S-Succinyltransferase 
(DLST), etc.] that regulate carbon entry points in the tricarboxylic 
acid (TCA) cycle. Lipoylation is essential for the activity of these 
enzymes and is increased in cells that depend on oxidative phos-
phorylation (OXPHOS), in which the TCA cycle is the key reduced 
form of nicotinamide adenine dinucleotide (NADH) donor for electron 

transfer chain (ETC) activity. Copper binding to lipoylated proteins 
generates aggregation and leads to proteotoxic stress. In addition, 
the authors also noticed that another class of essential proteins, re-
ferred to as the iron-sulfur (Fe-S) cluster (ISC)–containing proteins, 
is depleted upon exposure to elesclomol, a known copper ionophore. 
However, mechanistic links are missing regarding how copper affects 
ISC-containing proteins stability and how the latter participates 
to cuproptosis.

ISC are a series of inorganic protein cofactors strictly assembled 
in the mitochondrial matrix by a specialized machinery called the 
ISC assembly machinery (9, 10). ISCs are necessary for numerous 
proteins, including the ETCI-III complexes, where they promote 
electron transfer, the lipoylation enzyme Lipoic Acid Synthetase 
(LIAS), and others involved in DNA synthesis, DNA repair, iron 
regulation, nucleotide metabolism, and ribosome biogenesis (11). 
ISCs are exported to the cytosol through a transporter, putatively 
ABCB7 (ATP binding cassette subfamily B member 7), where they 
are loaded onto proteins by the cytosolic iron-sulfur assembly (CIA) 
machinery (12). Deficiency of the ABCB7 transporter impairs the 
maturation of cytosolic ISC enzymes and cause X-linked sideroblastic 
anemia with ataxia (13–15).

Acute myeloid leukemia (AML) is a heterogeneous disease with 
outcomes highly dependent on cytogenetics and mutational profiles. 
With the aim of identifying advanced therapeutic strategies to 
improve survival of poor-prognosis AML patients, we conducted a 
high-throughput chemical screening on a panel of genetically diverse 
primary AML specimens. We identified, optimized, and characterized 
copper ionophore molecules that showed heightened activity against 
poor-prognosis AMLs, in particular those carrying splicing factor 
3b subunit 1 (SF3B1) mutations.

SF3B1 is the most frequently mutated splicing gene in cancer, 
leading to missplicing of numerous mRNAs due to aberrant recog-
nition of branch point sequences (16, 17). Subsequent splicing defects 
primarily involve the use of cryptic 3′ splice sites that can induce 
mRNA degradation through nonsense-mediated decay or result in 
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the production of dysfunctional proteins. Heterozygous SF3B1 mis-
sense mutations, predominantly occurring within the HEAT repeats 
and including the K700E hotspot mutation, are frequently found in 
myelodysplasic syndromes with ring sideroblasts (MDS-RS) (18). 
Missplicing of the putative ISC transporter ABCB7, along with re-
sultant protein down-regulation (19–21), has been reported in 
SF3B1-mutated hematologic pathologies and contributes to their 
pathogenesis (22). In this context, we describe how SF3B1 muta-
tions, leading to ABCB7 down-regulation, provide a genetic predis-
position to cuproptosis. Overall, our work report advanced insights 
into copper ionophore activity in AML and its potential application 
for personalized therapy in SF3B1-mutated AMLs.

RESULTS
High-throughput screening in primary specimens identifies 
a molecule targeting SF3B1-mutated and 
poor-prognosis AMLs
With the aim of identifying original molecules and therapeutic tar-
gets for AML, we performed a high-throughput screening assay of 
10,000 compounds in 56 primary AML specimens and 2 normal 
cord blood specimens (Fig. 1A). The small molecule library of high 
structural diversity (Bristol Myers Squibb) included a majority of 
compounds with no known biological activity, as well as the typical 
clinical compounds now used to treat AML (e.g., venetoclax, dauno-
rubicin, cytarabine, etc.). Biologically diverse primary AML speci-
mens (Fig. 1B and fig. S1A) and normal CD34+ CB cells were treated 
for 6 days before assessing cell viability.

Profiles of inhibition across primary AMLs—or fingerprint—
were then associated to each compound, looking for molecules with 
increased activity toward poor-prognosis AML samples and limited 
toxicity in normal cells (to exclude general cytotoxic compounds). 
At the tested dose of 1 μM, the S767 molecule (Fig. 1C) showed a 
unique and selective fingerprint in primary AMLs (>60% growth 
inhibition in 43% of the specimens, Fig. 1D and table S1), with low 
toxicity on normal CD34+ cord blood cells (median: 9.2% inhibition). 
Specimens sensitive to S767 had a poorer overall patient survival 
compared to resistant ones (Fig. 1E), while complex karyotype (CK) 
AMLs were among the most sensitive specimens (fig. S1B).

To better stratify S767 response in AML and possibly identify 
biomarkers, we tested S767 potency in dose-response assays and 
determined half-maximal inhibitory (IC50) concentration in a panel 
of 161 genetically diverse primary AMLs (Fig. 1, F and G; fig. S2A; 
and table S1). By comparing the most sensitive (tier 1) versus most 
resistant (tier 3) AML samples, we found that sensitive samples were 
enriched for SF3B1-mutated, adverse cytogenetic risk and CK AMLs 
(Fig. 1, H and I). On the other hand, more resistant AMLs associate 
with favorable cytogenetic risk and overall survival superior at 
3 years.

