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The use of Augmented Reality (AR) for navigation purposes has shown beneficial in assisting 

physicians during the performance of surgical procedures. These applications commonly require 

knowing the pose of surgical tools and patients to provide visual information that surgeons can use 

during the performance of the task. Existing medical-grade tracking systems use infrared cameras 

placed inside the Operating Room (OR) to identify retro-reflective markers attached to objects 

of interest and compute their pose. Some commercially available AR Head-Mounted Displays 

(HMDs) use similar cameras for self-localization, hand tracking, and estimating the objects’ depth. 

This work presents a framework that uses the built-in cameras of AR HMDs to enable accurate 

tracking of retro-reflective markers without the need to integrate any additional electronics into 

the HMD. The proposed framework can simultaneously track multiple tools without having 

previous knowledge of their geometry and only requires establishing a local network between the 

headset and a workstation. Our results show that the tracking and detection of the markers can be 

achieved with an accuracy of 0.09 ± 0.06mm on lateral translation, 0.42 ± 0.32mm on longitudinal 

translation and 0.80 ± 0.39∘ for rotations around the vertical axis. Furthermore, to showcase the 

relevance of the proposed framework, we evaluate the system’s performance in the context of 

surgical procedures. This use case was designed to replicate the scenarios of k-wire insertions 

in orthopedic procedures. For evaluation, seven surgeons were provided with visual navigation 

and asked to perform 24 injections using the proposed framework. A second study with ten 

participants served to investigate the capabilities of the framework in the context of more general 

scenarios. Results from these studies provided comparable accuracy to those reported in the 

literature for AR-based navigation procedures.

Index Terms—

Augmented Reality; Computer-Assisted Medical Procedures; Navigation; Tracking

1 Introduction

IN recent years, an increasing number of Augmented Reality (AR) applications have found 

their use in medical domains, including educational, training, and surgical interventions [1], 

[2], [3], [4]. Among the multiple technologies capable of delivering augmented content, 

using AR Head-Mounted Displays (HMDs) has proven beneficial to aid physicians during 

surgical interventions [5], [6], [7], [8]. The use of HMDs in the Operating Room (OR) 

allows for the observation of relevant content in-situ, enables delivering visual guidance 

and navigation, promotes the visualization and understanding of diverse bi-dimensional and 

three-dimensional medical imaging modalities, and facilitates training and communication 

[9], [10].

A fundamental requirement to provide visual guidance and surgical navigation using AR is 

to know the threedimensional pose of the elements involved in the task (i.e., their position 

and orientation). Although multiple technologies can be used to estimate the pose of the 

objects of interest, optical tracking is one of the most common due to its computational 

simplicity, cost-effectiveness, and the availability of cameras used in AR applications [11]. 

This tracking technology uses computer vision algorithms to identify textural patterns or 
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geometrical properties of objects of interest, from which their dimensions are well known, to 

estimate their pose.

In the medical context, providing surgical navigation requires knowing the pose of the 

patients, surgical tools, and, occasionally, the surgeons and the medical team’s head. 

Commercially available medical-grade tracking systems estimate the pose of the objects 

of interest using infrared cameras that detect the location of retro-reflective markers rigidly 

attached to them. These retro-reflective markers are arranged in unique configurations to 

distinguish between the multiple objects observed in the scene. Commercially available 

HMDs, use built-in infrared cameras for self-localization, hand tracking, and estimation of 

the objects’ depth in the environment. Thus, these cameras can also be used to locate the 

retro-reflective markers used in medicalgrade tracking systems1 [12], [13]. While combining 

the accuracy provided by medical-grade tracking systems with the visualization capabilities 

of AR HMDs could support the integration of these devices into surgical scenarios, 

simultaneously maintaining the fiducial markers in the line of sight of the HMD and the 

tracking system in a cluttered workspace may hinder its use in the OR. As an alternative, 

using the HMD for combined visualization and tracking of these markers may mitigate such 

challenges. However, the accuracy and feasibility of using cameras and sensors that may 

not have the accuracy and field of view of conventional tracking systems require detailed 

investigation. Therefore, it is essential to establish a framework capable of performing this 

task and investigate the accuracy of combined tracking and visualization when only using 

HMDs.

This work introduces a method that uses the builtin Time-of-Flight (ToF) sensor of 

commercially available HMDs2 to define, detect and localize passive retro-reflective 

markers commonly used during navigation-assisted medical procedures. This type of sensor 

provides a more extensive resolution range (16-bit) compared to existing approaches that use 

grayscale cameras (8-bit). In addition, this sensor is unaffected by ambient visible light [14], 

making it more suitable for applications with challenging lighting conditions. To illustrate 

the benefits of the proposed framework, we present a use case in the context of medical 

applications to enable navigation capabilities and aid physicians in performing percutaneous 

surgical procedures using the built-in sensors of the Microsoft HoloLens 2.

The main contribution of this work, as compared to the limited existing literature on the 

use of the AR HMDs’ builtin IR sensors for tool tracking purposes, is as follows: 1) 

We propose a framework that can identify retro-reflective markers and define rigid tools 

on-the-fly. This framework can also track multiple tools in 6 DoF with comparable accuracy 

to that offered by medical grade tracking systems simultaneously. These capabilities are 

provided without the need to modify the headset or integrate any additional hardware. To our 

knowledge, this is the first time that these capabilities have been integrated into off-the-shelf 

AR HMDs. 2) We validate the proposed framework with a comprehensive evaluation, 

including its stability, repeatability, and accuracy (Section 4) and its potential applicability 

in experiments involving real users (Section 5). 3) To enable the reproducibility of our work 

1.e.g., Polaris NDI, Northern Digital Incorporated. Ontario, Canada.
2.i.e., Microsoft HoloLens 2. Microsoft. Washington, USA.
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and facilitate its use by other researchers, we have made our code open-source.3 The source 

code incorporates multiple functionalities, such as wireless high-framerate data transfer 

for HoloLens 2 research mode, real-time sensor data preview, on-the-fly tool definition, 

simultaneous multi-tool detection, and tool pose visualization in 3D Slicer. Although this 

work uses the medical domain to exemplify the capabilities of the proposed framework, 

its applicability can be extended to other applications that use AR HMDs and demand 

reliable tracking of objects for performing tasks in the personal space. We envision that the 

experiments and resources provided in this manuscript can aid researchers in deciding if 

such devices are suitable for their specific applications.

2 Related Work

Using commercially available AR HMDs for medical applications has found application 

in several surgical fields. In spine surgery, providing surgical navigation for pedicle 

screw placement using AR HMDs has shown shorter placement time when compared to 

traditional procedures [15] and comparable accuracy to robotic-assisted computer-navigated 

approaches [16]. In addition, it has supported spinal pedicle guide placement for cannulation 

without using fluoroscopy [17] and enabled the registration between the patient’s anatomy 

and three-dimensional models containing surgical planning data [18]. This technology 

has also been used to provide visual guidance during the performance of osteotomies, 

contributing to an increase in the accuracy achieved by inexperienced surgeons compared to 

freehand procedures [19]. Additional studies have explored the potential of using AR HMDs 

to support users during the performance of hip arthroplasties, showing comparable results 

to those achieved using commercial computer-assisted orthopedic systems [20], [21]. Even 

more, using AR HMDs reduces the events during which the surgeons deviate their attention 

from the surgical scene or are exposed to fluoroscopy radiation due to unprotected parts 

when they turn their bodies [22], [23].

Different works have used the built-in sensors of commercially available HMDs to estimate 

the pose of objects of interest in medical applications. These approaches avoid incorporating 

external tracking systems and additional devices into the already cluttered OR. On the 

one hand, identifying markers in the visible spectrum using the built-in RGB cameras 

has been used to investigate the feasibility of using AR in surgical scenarios [18], [20]. 

The identification of this type of marker is not only limited to the visible spectrum and 

has also been investigated using multimodal images [24]. However, the low accuracy 

of the registration and motion tracking may hinder their successful integration into the 

surgical workflow [18]. On the other hand, the use of infrared cameras to track retro-

reflective markers has been adopted by surgical grade tracking systems as they fulfill 

the accuracy requirements to provide surgical navigation. While commercially available 

HMDs frequently incorporate infrared cameras for self-localization, hand tracking, or depth 

estimation, navigation accuracy analysis with these cameras requires further investigation.

3.The code for our work can be accessed through the following link: https://github.com/lihaowei1999/
IRToolTrackingWithHololens2.git
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One of the initial works proposing the use of the built-in cameras of AR HMDs for 

the detection and tracking of retroreflective markers was proposed by Kunz et al. [12]. 

This work introduced two different approaches to detecting the markers using the built-in 

sensors of commercially available AR HMDs (i.e., Microsoft HoloLens 12). A first approach 

combined the reflectivity and depth information collected using the near field ToF sensor. 

A second approach used the frontal environmental grayscale cameras as a stereo pair to 

estimate the position of the objects of interest. This last approach required the addition of 

external infrared LEDs to illuminate the markers and increase their visibility in the grayscale 

images. However, using the environmental cameras provide a higher resolution than the 

depth camera used as part of the ToF sensor (648×480 vs. 448×450 pixels, respectively). 

Although an offline accuracy evaluation of both approaches is presented in this work, the 

tracking and implementation of the system are reported only for the depth-based approach, 

showing a tracking accuracy of 0.76 mm when the markers are placed at distances ranging 

between 40 to 60 cm. In addition, only translational and not rotational experiments were 

reported in this work.

Additional work presented by Gsaxner et al. [13] used the environmental grayscale cameras 

of the Microsoft HoloLens 22 for similar purposes. This work introduced two tracking 

pipelines that used stereo vision algorithms and Kalman filters to track retro-reflective 

markers in the context of surgical navigation. The proposed framework uses the stereo vision 

pipeline to initialize the tracking of the markers and a recursive single-constraint-at-a-time 

extended Kalman filter to keep track of the object of interest. Whenever the tracking using 

the Kalman filter is lost, the stereo vision pipeline is used to re-initialize the tracking of the 

objects. This work showed that the combination of these tracking pipelines enables real-time 

tracking of the markers with six degrees of freedom and an accuracy of 1.70 mm and 

1.11°. Unlike Kunz et al. [12], this work investigated the tracking errors in the position and 

orientation of the objects. However, it required the integration of additional infrared LEDs to 

illuminate the retro-reflective markers.

The proposed framework differs from other works that use AR HMDs to track retro-

reflective markers because it integrates algorithms for tool definition on-the-fly. This 

capability allows for dynamic integration and detection of tools, even when their geometry 

is unknown. Therefore, providing more flexibility than existing approaches. Our framework 

can also track and detect multiple tools simultaneously, allowing for performing tasks that 

involve manipulating various objects. In addition, our experiments comprehensively evaluate 

the proposed framework and the HMD sensors’ capabilities. Furthermore, compared to 

existing works, the proposed framework provides these capabilities without modifying or 

integrating additional hardware into the HMD. Although commercial IR tracking systems 

enable tool definition and multiple tool detection, our framework represents an initial step 

in incorporating such approaches into AR HMDs, providing comparable accuracy, and 

facilitating their use by other researchers.

3 Methods

This work presents a framework that uses the built-in cameras integrated into commercially 

available AR HMDs, to enable the tracking of retro-reflective markers without adding any 
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external components. This section describes the necessary steps to calibrate these cameras, 

enable the detection of retro-reflective markers commonly attached to surgical instruments 

and robotic devices, identify multiple tools in the scene, and provide visual guidance to 

users or AR applications. To exemplify the potential of our framework, we present a use 

case in which the tool tracking results serve to provide visual navigation to users during the 

placement of pedicle screws in orthopedic surgery.

3.1 System Setup

The proposed framework was implemented using the Microsoft HoloLens 2 and a 

workstation equipped with an Intel Xeon(R) E5–2623 v3 CPU, an NVIDIA Quadro K4200 

GPU, and 104 Gigabytes of 2133 MHz ECC Memory. The research mode provided for 

the HoloLens served to gain access to the device’s built-in sensors and cameras [14]. 

To optimize the acquisition and processing of the images collected using the HMD, we 

connected this device to the workstation using a USB-C to ethernet adapter and a cable 

that provided a 1000 Mbps transmit rate. A multi-threaded sensor data transfer system, 

implemented in Python via TCP socket connection, enabled the acquisition of the sensors’ 

data at a high frame rate and with low latency. The data transfer system was tested using 

two different approaches. A first approach, using DirectX, allowed to transfer and acquire 

the video from the cameras at an approximate framerate of 31 fps. A second approach, 

implemented using Unity 3D, reported an average speed of 21 fps. In addition, a user 

interface was designed to collect, process, and analyze the data collected from the HMD. 

This user interface also provided visual guidance and assisted users while performing tasks 

requiring the precise alignment of virtual and real objects in surgical scenarios.

3.2 Camera Calibration and Registration

Camera Calibration.—To investigate the feasibility of utilizing and combining the 

multiple cameras integrated into the HoloLens 2 for the tracking of retro-reflective markers, 

the left front (LF), right front (RF), main (RGB), and Articulated HAnd Tracking (AHAT) 

cameras need to be calibrated. This calibration process enables extracting the spatial 

relationship between the cameras and their intrinsic parameters and representing them using 

a unified coordinate system.

We used a checkerboard with a 9 × 12 grid containing individual squares of 2cm per side 

to calibrate the different sensors. The checkerboard was attached to a robotic arm, and the 

HoloLens was rigidly fixed on a head model to ensure steadiness during image capturing. 

A set of 120 pictures, acquired by placing the checkerboard at different positions and 

orientations using the robotic arm, were collected for each one of the cameras. The images 

for the RGB camera were captured using the HoloLens device portal with a resolution 

of 3904 × 2196 pixels, while the other cameras’ images were retrieved via the HoloLens 

research mode. For the AHAT camera, the calibration and registration procedure was 

completed using the reflectivity images.

After data collection, the images were randomly subdivided into two subsets. The first 

subset contained 90 pictures used for camera calibration, and the remaining 30 images 

served for testing. The Root Mean Square Error (RMSE) of the detected and reprojected 
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corner points was used to evaluate the calibration and test image sets. The images selection 

process was repeated twenty times to ensure the repeatability of the results. The reprojection 

errors for the calibration and test sets resulted in 0.165 ± 0.032 pixels and 0.152 ± 0.052 pixels 
for the AHAT, 0.069 ± 0.001 pixels and 0.070 ± 0.002 pixels for the LF, 0.080 ± 0.002 pixels 
and 0.080 ± 0.002 pixels for the RF, and 0.305 ± 0.020 pixels and 0.308 ± 0.060 pixels for the 

RGB, respectively.