Looking at differentially expressed genes in tier1 versus tier3 
AML, we identified RUNX3 as the most significant highly ex-
pressed gene in S767 sensitive samples (Fig. 1J and table S2). RUNX3 
expression anticorrelates with S767 IC50 values (fig. S2B) and stratifies 
S767 sensitivity within AML subgroups (fig. S2, C and D). High 
RUNX3 expression is known to associate with poor cytogenetic risk 
AML subtypes and lower overall survival in AML (23), in line with 
S767 sensitivity. Gene set enrichment analysis also showed down-
regulation of metabolic pathways in primary AML sensitive to S767 
(fig. S2E).

Overall, we identified SF3B1-mutated and CK AMLs as particularly 
sensitive to S767 and RUNX3 expression as a potential biomarker 
for S767 cytotoxic response.

S767 exposure disrupts intracellular metal homeostasis
To determine the mechanisms by which the S767 molecule mediates 
anti-AML activity, we performed a transcriptomic analysis of OCI-
AML5 exposed 24 hours to 1 μM S767 (table S3). This revealed that 
biological processes linked to cellular response to metals, including 
zinc, copper, and iron, were up-regulated compared to dimethyl 
sulfoxide (DMSO)–treated cells (Fig.  2A). This also includes up-
regulation of the ALAS1 rate-limiting enzyme of heme biosynthesis, 
transferrin receptor TFRC and MT2A involved in metal detoxification 
(Fig. 2B). We then measured intracellular metal levels by inductively 
coupled plasma mass spectrometry (ICP-MS) in cells exposed to 
increasing concentration of S767 for 3 hours. We observed a significant 
decrease in intracellular iron, while copper and zinc levels were 
increased (Fig. 2C), indicating that S767 treatment induces a pro-
found dysregulation of intracellular metal homeostasis.

CRISPR-Cas9 screen identifies ABCB7 as a sensitizing gene to 
S767-mediated cell death
To determine synthetic lethal and rescue interactions with S767, 
we performed a genome-wide CRISPR-Cas9 loss-of-function screen 
(24) in which cells were exposed to 1.1 μM S767 compound for 
10 doublings (Fig. 3A and table S4). CRISPR-Cas9 screen results 
pointed out mitochondrial metabolism as being critical for S767-
mediated cytotoxic activity. In particular, loss of several genes in-
volved in the biosynthesis or transport of ISC conferred synthetic 
lethality with S767 treatment (Fig. 3, A and B). Disrupting early 
steps in ISC biosynthesis through FDXR, NFS1, ISCU, and HSPA9 
or cytosolic Fe-S protein assembly machinery through GLRX3, 
MMS19, and ABCB7 provides a synthetic lethal effect with S767 
treatment. This observation was validated using short hairpin RNAs 
(shRNAs) targeting top hits NFS1, GLRX3, and MMS19 (Fig. 3C). 
The opposite effect was observed when mitochondrial proteins 
GLRX5, IBA57, and ISCA1/2, in charge of loading Fe-S cofactor on 
mitochondrial proteins, were abrogated. These data suggest that ISC 
biogenesis is intimately linked to S767 cytotoxic response.

The synthetic lethal gene ABCB7 is known to be aberrantly 
spliced and partly dysfunctional in SF3B1-mutated AMLs (19), 
which we identified as highly sensitive to S767 (Fig. 1, H and I). 
Analysis of the Leucegene transcriptomic data of primary AML 
specimens confirmed missplicing (Fig. 3D and table S5) and down-
regulation of ABCB7 mRNA expression (Fig. 3E) in SF3B1, but not 
SRSF2 and U2AF1, mutated AMLs (table S6). We further validated 
that ABCB7 down-regulation by shRNA sensitizes cells to S767 
(Fig. 3F), suggesting a molecular explanation to SF3B1-mutated 
AML sensitivity toward S767.

Identification of UM4118 as a potent and selective 
analog of S767
Because S767, a C7-locked N-(quinoline-8-yl)benzenesulfonamide, 
has low potency (IC50 values in the micromolar range) in both cell 
lines and primary specimens, in addition to a poorly functionaliz-
able scaffold and a wide effect on intracellular metal homeostasis, we 
decided to optimize S767 potency and selectivity through extensive 
structure-activity relationship (SAR) studies. On the basis of the 
sensitizing effect observed while ABCB7 transporter is depleted, we 
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have synthetized and tested approximately 100 analogs, focusing on 
molecules for which IC50 values would be at least two times lower in 
ABCB7 down-regulated cells compared to the control cell line (rep-
resentative examples in fig. S3A). This SAR revealed the UM4118 
molecule, as part of an “open-form” series of analogs, which achieved 
potency in the nanomolar range, further potentiated in ABCB7 de-
pleted cells (Fig. 4A). As observed for S767, UM4118 is able to com-
plex metals, in particular copper and zinc (Fig.  4B, see shift in 
absorbance curves), while analogs with structural modifications 
that abrogated metal binding were inactive in cells [see UM3903 in 
Fig. 4 (A and B) and fig. S3B for additional examples]. This indicates 
that metal binding is essential for compound activity and that per-
turbations of intracellular metal homeostasis might be a direct effect 
of these metal-binding molecules.