Camera Registration.—For the registration of the different cameras, a new set of 100 

images were collected from the different sensors while placing the checkerboard at different 

poses. The checkerboard was kept steady before moving it to a different position to 

ensure synchronization between the multiple sensors. As an initial step, the RF camera 

was registered to the LF camera using the stereo camera calibration toolbox from Matlab. 

The following step registered the LF and RGB cameras to the AHAT. For the registration 

of these cameras, the three-dimensional positions of the checkerboard’s corner points 

were calculated using the respective intrinsic camera parameters. The extrinsic parameters 

between two cameras were later calculated by solving a leastsquares optimization problem:

Rc
A, tc

A = argmin
R ∈ SO 3 , t ∈ R3i = 1

n
∥ Rpi + t − qi ∥2

(1)

where pi represents the three-dimensional corner points in the RGB and LF cameras, and qi

denotes the corner points in AHAT space.

The registration error was evaluated using the RMSE between the detected corner points 

of one camera and the reprojected points of the other camera. The registration between the 

RF-LF cameras produced a 0.190 pixels reprojection error. In comparison, the registration 

between the LF-AHAT and RGB-AHAT cameras led to reprojection errors of 0.901 and 

0.758 pixels, respectively.

In addition, the field-of-view (FoV) of every camera was estimated quantitatively in 

horizontal and vertical directions using the equations:

FoVx = max
0 < i < j ≤ n

arccos xi, 0,1 ⋅ xj, 0,1
∥ xi, 0,1 ∥ × ∥ xj, 0,1 ∥

(2)

FoVy = max
0 < i < j ≤ n

arccos 0, yi, 1 ⋅ 0, yj, 1
∥ 0, yi, 1 ∥ × ∥ 0, yj, 1 ∥

(3)

Once the registration between the cameras is complete, the different sensors can be 

presented in a common coordinate space using their corresponding camera parameters (see 
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Figure 2). This figure depicts the FoV of the visible light cameras from the optical center 

to a unit plane using frustums. As the AHAT sensor data is only effective within a 1-meter 

distance, the FoV of this sensor is depicted by the furthest detection surface.

During the calibration process presented in this work, a 12.76°  angle down was observed 

for the AHAT compared to the other cameras. The FoV of the AHAT camera resulted in 

127° × 127°, which is about six times larger than the RGB camera 40° × 65°  and three times 

larger than the LF and RF cameras 82° × 65° , making it extremely useful for the target 

detection within a meter distance, where most of the actions in the personal space take 

place. In addition, the relatively large FoV of the AHAT camera, combined with the sensor 

information of environmental infrared reflectivity and depth, makes this camera suitable for 

detecting retro-reflective markers used in surgical procedures.

3.3 Tool Tracking

To explore the capabilities of the AHAT camera to track retro-reflective markers used in 

surgical scenarios, we propose a framework for the definition, recognition, and localization 

of tools that use this specific type of marker. As depicted in Figure 3, such a framework 

includes three main stages: three-dimensional marker’s center detection, tool definition, and 

multi-tool recognition and localization.

3.3.1 Marker Detection—As an initial step, the three-dimensional positions of the 

individual retro-reflective markers are obtained using the intrinsic camera parameters and 

the reflectivity and depth images of the AHAT camera. This type of retro-reflective marker 

depicts extremely high-intensity values when observed in the reflectivity images of the 

AHAT camera. Therefore, an intensity-based threshold criterion was used to separate these 

objects of interest from the rest of the scene. The AHAT intensity images are represented 

using a 16-bit unsigned integer format. As depicted in Figure 4, most of the environment 

presents a reflectivity intensity below 300. At the same time, the retro-reflective markers 

report values larger than 500, with a peak value over 2000 at the center of the marker.

In addition, a connected component detection algorithm was used to separate individual 

markers from each other. Considering the environmental noise observed in the reflectivity 

images, including large connected high-reflection areas caused by flat reflective objects like 

glass or monitors or smaller areas resulting from random noise or surrounding objects, an 

additional threshold on the connected component area was applied to extract the individual 

retro-reflective markers. To estimate the area in pixels Apx that a retro-reflective marker with 

radius r at a distance d would occupy in the image of the AHAT camera, we used the 

following equation:

Apx ≈ π ⋅ r2

sx/fx ⋅ sy/fy ⋅ d2

(4)

where sx, sy, fx, and fy are the pixel size in mm/px and the focal distance in mm of the AHAT 

intrinsic parameters.
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After applying the intensity-based and connected component detection algorithms, the three-

dimensional position of every retro-reflective marker is calculated using the AHAT camera’s 

depth information di, its intrinsic parameters, and the marker’s diameter. The central pixel 

of every marker is first back-projected into a unit plane xi, yi  using the intrinsic parameters. 

The depth information from the AHAT camera represents the distance between a certain 

point in the three-dimensional space and the camera’s optical center [25]. Hence, the 

position Xi, Y i, Zi  of this point can be expressed as follows:

Xi, Y i, Zi = di
∥ xi, yi, 1 ∥2

xi, yi, 1

(5)

While the calculated position corresponds to the actual center of the target when using flat 

markers, the radius of the target must be considered when using spherical markers. In this 

particular case, the estimated depth information provided by the AHAT camera corresponds 

to the central point on the surface of the marker and not to the center of the sphere. 

Therefore, when using spherical markers, the central position of the sphere can be computed 

as:

Xi, Y i, Zi sphere  = di + r
di

Xi, Y i, Zi

(6)

where r represents the radius of the spherical marker.

3.3.2 Tool Definition—A common approach to tracking objects using retro-reflective 

markers involves attaching a set of these components to a rigid frame with a unique spatial 

distribution. This spatial information contributes to estimating the pose of a particular object 

and allows distinguishing between different instances that can be observed simultaneously 

in the scene. The procedure to define the properties of an object using our framework, from 

now on referred to as a tool, requires a series of steps that are described next.

First, a single image frame from the AHAT camera is used to extract the three-dimensional 

distribution of the retro-reflective markers that belong to a tool. The spatial distribution of 

such markers provides the geometrical properties of the tool and enables the generation of an 

initial configuration of it. This step allows identifying potential misdetection in subsequent 

frames by comparing the distance observed between the detected markers.

The following step uses an optimization method to calculate the shape of the rigid tool 

using the N threedimensional positions of the markers extracted from every frame. In this 

step, we use T i: Mi, j x, y, z  to represent the set of markers T , in the itℎ frame of the total 

collection, that defines the three-dimensional position of the individual markers M with 

index j observed in the tool definition.
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The RMSE between one tool in two frames, T p and T q, is used to evaluate the difference as 

follows:

Δ T p, Tq = 1
N ∑

0 ≤ j < N
∥ Mp, j − Mq, j ∥2

2

(7)

where ∥ ⋅ ∥2 is the Euclidean distance of the marker’s position with index j observed in the 

frames p and q.

Furthermore, to estimate the optimal position of the set of markers that define a tool, the 

mean difference between the optimized T opt and estimated T i positions in every frame are 

used as the minimization target as follows:

Topt = argmin
T : Mj

1
I ∑

0 ≤ i < I
Δ T, T i

(8)

where I represents the total number of collected frames for the tool definition procedure.

Lastly, the mean translation of the set of markers is removed to generate the definition 

Tdef : Mdef, j  using:

Mdef, j = Mopt, j − 1
N 0 ≤ k < N

Mopt, k ; 0 ≤ j < N

(9)

Here, Tdef represents the final definition of the tool with origin at the geometric center of all 

the markers in the tool. This procedure is depicted in Figure 4.

3.3.3 Tool Recognition and Localization—To identify multiple tools, each with 

shape T l: Mj
l , from a single AHAT frame where multiple markers Pn  are detected, 

we estimate the Euclidean distance between the markers and tools using the following 

equations:

LP n, n + α = ∥ Pn − Pn + α ∥2
 for: 0 ≤ n < n + α < N

(10)

LTl n, n + α = ∥ Mn
l − Mn + α

l ∥2
for: 0 ≤ l < L; 0 ≤ n < n + α < Nl

(11)
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where n indicates the ntℎ marker in the tool or a scene, and l represents the ltℎ tool to be 

detected in the environment.

All subsets Pn Tl, k of detected markers P  whose shape fits the definition of the tool T l are 

found using a depthfirst graph searching algorithm; k refers to the ktℎ possible subset of 

markers that fits the target tool. To quantitatively depict the similarity between the possible 

solution and target tool definition, we used a loss function that considers the corresponding 

lengths of the tool:

ℒ Tdef
l , Pn Tl, k = 1

Nl Nl − 1 0 ≤ i < j < Nl

βTl, k i, j

βTl, k i, j = ∥ LTdef 
l i, j − L Pn Tl, k i, j ∥

(12)

where Nl refers to the number of markers in the definition of the ltℎ tool.

During the searching process, we define two thresholds to exclude incorrect matches. A 

first threshold tside identifies mismatches between the corresponding sides of the tool. A 

second threshold tsℎape discerns between the obtained solution and the tool definition. These 

thresholds are applied as follows:

tside  > βTl, k i, j ; 0 ≤ i < j < Nl

(13)

tshape  > ℒ Tdef 
l , Pn Tl, k

(14)

To select a proper value for these thresholds, the uncertainty of the three-dimensional 

position of the detected markers Pn is considered. As shown in Figure 5c, the standard error 

for depth detection, σp, changes as a function of the depth at which the markers are observed. 

This value serves to calculate the maximum standard error for a side using σside = 2σp. 

When a 95% probability for detection is desired, the thresholds for a single side can then 

be calculated as tside = 2σside. Lastly, the error threshold for the whole tool is computed using 

tsℎape = tside/ Nl Nl − 1 .

After the possible solutions for every tool have been extracted, the following step deals 

with any redundant information found in the possible solutions. This redundant information 

includes using the same retro-reflective marker more than once or using the same set of 

markers to track the same tool. When multiple solutions use the same set of markers, 

ordered using different index values, to estimate the pose of the same tool, the solution with 

the lowest error ℒ is preserved, and the remaining solutions are removed. After removing 

these redundant solutions, the remaining subsets are sorted according to their error ℒ using 
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their respective tool definition T l. In this case, the solution with the least error is considered 

the reference. Any remaining solution that conflicts with the reference or aims at detecting 

the same tool is removed. This procedure is repeated until all the defined tools are found or 

no other solution exists. A final step uses an SVD algorithm to calculate the transformation 

matrices that map the tool coordinates into the AHAT camera space.

3.3.4 Precision Enhancement—In addition, we proposed using Kalman filters to 

enhance the precision that can be achieved with the proposed framework. On the one hand, 

using these filters could contribute to reducing the tremor observed by the cut-off error 

from the AHAT depth data. This source of error is observed because the AHAT provides 

an integer value corresponding to the depth detected in millimeters, limiting the maximum 

depth resolution to 1 mm and decreasing the tracking stability of the passive markers and 

tools. On the other hand, the implementation of Kalman filters could compensate for the 

detection error observed when using the AHAT sensor. However, to justify the use of 

Kalman filters, it is required that the signals involved follow a gauss distribution. This type 

of distribution allows the filters to behave as a best linear unbiased estimator. Therefore, we 

conducted an experiment to estimate if the AHAT’s detection error can be modeled using a 

gaussian distribution.

Our experimental setup used a glass board with an anodized aluminum surface and retro-

reflective markers located at the corners. A robotic arm was used to move the glass board 

along the z-axis of the AHAT camera frame while keeping the board steady during data 

collection (Fig. 5a). The error distribution of the depth data was tested using 48 different 

depths, assigned randomly and ranging from 156 to 971 mm. These lower and upper 

boundaries correspond to the limits where the board occupies the whole image until the 

depth data is invalid. For every depth distance, 300 continuous AHAT frames were collected. 

The reflectivity information of the first frame was used to extract the target detection area. 

Every depth image contained in the 300 frames was used to create individual point clouds 

merged to produce a final set. A plane fitting algorithm used the merged point cloud to 

estimate the board’s position.

Finally, the fitting error was estimated using a point-to-plane function distance. As depicted 

in Figure 5b, the error presents a strong gauss-like distribution at different depths. An 

Anderson-Darling test was used to test normal distribution, where the p-value was found to 

be smaller than 0.0005 for all 48 distances. In addition, the standard deviation increased as a 

function of the depth. Further details regarding the error observed in the data at the different 

depths are presented in Figure 5c.

In addition, we investigated if the standard error depicted by the AHAT could be modeled 

as a function of the depth detected. For every pixel p in the marker area at a specific depth, 

the uncertainty over 300 continuous frames was considered the standard error std(p), while 

the mean depth dep(p) was used as the ground truth. Because a non-linear increment of 

the std(p) over the dep(p) was observed, we used a quadratic polynomial function to fit the 

relationship between these variables using:
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std p = a ⋅ dep p 2 + b ⋅ dep p + c

(15)

After modeling this relationship, the goodness of the fitting was evaluated using its 

coefficient of determination:

R2 = p std̂ p − std p− 2

p std p − std p− 2

(16)

where std̂ p  represents the fitted value of pixel p.

For the data collected during our experiments, we obtained a coefficient of determination 

R2 = 0.9807. This value indicates that our model can quantitively predict the relationship 

between the depth and its standard error.

These results support the use of a Kalman filter for the proposed framework. Thus, we used 

several independent filters for the individual markers for every tracked tool based on their 

depth value. After the filtered depth value is calculated, the three-dimensional position and 

transform matrix from the tool to AHAT space are adjusted. In addition, when the tool’s 

tracking is lost, every Kalman filter for the specific tool is reinitialized.

4 Experiments And Results

4.1 Localization Error

To assess the tracking accuracy of our algorithm, we conducted a set of experiments in 

which we compared different tracking technologies in a controlled environment. Among 

these tracking technologies, we used optical cameras to detect ArUco and ChArUco markers 

in the visible spectrum. Although existing works have used the environmental cameras of 

the HoloLens for the tracking of these markers [17], we used an M3-U3-13Y3C-CS 1/2” 

Chameleon3 color camera4 coupled with an M1614-MP2 lens5. This camera provided a 

resolution of 1280 × 1024 pixels and enabled the acquisition of images with better image 

quality than those acquired using the built-in cameras of the HoloLens. In addition, we 

compared the performance of our algorithm against an NDI Polaris Spectra6. This system 

is commonly used in surgical procedures to track passive retro-reflective markers in the 

infrared spectrum.