Notably, ICP-MS analysis of cells exposed 3 hours to UM4118 
showed that this optimized analog specifically increases intracellu-
lar copper levels, while iron and zinc levels were poorly affected 
(Fig. 4C). Extracellular copper chelation using bathocuproine disul-
fonic acid (BCS) counteracts the increase of intracellular copper lev-
els after UM4118 exposure, suggesting that the molecule import 
copper from media into the cell. Moreover, data obtained with 
UM4118 compare to the known copper-ionophore elesclomol (25, 
26), suggesting that UM4118 activity has been optimized toward 
copper interaction. Because copper complexes can damage DNA 
(27–29), we monitored DNA lesions following 24-hour exposure to 
representative molecules and showed that S767 as well as its sulfon-
amide class of analogues induced large amounts of γH2AX, in con-
trast to UM4118 and the picolinamide series (Fig. 4D and fig. S3A). 
Together, SAR led to the identification of the metal binding UM4118 

molecule as a more potent (26-fold increase in IC50 in OCI-AML5), 
copper-selective, and nongenotoxic analog of S767 for further char-
acterization.

UM4118 acts as a copper ionophore which cytotoxicity relies 
on mitochondrial respiration
We hypothesized that, similar to elesclomol, UM4118’s cellular activ-
ity relies on its ability to bring copper into the cell and acts essentially 
as a copper ionophore. Accordingly, cellular activity of UM4118 is 
highly dependent on copper, as its supplementation in the culture 
media strongly enhances the cytotoxicity of this molecule, while it is 
abrogated when extracellular copper chelation is used (Fig. 5A). As a 
control, copper supplementation did not affect cytotoxicity of defera-
sirox, a known iron chelator, while iron supplementation rescued 
these cells. In addition, strong synergistic interaction was observed 
between UM4118 and copper at low concentrations (Fig. 5B). In pri-
mary AML specimens which are cultured in fetal bovine serum 
(FBS)–free media, thus removing the extracellular source of copper, 
we also observed that UM4118 cytotoxic activity is highly dependent 
on the presence of extracellular copper (Fig. 5C and fig. S4A). Again, 
the copper ionophore elesclomol showed similar results to UM4118 
(Fig.  5, A and C, and fig.  S4A). Of note, down-regulation of the 
unique copper importer CTR1 (SLC31A1) did not affect UM4118 
and elesclomol mediated toxicity (fig. S4B), indicating that copper 
does not shuttle through regulated copper import systems after expo-
sure to UM4118 but rather support the conclusion that UM4118 acts 
as a copper ionophore.

As a consequence of copper overload, elesclomol impairs mito-
chondrial respiration indirectly through the inhibition of components 
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of the TCA cycle (8). Accordingly, we observed that UM4118 and eles-
clomol impair maximal mitochondrial respiration capacity (Fig. 5, D 
and E) without affecting basal respiration rates as would do a direct 
ETC1 inhibitor [see mubritinib in Fig. 5 (D and E)]. In addition, cells 
that were grown under hypoxic conditions (1% O2) were more resis-
tant to UM4118 (Fig.  5F), highlighting the fact that copper iono-
phore–mediated cell death implies mitochondrial respiration function.

UM4118 induces cell death by cuproptosis
To confirm UM4118 mechanism of action as a copper ionophore 
and that cuproptosis was causing cell death, we looked at DLAT 
protein aggregation that occurs through the binding of excess cop-
per to lipoylated DLAT and leads to proteotoxic stress (8). We indeed 

observed the presence of DLAT aggregates by immunofluorescence 
upon UM4118 and elesclomol treatment, which is exacerbated in the 
presence of copper supplementation (Fig.  6A). We also confirmed 
that UM4118 increases intramitochondrial copper levels by ICP-MS 
analysis on mitochondria extracts (Fig.  6B and fig.  S5A). Of note, 
pretreatment with ferroptosis inhibitor (Ferrostatin-1), caspase 3 in-
hibitor (Z-DEVD-FMK), or pan caspase inhibitor (Emricasan) failed 
to rescue UM4118 cytotoxic effect (fig. S5B), confirming that ferrop-
tosis or apoptosis is not involved in UM4118 cytotoxic activity. Last, 
we conducted a genome-wide CRISPR-Cas9 loss-of-function screen 
with UM4118 molecule to identify synthetic interactions (Fig.  6C 
and table S7). Results first revealed that, knockdown of HK2 or PFKP, 
two enzymes involved in glycolysis, showed strong synthetic lethality, 
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Moison et al., Sci. Adv. 10, eadl4018 (2024)     22 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

6 of 15

A

D

D
M
S
O

S
76
7 

U
M
41
18
 

E
le
sc
lo
m
ol
 

Tubulin

Phospho-p53 (Ser15)

S767

IC50 in AML5: 1067 nM
Ratio IC50 shRNA ctrl/ABCB7: 2.2

UM4118

IC50 in AML5: 40 nM
Ratio IC50 shRNA ctrl/ABCB7: 3.2

UM3903

IC50 in AML5: >10,000 nM

B

Compound only
+CuCl2
+FeCl2
+ZnCl2

S767 UM4118 UM3903

Sulfonamide 
analogs

Picolinamide
analogs

0

0.2

0.4

0.6

0.8

1.0

1.2

200 250 300 350 400 450
Wavelength (nm)