Stability, Repeatability, and Tracking Accuracy—To compare the stability, 

repeatability, and accuracy of the optical markers’ pose estimation using different tracking 

technologies, we conducted an experiment in which we translated and rotated the target 

4.Edmund Optics. Teledyne FLIR Integrated Imaging Solutions, Inc.
5.CBC AMERICA LLC.
6.Northern Digital Incorporated
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markers using six different configurations. These experiments targeted multiple distances in 

the personal space at reaching distances. To precisely control the movements of the markers 

for the different sensors, we used a 3-axis linear translation stage and a rotation platform 

with an accuracy of 0.01mm and 0.1∘, respectively. The markers were left static for the first 

experiment, and 100 poses were collected. After data collection, the markers were moved 

along the x-axis by 1mm, and another set of 100 poses was recorded. The following step 

brought the markers back to their original position and a total number of 10,000 randomly 

selected distance values were calculated using these two data sets. We performed this 

procedure 20 times using different initial marker poses and environmental light conditions to 

ensure repeatability. A second experiment followed this procedure but used a translation of 

20mm along the x-axis. The markers were moved along the z-axis using the same translations 

for the third and fourth experiments. Lastly, the markers were rotated 10 and 50∘ around the 

world-up vector for the fifth and sixth experiments.

To ensure that the tracking systems could provide accurate values, we placed the markers 

at different distances from the sensors depending on the tracking technology used. For our 

proposed method, a tool composed of four retro-reflective spheres with a diameter of 11.5mm
was placed at an approximate distance of 600mm from the AHAT camera. This distance 

corresponds to the approximate length of the user’s arms at normal working conditions and 

ensures the observation of the target in the central portion of the usable tracking space of 

the AHAT. The same tool was placed at approximately 2000mm from the surgical tracking 

system. Similar to the case of the AHAT sensor, this distance depicts a standard distance 

at which the NDI tracking device is placed during surgical procedures and ensures the 

observation of the target in the central portion of the usable tracking space. In addition, for 

the detection of markers in the visible spectrum, we used a 6 × 6 ArUco marker and a 3 × 

3 ChArUco marker, each with a side length of 80mm. These optical markers were placed at 

800mm from the camera. The experimental setup used for tracking these targets is shown in 

Figure 6, and the results of this experiment are presented in Figure 7.

To evaluate the stability and tracking accuracy, we performed a statistical analysis of 

the results collected. Considering the non-normal distribution of the data collected, we 

used Kruskal-Wallis tests with α = 0.05 to compare the results obtained for position and 

orientation. Posterior Bonferroni tests were used to reveal significant differences between 

the tracking technologies. The median and interquartile range (IQR) of all the experiments 

are summarized in Table 1 and presented in Figure 8.

Overall, the lowest errors were reported by the NDI tracking system, followed by the 

proposed method with and without the addition of Kalman filters. When evaluating the 

results for 1 mm translations in the x-axis, the Kruskal-Wallis test revealed a significant 

interaction between the multiple tracking technologies χ2 4 = 498650.94, p = 0 . A posterior 

Bonferroni test revealed statistical significance among all the tracking technologies p = 0 . 

The NDI tracking system provided significantly higher accuracy than the other tracking 

technologies, followed by the proposed method with and without Kalman filters and the 

ChArUco and ArUco markers (see Figure 8a). Regarding the 20 mm translations in the x-
axis, the Kruskal-Wallis test revealed a significant interaction between the multiple tracking 
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technologies χ2 4 = 352721.55, p = 0 . A posterior Bonferroni test showed that the NDI 

tracking system and the ArUco markers provided significantly higher accuracy than the 

ChArUco and the proposed method with and without the addition of the Kalman filters 

p = 0 . However, the results presented in Figure 8b show that the precision provided by the 

ArUco markers is lower than for all the other tracking technologies.

Regarding position accuracy on the z-axis, a Kruskal-Wallis test revealed a significant 

interaction between the tracking technologies when the markers were translated 1 mm 

χ2 4 = 60421.54, p = 0 . A posterior Bonferroni test revealed statistical significance among 

all the tracking technologies p = 0 . The NDI tracking system proved to be more accurate 

than the other compared technologies. The proposed method with and without Kalman 

filters followed the NDI system, while the ChArUco and ArUco reported the worst scores 

(Figure 8c). When translating the markers 20 mm, our Kruskal-Wallis test revealed a 

significant interaction between the multiple technologies χ2 4 = 809777.32, p = 0 . The 

posterior Bonferroni test revealed the same behavior then the one observed for the 1 mm 

translations in this axis (see Figure 8d).

Furthermore, results from the Kruskal-Wallis tests for the orientation errors revealed 

a significant interaction between the tracking technologies when rotating the target by 

10 χ2 4 = 193849.19, p = 0  and 50 χ2 4 = 377705.61, p = 0  degrees. In contrast to the 

translation results, both versions of the proposed method reported lower median errors than 

the NDI tracking system and the ArUco and ChArUco markers. However, the precision 

reported by the NDI tracking system is higher than for the other tracking technologies (see 

Figures 8e and 8f).

Workspace Definition—In addition to the tracking accuracy, a further experiment 

investigated the role that the FoV plays over the proposed method’s accuracy. To achieve 

more considerable displacement capabilities than the one used in the previous experiment, 

we moved our tracking tool along the x- and z-axis using a different linear stage. For this 

portion of the experiment, the NDI tracking system was used as the ground truth to evaluate 

the tracking accuracy. The passive tool was incrementally moved along the linear stage. 

After the movement of the linear stage was completed, the data corresponding to the tool’s 

pose was collected using the NDI tracking system and the AHAT camera of the HoloLens. A 

total number of 50 values were collected for every position. This process was repeated from 

the nearest to the furthest detection distances for the z-axis and from the center to the lateral 

margins of the x-axis that could be detected using the AHAT camera. The mean values of the 

data at every position were considered the real pose values and used to estimate the moving 

direction of the tool. The estimated displacement along the moving platform can then be 

calculated by projecting the tracked tool’s position to the moving direction and comparing it 

with its initial position.

The detection error observed during tool displacement using our system is shown in Figure 

9 as a function of the observed depth. Such results show that our system can steadily trace 

the passive tool within depths of 250 and 750mm (Figure 9a) and within radial distances 

of 509mm when the tool is placed at a maximum distance of 510mm (Figure 9b). Using 
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FoV = 2 ⋅ arctan xmax/d , it can be shown that these values are equivalent to an FoV of 89.9°. 
Interestingly, the detection error observed for the z-axis depicts a different behavior before 

and after 400mm. In addition, the absolute difference between the error observed at 400 and 

800mm results in a moving distance error of 2.5mm, or a distortion of 0.625%. For the radial 

direction, a smaller moving distance error can be observed. The absolute difference observed 

between 0 and 500mm translations depicts an error of ≈ 0.75mm, equivalent to a distortion of 

0.15%.