A
bs
or
ba
nc
e

200 250 300 350 400 450 500
Wavelength (nm)

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
A
bs
or
ba
nc
e

200 250 300 350 400 450 500
Wavelength (nm)

550
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
bs
or
ba
nc
e

U
M
40
05

U
M
38
71

U
M
42
07

U
M
41
86

U
M
41
78

U
M
41
99

C Copper Iron Zinc

DM
SO

****

****

0

20

40

60

80

0

5

10

15

DM
SO

**
***

***

0

10

20

30

40

50

DM
SO

H2AX

Ele
sc
lom
ol 
0.2
 M

UM
41
18
 2 

M

C
u 
(
g/
lit
er
)

UM
41
18
 2 

M 
+ B
CS

Ele
sc
lom
ol 
0.2
 M

 + 
BC
S

Fe
(
g/
lit
er
)

Ele
sc
lom
ol 
0.2
 M

UM
41
18
 2 

M

UM
41
18
 2 

M 
+ B
CS

Ele
sc
lom
ol 
0.2
 M

 + 
BC
S

Zn
 (
g/
lit
er
)

Ele
sc
lom
ol 
0.2
 M

UM
41
18
 2 

M

UM
41
18
 2 

M 
+ B
CS

Ele
sc
lom
ol 
0.2
 M

 + 
BC
S

Fig. 4. Identification of UM4118 as a potent and selective analog of S767. (A) Structures of S767 [C7-locked N-(quinoline-8-yl)benzenesulfonamide], UM4118 [N-
(quinoline-8-yl)picolinamide], and UM3903 [N-(quinoline-8-yl)benzamide] with IC50 values in OCI-AML5 cells. Ratio of IC50 values obtained in OCI-AML5 stably express-
ing shRNA control over shRNA ABCB7 is indicated. (B) Ultraviolet-visible spectrum of S767, UM4118 and UM3903 (40 μM) alone and in the presence of indicated 
metals (40 μM) in ethanol at room temperature. (C) Intracellular metal quantification by ICP-MS in OCI-AML5 cells exposed 3 hours to indicated compounds with and without 
100 μM the non-cell permeable copper chelator BCS. Data are represented as mean ± SD (n = 3, unpaired t test compared to DMSO condition). (D) Immunoblot of γH2A.X 
and phospho-p53 at serine 15 from OCI-AML5 cells treated 24 hours with S767 analogs or elesclomol. For each compound, a concentration corresponding to 12 times the 
IC50 was used. Tubulin is used as a loading control.



Moison et al., Sci. Adv. 10, eadl4018 (2024)     22 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

7 of 15

E

Time (min)

O
C
R
 (p
m
ol
/m
in
)

DMSO

MUBRITINIB 150 nM

Elesclomol 20 nM

UM4118 150 nM

Maximal respiration
O
C
R
 (p
m
ol
/m
in
)

C

D

B UM4118
Average synergy: 9.1 (Bliss)
Max synergy: 77.5 (Bliss)

F

Media Cu BCS Fe ZnCl2
0

20

40

60

6000
8000

10,000

IC
50
 (n
M
)

UM4118

> 10 M

**

****

**

Elesclomol

0

1

2

3
500
1000
1500

IC
50
 (n
M
)

Media Cu BCS Fe ZnCl2

**

Deferasirox

0

2000

4000

6000

8000

10000

IC
50
 (n
M
)

Media Cu BCS Fe ZnCl2

>10 M
****

1 2 3 4 5

−50

50

100

Log10 (nM)

%
 In
hi
bi
tio
n

UM4118_13H150

−1 1 2 3 4 5

−50

50

100

Log10 (nM)
%
 In
hi
bi
tio
n

Elesclomol_13H150

−1 1 2 3 4 5

−50

50

100

Log10 (nM)

%
 In
hi
bi
tio
n

Daunorubicin_13H150

Media
Media + 5 M copper
Media + 100 M BCS

0 10 20 30 40 50 60 70 80
0

100

200

300

400
Basal 

respiration
Maximal 
respiration

DM
SO

UM
41
18
 40
 nM

UM
41
18
 15
0 n
M

Ele
sc
lom

ol 
5 n
M

Ele
sc
lom
ol 
20
 nM

Mu
bri
tin
ib 
15
0 n
M

0

100

200

300

400

***
********

****

+ Oligomycin + FCCP
+ Antimycin A/
rotenone

A

−1 1 2 3 4 5

−50

50

100

Log10 (nM)

%
 In
hi
bi
tio
n

UM4118

−1 1 2 3 4 5

−50

50

100

Log10 (nM)

%
 In
hi
bi
tio
n

Elesclomol

−2 −1 1 2 3 4

−50

50

100

Log10 (nM)

%
 In
hi
bi
tio
n

Daunorubicin

Normoxia
Hypoxia

4118 (
M)

Sy
ne
rg
y 
sc
or
e

Cop
per (

M)
5

5

00

−80

0

80

−80 −60 −40 −20 0 20 40 60 80

Fig. 5. UM4118 acts as a copper ionophore. (A) IC50 values of UM4118, elesclomol, and deferasirox (iron chelator used as control) determined in regular media, in media 
supplemented with 5 μM copper (Cu), 10 μM iron (Fe), 10 μM zinc (ZnCl2) or in the presence of the copper chelator BCS (100 μM) in OCI-AML5 cells. Data are represented 
as mean ± SD (n = 3, unpaired t test compared to media condition). (B) Synergistic interaction between UM4118 and copper in OCI-AML5 cells calculated with the Bliss 
method. (C) Dose-response curves obtained in CK primary AML sample 13H150 exposed to indicated compounds in regular AML media, supplemented with 5 μM copper 
or 100 μM BCS (error bars indicate SD of technical duplicates). Daunorubicin is used as a negative control. (D) Effect of a 24-hour exposure to DMSO, elesclomol, UM4118, 
and mubritinib (positive control, ETC inhibitor) on oxygen consumption rates (OCR) in 100,000 OCI-AML5 cells determined by Seahorse assay (mean ± SD, n = 6). 
(E) Quantification of the effect of compounds on maximal respiration as measured in (D). Data are represented as mean ± SD (n = 6, unpaired t test compared to DMSO 
condition). (F) Dose-response curves of OCI-AML5 cells grown in normoxic (21% O2) or hypoxic (1% O2) conditions and exposed to indicated compounds (error bars indi-
cate SD of technical duplicates). Daunorubicin is used as a negative control.



Moison et al., Sci. Adv. 10, eadl4018 (2024)     22 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

8 of 15

supporting UM4118 mechanism of action through inhibition of cel-
lular respiration (Fig. 5, D to F). Notably, genetic suppression of the 
pyruvate dehydrogenase complex (PDC) by targeting DLAT, PDHB, 
and PDHA1 rescued cells from UM4118 treatment. These results are 
in line with Tsvetkov et al. (8) showing that disruption of PDC res-
cues ovarian cells from elesclomol-mediated cuproptosis. Accord-
ingly, disruption of DLAT or key enzymes mediating its lipoylation 
(LIAS and LIPT1) provides synthetic rescue over UM4118 treatment 
(Fig.  6C). However, validation experiment using shRNA targeting 
DLAT showed a partial rescue of UM4118-mediated cell death, sug-
gesting that DLAT participates but does not recapitulate all the cel-
lular effects of UM4118 in AML cells (fig. S5, C and D). Together, 
these data support the hypothesis that UM4118 mediates cuproptosis.

ISC deficiency potentiates copper-mediated cell death
As observed with S767 (Fig. 3, A and B), disruption of ISC biosyn-
thesis (NFS1 and HSPA9), as well as loss of the ABCB7 transporter, 
causes synthetic lethality with UM4118 (Fig.  6C). We confirmed 
that down-regulation of NFS1 and NFU1, as well as ABCB7, indeed 
increased sensitivity to UM4118 in OCI-AML5 cells (Fig. 7A and 
fig. S6A). A possible explanation to the synthetic lethality between 
copper overload and ISC deficiency is that copper excess causes a 
depletion of ISC containing proteins, through an unknown mecha-
nism (8). We indeed observed that short time exposure to UM4118 
depletes the ISC proteins POLD1 and LIAS (Fig. 7B). As a conse-
quence of LIAS reduction, total lipoic acid proteins are depleted, 
including DLAT, indicating that copper overload impairs the 
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lipoylation process ultimately. DLAT aggregation observed previ-
ously (Fig.  6A) also likely contributes to the depletion of soluble 
DLAT. As recently reported, FDX1 regulates lipoylation (30, 31), 
and we observed an increase of FDX1 protein levels upon UM4118 
and elesclomol exposure (Fig. 7C), which could be a compensatory 
effect to the depletion of LIAS and/or lipoic acid proteins.

Total proteome analysis revealed a significant depletion of mito-
chondrial proteins involved in electron transfer along the respira-
tory chain after exposure to UM4118 (Fig. 7D and table S8), which 
could contribute to the observed deficiency in mitochondrial respi-
ration. Depletion of 4Fe-4S cluster containing proteins, including 
LIAS, was also highly significant. We hypothesized that by disrupt-
ing ISC homeostasis, an additional layer of ISC protein deficiency 
adds up to the effect of copper overload, explaining the observed 
synthetic lethality with UM4118 (see proposed model in Fig. 7E).

 SF3B1 mutations, through ABCB7 deficiency, sensitize AML 
cells to copper ionophores
As we identified SF3B1-mutated AML as highly responsive to S767 
(Fig. 1, H and I) and optimized UM4118 activity on ABCB7 deplet-
ed cells (Fig. 4A), we tested UM4118 potency in a panel of 14 primary 
AMLs carrying or not SF3B1 mutations. We observed that SF3B1-
mutated specimens—coming from different AML subgroups—were 
significantly more sensitive to UM4118 (Fig. 8A). Although tested 
on a small cohort of primary AMLs, anticorrelation between high 
RUNX3 levels and UM4118 sensitivity was observed, as previously 
found with S767 (fig. S7A). Extending our observations to the BEAT 
AML cohort (32), reporting the activity of elesclomol on 299 AML 
samples, we confirmed that SF3B1-mutated AMLs are significantly 
more sensitive to elesclomol than SF3B1 WT AMLs (Fig.  8B and 
fig. S7B). This is not observed on samples bearing mutations on the 
other splicing factors SRSF2, U2AF1, and ZRSR2, highlighting the 
specific association with SF3B1.