4.2 Runtime and Latency

To investigate the runtime capabilities of our system, we placed different quantities of 

passive tools within the FoV of the AHAT camera. The sensor data collected by the AHAT 

was recorded and used for the offline runtime test. In this way, the frame rate of the 

algorithm during the test would not be limited by the sensor acquisition frequency. In 

addition, we collected and evaluated the runtime for detecting the ArUco and ChAruCo 

markers using an RGB camera with a resolution of 1280 × 1024 pixels. We used the 

average runtime of 10,000 frames on a Xeon(R) E5–2623 v3 CPU for this portion of the 

experiments.

This experiment revealed a runtime of 28.4 ms (35.2 Hz) for the detection of the ArUco 

and 30.14 ms(33.2 Hz) for the ChArUco makers. The runtime results when using the AHAT 

camera proved to be influenced by both the number of retro-reflective markers detected in 

the scene and the number of loaded tools for detection. These results are depicted in Figure 

10a. When only one passive tool is expected to be detected, the runtime of our system is 

5.80 ms (172.37 Hz). However, when the passive markers corresponding to five different 

tools are detected and their five corresponding definitions are loaded, the runtime is 19.48 

ms (51.34 Hz).

The latency of our system was then compared using the NDI tracking system as a reference. 

For this experiment, we moved back and forth a passive tool attached to a linear stage 

using a period Tmov of ≈ 15 seconds. The localization data from the NDI and our system 

were collected simultaneously. The detected moving distance along the linear stage for 

both systems can be expressed as N t  and H t  with t ∈ 0, T  for the NDI and HoloLens, 

respectively (see Figure 10b). The moving signal of the HoloLens is first adjusted to match 

the amplitude of the NDI system using:

H′ t = H t + δ N t − δ H t
2

δ x = max x + min x

(17)

The following step computed the delay between our tracking system and the NDI system 

using:
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δH = argmin
0 < δ < Tmov δ

T
1

T − δ N t − H′ t − δ 2dt

(18)

where δH depicts the time difference in seconds between the signals H′ t  and N t .

This experiment showed that the proposed method presents a time delay of 103.23 ms 

compared to the NDI tracking system.

5 Use Case

To highlight the relevance of the proposed framework for surgical applications, we 

introduced a use case in which we provided visual navigation using AR HMDs in orthopedic 

surgical procedures for the placement of pedicle screws. Two different tools containing 

retro-reflective markers were attached to a phantom spine model SP  and a surgical drill SD

to enable visual navigation. We used an O-arm imaging system and acquired a pre-operative 

computed tomography (CT) scan from the spine model. This data was used to plan the 

trajectories that the surgeons must follow during the placement of the pedicle screws. In 

addition, we added four metallic balls (BBs) to the phantom spine model that were visible in 

the CT and by direct observation. This action allowed us to determine the spatial relationship 

between the tool attached to the spine model SP  and the image space (I). The spatial 

relationship between the different coordinate systems involved in this use case is depicted in 

Figure 11.

After successful tracking of the retro-reflective tools, the pose of the phantom model in 

world coordinates can be computed using the tool pose TSP
A , estimated with the proposed 

framework, and the HMD’s self-localization data TH
W  as follows:

TI
W = TH

W ⋅ TA
H ⋅ TSP

A ⋅ TI
SP

(19)

Likewise, the pose of the surgical drill in world coordinates can be acquired using the tool 

pose TSD
A  utilizing:

TD
W = TH

W ⋅ TA
H ⋅ TSD

A ⋅ TD
SD

(20)

This procedure requires calculating the transformation matrix from the AHAT camera to 

HoloLens view space TA
H . For this purpose, we designed a 3D-printed structure composed 

of a retro-reflective tool, SM, and four BBs to register the AHAT and view spaces (see Figure 

1a). To calculate the position of the real BBs in the tracker space, we performed a pivot 

calibration. The spatial information extracted from the real BBs during the pivot calibration 

served to generate a set of virtual replicas that were aligned to their real counterparts. 
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A computer keyboard enabled the user to control the 6 DoF of the virtual objects in the 

HoloLens world space TM
W . After proper alignment of the real and virtual objects, the 

spatial relationship between the AHAT camera and the view space TA
H  was computed as 

follows:

TA
H = TH

W −1 ⋅ TM
W ⋅ TSM

A −1

(21)

5.1 Surgical Navigation

To further evaluate the performance of our surgical navigation system, we designed a total 

of three phantom models to replicate traditional k-wire placement procedures (Figure 1b). 

These models were composed of a 3D printed base containing six cylindrical shapes with 

conical tips covered using silica gel (see Figure 1b). After constructing the phantom models, 

we collected CT volumes from them to generate their virtual replicas. An experienced 

surgeon later used the CT volumes to plan multiple trajectory paths aiming at the tips of the 

individual cones. A total of two different drilling paths were planned for every cone, leading 

to a total of 12 trajectories per phantom model. These trajectories defined the optimal path in 

which a k-wire should be inserted and were overlayed on the phantom using the HoloLens. 

In addition to the trajectories, virtual indicators in the form of concentric circles were 

presented over the surface of the phantom. The virtual prompts indicated the entry point that 

would lead to the optimal trajectory in the physical model (Figure 1c).

Seven surgeons took part in this portion of the study. Every participant performed an 

eye-tracking calibration procedure before the start of the experiment. After calibration, 

participants were asked to complete the registration procedure described in Equation 21 

and depicted in Figure 1a. Once the virtual and real models were registered and the spatial 

relationship between the AHAT camera and the view space was computed, the pre-planned 

trajectories were presented to the participants using the AR HMD. Before collecting data 

for evaluation, every participant was allowed to perform multiple k-wire insertions in one 

of the three models to get familiar with the system. After this step, the remaining models 

containing 24 drilling paths were used for formal testing. To measure the accuracy achieved 

by the study participants, a registration step between pre- and post-operative imaging was 

performed. This step involved the acquisition of CT volumes from the models and allowed 

comparing the differences between the planned and real trajectories. The translation and 

angular errors between the optimal and real trajectories were used as metrics for the 

performance evaluation.

Among the 168 trials performed by the 7 participants, a total number of 16 were not 

considered for evaluation because the participants interfered with the line of sight of the 

tracking system. Overall, participants achieved a mean translation error of 2.79mm ± 1.52 and 

a mean orientation error of 4.56∘ ± 2.49. Results from this experiment, summarized in Figure 

12, showed comparable to the accuracy values reported by other AR-based navigation 

systems for pedicle screw placement [18], [26], [27].
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Although this experiment shows that the proposed methods provide comparable tracking 

accuracy and stability to successfully performing the insertion of the k-wires, the latency 

observed between the data processing using the workstation and the visualization of the 

optimal trajectories using the HMD seems to contribute to the observation of uncertainty 

during the alignment and localization of the targets. Furthermore, the elastic and smooth 

surface of the silicone gel used to create the test models replicates the challenges brought by 

percutaneous surgeries where few landmarks are visible and the working surface is soft and 

deformable. These properties increase the difficulty of performing the drilling task and the 

accurate insertion of the k-wire. However, the scores reported by the users demonstrate the 

performance of the proposed system when these challenges exist.