Using an isogenic K562 cell line carrying the recurrent K700E 
SF3B1 mutation, we confirmed the presence of a misspliced form of 
ABCB7 mRNA (Fig. 8C) which is absent in their wild-type (WT) 
counterparts. While UM4118 exposure triggers cuproptosis in both 
K562 cell lines (fig. S7, C to E), SF3B1-mutated cells showed an in-
creased sensitivity toward UM4118 and elesclomol (Fig.  8D) and 
decreased clonogenic potential after short time exposure to both 
copper ionophores (Fig. 8E), compared to WT K562 cells. We then 
overexpressed ABCB7 in SF3B1-mutated K562 cells, to restore 
ABCB7 protein levels (Fig. 8F), and showed that it partially rescues 
UM4118 and elesclomol cytotoxicity (Fig. 8G), suggesting a critical 
role of ABCB7 in SF3B1-related sensitivity.

Pladienolide B, a splicing inhibitor that binds to SF3B1, also 
showed a strong synergy with UM4118 at low doses (Fig. 8H), 
providing additional evidence of the interaction between SF3B1 
function and copper ionophore sensitivity. Together, these results 
demonstrate that SF3B1 alterations associate with an increased sen-
sitivity to copper ionophores in AML which is mediated, at least in 
part, through ABCB7 defects (see proposed model in Fig. 8I).

DISCUSSION
Using a phenotypical screen on primary specimens of diverse genetic 
make-up, we identified S767 as a selective molecule in AML. Through 
compound optimization, we developed a more potent, specific, and 
nongenotoxic analog of S767, namely, UM4118, which acts as a copper 

ionophore. Our results further highlight previously unidentified mech-
anistic connections between ISC and copper-related cell death 
that can be leveraged to sensitize cells to cuproptosis. We found 
that ISC deficiency is synthetically lethal to copper-overload strategies 
in AML. Pragmatically, this is exemplified by the high sensitivity of 
SF3B1-mutated AMLs, in which ABCB7 is misspliced and down-
regulated. In addition, ABCB7 overexpression partially rescued 
UM4118-induced cell death in SF3B1-mutated cells, suggesting 
that ABCB7 plays a crucial role in sensitizing SF3B1-mutated 
AMLs to cuproptosis.

One possible explanation for the synthetic lethality observed be-
tween copper overload and ISC deficiency is that copper excess 
causes a depletion of ISC-containing proteins. However, how copper 
affects ISC-containing proteins stability and whether the latter con-
tributes to cuproptosis remains unclear. In bacteria, it is known that 
copper can displace iron form ISC-containing proteins and account 
for copper toxicity (33–35). In addition, excess copper has been 
shown to block mitochondrial ISC protein maturation by inhibiting 
the ISC assembly machinery (34). These findings may explain the 
reported destabilization of ISC-containing proteins upon copper 
overload. Accordingly, we found that genetic suppression of the ISC 
pathway (i.e., knockdown of NFS1, HSPA9, or ABCB7) is syntheti-
cally lethal with S767 or UM4118 treatments, as it would amplify the 
ISC deficiency provoked by copper overload. These two processes 
are intimately linked as both ISC deficiency and copper excess im-
pair mitochondrial respiration. ISCs are essential cofactors of the 
respiratory chain complexes I to III, while copper leads to TCA cycle 
impairment. LIAS, which mediates DLAT lipoylation, is itself an 
ISC-containing protein destabilized by copper overload. Data from 
the literature, in addition to our work, suggest that ISC deficiency 
and cuproptosis could interconnect at multiple levels.

SF3B1 mutations lead to the aberrant splicing of hundreds of 
mRNAs in AML. We identified 391 aberrant splicing events associ-
ated to SF3B1 mutation in the Leucegene cohort, which are enriched 
(43.7%) for alternative 3′ splicing defects (table  S5 and fig.  S8A). 
While we demonstrated that ABCB7 missplicing sensitizes SF3B1 
mutated cells to cuproptosis, others may also contribute to this ef-
fect. mRNAs of the ISC containing proteins NDUFS7, CIAPIN1, and 
POLE were found with significant splicing alterations in AML, as 
well as UQCC1, COX18, and DLST, involved in mitochondrial res-
piration (fig.  S8B). Although the total mRNA expression of these 
genes was not affected by the missplicing events, functional conse-
quences of these events are not known. Recently, SF3B1 mutations 
in breast and uveal cancers were associated to metabolic dysregula-
tion, characterized by a decrease in OXPHOS (36, 37). Whether 
missplicing of metabolic genes leads to a defect in mitochondrial 
respiration in AML is an interesting area of investigation as this 
could represent another level of sensitization toward copper iono-
phores. In line with this hypothesis, we observed that primary AML 
samples showing the highest sensitivity toward S767 share down-
regulated metabolic transcriptional signatures (figs. S2E and S8C), 
which could have predisposed cells to S767-associated cytotoxicity.

Despite the strong in  vitro antineoplastic activities of copper 
ionophores, as well as their selectivity toward tumor cells (25, 38), 
clinical trials using the copper ionophores elesclomol and disulfi-
ram failed to produce significant benefits for cancer treatment (39–
45). Drug delivery and limited bioavailability, along with the lack of 
robust biomarkers in these untargeted clinical trials, might be re-
sponsible for this relative failure. In the meantime, our work adds up 
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Fig. 8. SF3B1 mutations, through ABCB7 deficiency, sensitize AML cells to copper ionophores. (A) Dot plot distribution of S767 and UM4118 IC50 values across 14 
primary AML specimens carrying or not SF3B1 mutation. Median is represented in red, Mann-Whitney U test. (B) Dot plot distribution of response to elesclomol treatment 
in the BEAT AML cohort (default settings). Area under curve retrieved from Vizome (BEAT AML data viewer). Median is represented in red, Mann-Whitney U test. (C) Reverse 
transcription PCR products of ABCB7 mRNA amplification obtained in K562 isogenic cell lines for SF3B1 (WT or carrying the K700E heterozygous mutation). (D) Dot plot 
distribution of UM4118 and elesclomol IC50 values in K562 SF3B1 WT or mutated cell lines (n = 6, Mann-Whitney U test). Median is represented in red. (E) The number of 
colonies coming from K562 cell lines carrying the SF3B1 K700E heterozygous mutation or not was assessed in methylcellulose after 10 days. Cells were treated 48 hours 
with DMSO or 20 nM of the copper ionophores before seeding in methylcellulose. Mean fold decreased in colony numbers compared to DMSO is depicted. (F) Immuno
blot analysis of ABCB7 protein in K562 WT or SF3B1-mutated cells infected with a lentiviral vector expressing either ABCB7 cDNA or luciferase (LUC) as a control. Tubulin is 
used as a loading control. (G) Dot plot distribution of UM4118 and elesclomol IC50 values in K562 WT or SF3B1-mutated cells infected with a lentiviral vector expressing 
ABCB7 or luciferase. Data are represented as the mean ± SD (n = 4, Mann-Whitney U test). (H) Synergistic interaction between UM4118 and pladienolide B in OCI-AML5 
cells calculated with the Bliss method. (I) The proposed model implies that missplicing of ABCB7 in SF3B1-mutated cells destabilizes the ISC-containing proteins (ISC-CP) 
which are further affected by copper overload, leading to a synthetic lethal interaction.
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UM4118 molecule at the known repertoire of copper ionophore 
molecules for future therapeutic development. UM4118 is struc-
turally distinct from elesclomol and disulfiram and could offer al-
ternative pharmacodynamic properties to successfully translate 
into in vivo applications.

Our work highlights that SF3B1 mutations, recognized in the 
2022 ELN risk classification (46) as an adverse prognostic marker if 
they are associated with intermediate or adverse risk AML, provide 
a genetic predisposition to copper overload–based therapies, offer-
ing a unique therapeutic angle for these patients. In addition, our 
results suggest that adverse cytogenetic risk AMLs, including CK, 
with the use of RUNX3 expression levels as a biomarker, might be 
another group of AML patients to target. SF3B1 mutations are also 
found in 20% of MDS cases, in which a strong enrichment is found 
in MDS with ring sideroblasts (18), 15% of chronic lymphocytic leu-
kemias (47) and 6% of chronic myelomonocytic leukemia (48). In 
addition, SF3B1 somatic mutations are present in a range of solid 
tumors, with high frequency (around 20%) in uveal melanoma (49, 
50) and more rarely in cases of breast cancers (51) or cutaneous 
melanomas (52) for example. Whether SF3B1 mutations would con-
fer sensitivity to copper ionophores in other hematologic neoplasms 
and solid tumors is of great interest and requires further evaluation.

Together, we describe how a nonprotein targeting molecule 
exploits a genetic vulnerability associated to ISC deficiency in 
AML. Last, we propose SF3B1 mutations as a biomarker and 
mechanism of action for copper ionophore–directed therapies to 
be used in future clinical trials.

MATERIALS AND METHODS
Study approval
The Leucegene project is an initiative approved by the Research Eth-
ics Boards of Université de Montréal and Maisonneuve-Rosemont 
Hospital. All leukemia samples and paired normal DNA specimens 
were collected and characterized by the Quebec Leukemia Cell Bank 
after obtaining an institutional Research Ethics Board–approved 
protocol with informed consent according to the Declaration of 
Helsinki. The Quebec Leukemia Cell Bank, a biobank certified by 
the Canadian Tissue Repository Network, is a research axis of The 
Cancer Research Network (RRCancer), a thematic network of the 
Fonds de recherche du Québec–Santé. Material and data were trans-
ferred to the principal investigator after signing a material transfer 
agreement adapted from the documents prepared by the RRCancer 
(https://rrcancer.ca/en/biobanking-documents/).

Primary AML sample culture and chemical screens
Freshly thawed primary AML specimens were used for chemical 
screens following the procedure previously described in (53). Com-
pounds were dissolved in DMSO, diluted in media immediately be-
fore use, and added to seeded cells at the unique concentration of 
1 μM for the primary screen or in serial dilution (8 dilutions, 1:3, 
10 μM down to 4.5 nM) for the validation screen, in duplicate wells.

Whole-genome CRISPR-Cas9 deletion screens
Following procedure previously described in (53), we used the ex-
tended knockout (EKO) pooled lentiviral library (24) to perform 
whole-genome CRISPR-Cas9 loss-of-function screen. Briefly, OCI-
AML5 EKO cells were cultured in 10% FBS Dulbecco’s modified 
Eagle’s medium supplemented with doxycycline (2 μg/ml) for a 

period of 7 days to induce knockouts. The knockout library was 
maintained in culture 14 more days with exposure to 1.1 μM S767, 
110 nM UM4118, or DMSO (without doxycycline).