5.2 Pointing Accuracy

To explore the transferability of the proposed framework to more general human domains, 

we conducted a second study in which participants were presented with virtual points 

displayed over a flat surface and asked to mark the position where the virtual point was 

perceived. The experimental setup for this study, shown in Figure 13, consisted of a 3D 

printed structure including a rigid tool connected to a flat working area. The working 

area, with an effective size of 230 × 170mm, included an extra layer composed of glass and 

aluminum oxide to maximize the planarity of the surface. On top of this surface, a grid 

paper was used to record the participant’s answers. The grid paper was specially designed 

to contain two sets of points for registration. The primer set, Ai , was used to perform 

registration between the paper and the tracking system. The second set, Bi , was used to 

calculate the differences between the perceived and target position of the points presented to 

the participants.

Before starting the experiment, a registration procedure was conducted to calculate the rigid 

transformation TP
SP between the paper P  and the rigid tool SP (see Figure 13). For every point 

in Ai, a tracked pointer was used to indicate the circle’s center. Simultaneously, the NDI 

tracking system was used to estimate the position of the tool SP and the passive tracking 

pointer SPo. The three-dimensional position of the registration point with respect to SP was 

calculated using:

tAi
SP = TSP, i

NDI −1 TSPo, i
NDI ttip

SPo

(22)

Using the set of rigid transformations tAi
SP for the points in Ai it is then possible to calculate 

TP
SP.

During task performance, a set of random points were generated inside the working area 

with location ti
P = xi, yi, 0,1 T . The position of these points, expressed in world coordinates, 

can be calculated using the pose of the marker SP tracked with the AHAT camera TSP
A  using:

ti
W = TH

W ⋅ TA
H ⋅ TSP

A ⋅ TP
SP ⋅ ti

P
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(23)

After the computation of this value, a virtual point would then be presented to the 

participants, which will draw the point at their perceived position in the grid paper.

This portion of the study included ten participants (six male and four female). All of 

the participants, researchers in biomedical engineering, ranged in age from 22 to 28. 

Before starting their participation, every user was instructed to complete the calibration 

process of the HMD to adjust for their respective inter-pupillary distance. To familiarize 

the participants with the task, a training set of twenty points was presented to them. The 

points contained in the set were randomly generated. After completion of the training stage, 

participants were instructed to indicate the position of an evaluation set containing twenty 

randomly generated points. Once the data was collected from the participants, the grid paper 

was scanned and the data digitalized. To achieve this, we used the set of registration points 

Bi  and traditional image processing methods to extract the position of the perceived points 

marked in the grid paper. To estimate the error between every pair of target and perceived 

points, we computed the Euclidean distance.

Overall, participants perceived and reported the virtual points to be positioned within 

a mean distance of 1.71mm ± 1.23 from the target points. These results suggest that the 

proposed framework could be used to provide visual guidance in applications that enable 

the observation of errors under 2mm. Examples of these are instructional, manufacturing, 

industrial, and training applications. A more detailed description of the results of this study 

is presented in Figure 14.

6 Discussion

This work introduces a framework to track retro-reflective markers using the built-in 

cameras of commercially available AR HMDs. Results regarding the error distribution of 

depth detection demonstrate that the error of the AHAT depth data can be modeled using a 

normal distribution. This normal distribution increases its standard error as a function of the 

detected depth (see Figure 5). Results from the test of tracking accuracy demonstrate that the 

integration of Kalman filters contributes to the reduction of the IQR, as depicted in Table 

1. Therefore, they contribute to improve the precision of the methods proposed. As a result 

of the integration of the Kalman filters, this framework showed to be capable of achieving 

a tracking accuracy of 0.09 ± 0.06mm on lateral translation, 0.42 ± 0.32mm on longitudinal 

translation, and 0.80 ± 0.39∘ on rotation around the vertical axis (see Figure 7 and Table 1). 

These results are more accurate and precise than those achievable using traditional feature-

based tracking algorithms such as the ArUco and ChArUco markers. Although it can be 

expected that feature-based tracking algorithms provide lower accuracy and precision, they 

are frequently used to enable the optical tracking of tools in AR applications. Therefore, they 

were considered during our study. Of note, our statistical analysis did not reveal statistical 

significance when comparing the tracking results of the NDI tracking system and the ArUco 

markers for 20 mm movements on the x-axis. However, when observing the distribution of 

the tracking results of the ArUco markers, the precision provided by this type of marker is 
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worse than the one observed when using the NDI tracking system and the two variants of the 

proposed framework.

In addition, the proposed framework was demonstrated to be capable of tracking individual 

tools containing up to 4 retro-reflective markers at a frame rate of 172 Hz. This tracking 

frame rate remains over 50 Hz even when five different tools containing multiple retro-

reflective markers are detected simultaneously. These reported speeds are faster than that of 

traditional feature-based tracking techniques such as ArUco (35 Hz) and ChArUco (33.2 Hz) 

markers. This frame rate is even higher than the frame rate of the AHAT camera (45 Hz). 

Therefore, allowing for tracking multiple targets before having a new sensor frame available.

In contrast to existing works, the proposed framework only uses the ToF camera of the 

HoloLens 2 without the addition of external components. Moreover, when compared to 

methods that use the grayscale environmental cameras of the headset for tool tracking, 

several benefits support using the depth sensor when hand distance tracking is needed. 

In this case, the tracking distance from 250 mm to 750 mm provided by the AHAT 

sensor nicely satisfies the specific application’s needs. At the same time, the LF and 

RF cameras have short baseline distances and focal lengths, restricting their performance 

at near distances [13]. In addition, using the AHAT camera provides an FoV of ≈ 90∘, 

while the overlap of the LF and RF cameras is smaller than 60∘ in width. Moreover, the 

proposed algorithm does not require the addition of external infrared light to enhance the 

visibility of the passive markers. Therefore, mitigating the possibility of interfering with the 

functionalities of the HMD that rely on the use of this type of light, including environmental 

reconstruction and hand tracking.

In terms of applicability, the use case for the placement of k-wires during orthopedic 

interventions demonstrates its potential use in medical environments during the performance 

of surgical procedures [18], [26], [27]. Although the objective of this study was to 

investigate the accuracy that the users of the proposed framework could achieve, an 

interesting effect derived by visual inspection of the results is that participants that achieved 

smaller errors in translation depicted larger errors in orientation (e.g., participant 7) and vice 

versa (e.g., participant 5). This could be an indication that certain users pay more attention 

to one of these parameters during the alignment process. Similar observations have been 

noticed in the literature from works that investigate how the shape of an object influences 

alignment tasks in mixed and virtual reality applications [28]. In addition, results from the 

pointing accuracy test suggest that the alignment errors can be task-related. In this regard, 

the errors showed a 1mm decrease in the error from 2.79mm in the medical scenario to 1.71mm
in the pointing accuracy test. However, further studies would need to be conducted in this 

regard.

Although this work introduces a method to track retroreflective markers using the built-in 

sensors of the Microsoft HoloLens 2, the applicability of such a framework should not be 

exclusive to this headset. In this regard, if a similar device contains a depth sensor, and the 

depth information is available, it would only be necessary to estimate the transformation 

between the headset and the depth sensor (TH
A in Figure 11) to adopt the proposed 

framework. Although the manufacturer of the HoloLens provides an initial estimation, the 
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method described in Section 3 can be used to find this spatial relationship when using 

other devices. This could be achieved with the help of a passive tool containing a set of 

retro-reflective markers and a 3D-printed structure like the one depicted in Figure 1a.

Limitations

The utility of the HMD’s depth camera for tracking and detecting retro-reflective markers 

presented in this work led to promising results in terms of precision and stability. However, 

certain limitations associated with the proposed framework exist. In this regard, compared 

to commercially available tracking systems, the accumulated error observed using our 

method increases as a function of the depth in which the tools are tracked. However, 

this accumulated error remains less than 1 mm at distances between 300 to 600 mm. In 

the future, this limitation caused by the precision achieved by the built-in depth sensor of 

the HMD could be addressed by modeling the error and designing an error compensation 

algorithm. In addition, although the camera calibration and registration procedure presented 

in Section 3.2 was conducted in a controlled environment, the cameras’ low resolution and 

high distortion contributed to the observation of errors. In the case of the HoloLens 2, and 

with the only exception of the LF-RF camera pair, the LF and main cameras are registered 

to the AHAT camera. However, as illustrated in the manuscript, the AHAT camera covers 

120° of angular range with only 512 pixels, leading to a small spatial resolution. In addition, 

the AHAT camera presents strong distortion, which may bring additional difficulties in 

detecting the corners in the checkerboard. Furthermore, the planar marker has several local 

minima during localization [29], which would further increase the ambiguities. Any mistake 

in estimating the checkerboard’s pose would contribute to an incorrect estimation of the 

three-dimensional corner points, thus increasing the registration error. When combined, all 

these errors are propagated through the transformation chain between the cameras, leading 

to the registration errors reported in this work. While the framework presented in this work 

only relies on the AHAT sensor, if the application would require the use of multiple cameras 

and observation of smaller errors, alternative methods of camera calibration and registration 

must be considered to reduce the observation of errors.

Another limitation of the proposed methods is the latency observed when presenting the 

virtual content to the user after the achievement of tool tracking. This issue currently 

represents the most significant challenge in providing visual information that could enable 

stable and reliable navigation. As the proposed framework relies on the quality of the 

network to transfer the data collected, the incorrect synchronization between the tool 

tracking result TSP
A  and the HMD’s self-localization data TH

W  could lead to the observation of 

inconsistencies in the content displayed. These differences would be more noticeable when 

using wireless networks, where the sensor data transfer delay is longer and the frame rate is 

lower < 12fps . More importantly, the results presented in this work model the properties 

of the AR HMD used during the experiments. Additional studies must be conducted to 

investigate if the results are consistent for multiple devices of the same type.
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7 Conclusion

This paper proposes a framework that uses the built-in cameras of commercially available 

AR headsets to enable the accurate tracking of passive retro-reflective markers. Such a 

framework enables tracking these markers without integrating any additional electronics into 

the headset and is capable of simultaneous tracking of multiple tools. The proposed method 

showed a tracking accuracy of approximately 0.1 mm for translations on the lateral axis 

and approximately 0.5 mm for translations on the depth axis. The results also show that 

the proposed method can track retro-reflective markers with an accuracy of less than 1°
for rotations. Finally, we demonstrated the early feasibility of the proposed framework for 

k-wire insertion as performed in orthopedic procedures.
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Fig. 1. 
(a) Calibration model used to align a set of virtual and real spheres. This model enables the 

registration of the observer’s view and the image sensors. (b) Our tracking system enables 

the localization of surgical tools and anatomical models by attaching retro-reflective passive 

markers without integrating any other external trackers or electronics. (c) A surgeon can then 

use this method to insert surgical k-wires assisted by virtual trajectories displayed using an 

Augmented Reality Head-Mounted Display.
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Fig. 2. 
The spatial relationship between the built-in cameras of the HoloLens 2. The camera spaces 

of the RGB, LF, and RF cameras are displayed using frustums. The camera space of the 

AHAT camera is presented using a one-meter radius sphere. The FoV of all the cameras is 

depicted as height × width.
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Fig. 3. 
The proposed framework comprises three main stages. i) The three-dimensional position 

of all the retro-reflective markers observed using the AHAT camera is extracted from the 

scene. ii) The detected markers are grouped in subsets to identify particular arrangements 

corresponding to specific tools. iii) The pose T i of the identified tools is extracted from 

subsequent image frames.
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Fig. 4. 
The proposed framework combines the reflectivity and depth images of the AHAT camera 

to detect and extract the three-dimensional position of passive retro-reflective markers. The 

marker detection stage facilitates identifying and defining individual tools composed of 

multiple spherical markers. This approach allows localizing and recognizing multiple tools 

in the scene without modifying the AR-HMD.
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Fig. 5. 
(a) Experimental setup used to estimate the noise distribution provided by the built-in depth 

camera on the HMD. (b) The point-to-plane distance error distribution at approximately 

200mm, 500mm, and 700mm depths. (c) The standard error of depth detection for every 

pixel versus depth. The vertical lines depict the mean depth at which the target was detected.
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Fig. 6. 
Experimental setup for tracking accuracy using ArUco and ChArUco (left) and retro-

reflective (right) markers.
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Fig. 7. 
Experiment results of tool tracking accuracy assessment of our infrared depth camera and 

Kalman filter-based tracking method, compared with commercial IR and visible light marker 

tracking methods. (a),(d) Distribution of detected moving distances when moving optical 

platform 1 and 20 mm along x-axis over 20 repetitive tests. (b),(e) Distribution of detected 

moving distances when moving the optical platform 1 and 20 mm along the z-axis. (c),(f) 

Distribution of detected rotation angle when rotating the optical platform 10 and 50 degrees.
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Fig. 8. 
Experiment results of tool tracking accuracy assessment of our infrared depth camera and 

Kalman filter-based tracking method, comparing with commercial IR tracking method and 

visible light marker tracking methods. (a),(c) Detected moving distances when moving 

optical platform 1 mm along x- and z-axis. (b),(d) Detected moving distances when moving 

optical platform 20 mm along x- and z-axis. (e),(f) Detected rotation angle when rotating the 

platform 10 and 50 degrees.
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Fig. 9. 
The global tracking accuracy of the AHAT tracking method compared to NDI Polaris 

Spectra. (a) Moving distance detection error along the z-axis. (b) Moving distance detection 

error along the x-axis at 500mm depth.
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Fig. 10. 
Frame rate and latency results of the proposed algorithm using the AHAT camera. (a) 

Tool detection frame rate under different conditions. Every series depicts several passive 

tools containing four retro-reflective markers detected using the AHAT camera. Different 

tools are loaded to evaluate the detection frame rate when multiple markers are observed. 

If more tools are defined than the number of markers observed, the system will indicate 

that the respective tool is not detected. (b) Movement detection of synchronously acquired 

localization data from the NDI tracking system and the proposed method. The target is kept 

in motion back and forth using a linear stage.
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Fig. 11. 
The spatial relationship between different components is required to provide surgical 

navigation using the proposed framework.
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Fig. 12. 
(a) Translation and (b) orientation errors for k-wire insertion using visual guidance and the 

proposed framework. The results correspond to the seven surgeons that participated in the 

study.
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Fig. 13. 
Experimental setup for the pointing accuracy study. Participants of this study were asked to 

indicate the perceived position of a set of target points displayed over the surface of a grid 

paper.
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Fig. 14. 
Translation errors for the pointing accuracy task using visual guidance and the proposed 

framework. The results correspond to the ten participants recruited during the study.
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