Compounds
The following compounds were used for cell treatment: deferasirox 
(Adooq, A10293), elesclomol (eNovation Chemicals), ferrostatin-1 
(Sigma-Aldrich, SML0583), emricasan (Cayman Chemical, 22204), 
Z-DEVD-FMK (Cayman Chemical, 14414), pladienolide B (Santa 
Cruz, sc-391691), Mubritinib (Selleckchem, S2216), and BCS (Santa 
Cruz, sc-217698).

Inductively coupled plasma mass spectrometry
OCI-AML5 cells to be analyzed were treated with the indicated 
compounds for 3 hours in media supplemented by 1 μM copper. 
Treatment was done at a density of 1 million cells/ml, and 10 million 
cells were then washed twice in phosphate-buffered saline (PBS) 
and digested overnight in 100 μl of Suprapur 65% nitric acid (Mil-
lipore Sigma, 1004410250) at room temperature. For intramito-
chondrial quantification, 2 × 107 human embryonic kidney 293 cells 
were used per replicate. The mitochondria were isolated on the basis 
of the scaled down (20×) procedure described in (54). Crude mito-
chondrial pellets were resuspended and digested overnight in 100 μl 
of Suprapur 65% nitric acid at room temperature. The samples were 
then diluted 50× in high-performance liquid chromatography–
grade water (Thermo Fisher Scientific, W5-4) and analyzed. Blank 
samples were spiked with reference metal standards and used for 
quantification. The quantification of copper, zinc, iron, and nickel 
by ICP-MS was performed by the CACEN platform at Université de 
Montréal on a NexION 5000 apparatus (PerkinElmer).

RNA sequencing and splicing analysis in primary 
AML samples
RNA sequencing (RNA-seq) libraries were constructed according to 
TruSeq Protocols (Illumina), and sequencing was performed using an 
Illumina HiSeq 4000 instrument. Trimming of sequencing adapters 
and low-quality bases was done using the Trimmomatic (v0.38) tool 
(55). Resulting reads were mapped to the reference using the RNA-seq 
aligner STAR (v2.7.1) (56), and quantification of gene and isoform ex-
pression were performed using RSEM (v1.3.2) (57). Differential expres-
sion analyses were performed using the Limma-Voom R package (58). 
Alternative splicing features, PSI/Ψ (Percent Spliced-In) values ob-
tained for exon skipping, alternative 5′ or 3′ splice sites, mutually exclu-
sive exons, and retained introns were evaluated directly from unclipped 
aligned reads using the rMATS algorithm (v4.0.1) (59).

Transcriptome analysis of OCI-AML5 cells treated with S767
OCI-AML5 cells were treated in triplicates with 1 μM S767 for 
24 hours. Total RNA was isolated using TRIzol as recommended by 
the manufacturer (Invitrogen) and purified using RNeasy Micro col-
umns (Qiagen). RNA-seq libraries were constructed using the New 
England Biolabs (NEB) mRNA stranded kit, and sequencing was 
performed using an Illumina NovaSeq 6000 instrument. Analysis 
was performed as detailed above. The RNA-seq data are accessible at 
Gene Expression Omnibus (GEO; GSE241922).

Reverse transcription PCR validation of ABCB7 missplicing
RNA from K562 cell lines was harvested in TRIzol (Thermo Fisher 
Scientific) and isolated according to the manufacturer’s protocol 

https://rrcancer.ca/en/biobanking-documents/
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and reverse-transcribed using Moloney Murine Leukemia Virus 
(MMLV) reverse transcriptase and random primers (Thermo Fish-
er Scientific). ABCB7 amplification by polymerase chain reaction 
(PCR; 40 cycles) was performed using the following primers: 
5′-ATGATGCAGGTAATGCTGCT-3′ and 5′-TCAGCATAGC-
CAGAGTAGAGGT-3′ and allowed amplification of a 153 bp (ca-
nonical form) and 174 bp (misspliced form) product (19). PCR 
products were run on 4% agarose gel and visualized using an ultra-
violet transilluminator.

Ectopic expression of ABCB7
Two gene fragments containing overlapping sequences of the ABCB7 
coding sequence were synthesized by Twist Biosciences and cloned 
into the MNDU-pgk-GFP lentiviral vector by Gibson assembly. Cells 
were infected with lentivirus in media supplemented with polybrene 
(10 ng/ml) for 48 hours. Cells were then washed in PBS, counted, 
and plated for dose-response assays.

Statistical analyses
Statistical testing was performed by using the MAGeCK-VISPR-MLE 
method (60) for CRISPR screens, the Limma-Voom method (58) for 
RNA-seq, or GraphPad Prism version 6.0. for statistical functions 
(Mann-Whitney test or unpaired t test as indicated in the figure leg-
ends). Results having P value < 0.05 were considered significant. Sta-
tistical differences of P < 0.05, P < 0.005, P < 0.0005, and P < 0.0001 
are depicted as *, **, ***, and **** respectively in figures. Additional 
methods are available in the Supplementary Materials.

Supplementary Materials
This PDF file includes:
Supplementary Materials and Methods
Figs. S1 to S8
Legends for tables S1 to S8
References 

Other Supplementary Material for this manuscript includes the following:
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