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Abstract

Understanding elastic instability has been a recent focus of concentric tube robot research. 

Modeling advances have enabled prediction of when instabilities will occur and produced metrics 

for the stability of the robot during use. In this paper, we show how these metrics can be used 

to resolve redundancy to avoid elastic instability, opening the door for the practical use of higher 

curvature designs than have previously been possible. We demonstrate the effectiveness of the 

approach using a three-tube robot that is stabilized by redundancy resolution when following 

trajectories that would otherwise result in elastic instabilities. We also show that it is stabilized 

when teleoperated in ways that otherwise produce elastic instabilities. Lastly, we show that the 

redundancy resolution framework presented here can be applied to other control objectives useful 

for surgical robots, such as maximizing or minimizing compliance in desired directions.

1 Introduction

Concentric tube robots have garnered considerable interest in the continuum and surgical 

robotics communities in recent years. They can achieve bending and elongation via the 

elastic interactions of their nested, precurved tubes (see Fig. 1), effects which are desribed 

by mechanics-based models (Rucker et al. 2010; Dupont et al. 2010). These devices have 

been applied to a number of minimally invasive surgical applications because of their small 

diameter and dexterity. For a review of concentric tube robotics research and applications, 

see (Gilbert et al. 2016).

Despite many recent advancements in design, modeling, control, and practical applications, 

concentric tube robots have thus far been limited to maximum curvatures far below the 

theoretical upper limit provided by Nitinol’s maximum recoverable strain. Yet higher 

curvatures are often desirable, because they enable the robot to work in smaller, more 

constrained spaces. The reason concentric tube robots have been limited to curvatures far 

below the maximum recoverable strain limit of the material is that highly curved tubes, 

when nested within one another and axially rotated, store torsional elastic energy. If the 

tubes rotate too far, they will exhibit an elastic instability, rapidly releasing this energy and 

“snapping” from one configuration to another. This snapping effect has recently been studied 
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from design (Hendrick et al. 2015; Bergeles et al. 2015; Luo et al. 2018; Ha et al. 2014) and 

modeling (Gilbert et al. 2016; Ha et al. 2016) perspectives. Actuator motions likely to create 

snapping can now be predicted, and metrics for stability have been derived.

To date, elastic stability-aware control has primarily been achieved in an a priori, motion 

planning sense. An early metric for stability was torsional windup (Bergeles and Dupont 

2013), which has been used in planning stable paths (Bergeles et al. 2015). Gilbert et 

al. devised a relative elastic stability metric and used it to produce stability maps for 

planning purposes (Gilbert et al. 2016). These examples of stability-aware planners do not 

run rapidly enough to avoid snapping during real-time teleoperation. The goal of this work 

is to integrate instability avoidance into a real-time controller so that a user can control the 

robot safely.

Real-time control of concentric tube robots has been an important research topic in recent 

years. Several methods involve precomputation of the robot’s forward kinematics or path 

plans; the inverse kinematics can then be solved online at each time step using root-finding 

methods (Dupont et al. 2010) or a local inverse kinematics solver such as damped least 

squares (Torres et al. 2015). Local Jacobian-based methods seek to solve the inverse 

kinematics online with no need for precomputation. For example, Burgner et al. proposed 

a weighted damped least squares (WDLS) approach that incorporates tracking, damping, 

and joint limit goals (Burgner et al. 2014). This is an efficient Jacobian-based approach 

that can be solved at each time step with low computational burden. Other examples of 

Jacobian-based damped least squares control of concentric tube robots include (Fagogenis 

et al. 2016; Xu et al. 2013). Our proposed approach in this work uses a similar WDLS 

approach to (Burgner et al. 2014) that also incorporates instability avoidance and stiffness 

goals.

These online inverse kinematics methods have also been used for instability avoidance. 

Leibrandt et al. have explored rapid, online motion planning for concentric tube robots 

while integrating elastic stability into the framework (Leibrandt et al. 2015, 2017a). While 

it has been shown that it is possible to compute these replanning approaches rapidly enough 

for use in real time control via parallelized computing, they are computationally intensive 

and often require some a priori knowledge of the environment and/or the desired path. 

Implementation of these approaches typically requires multi-core parallel computing or 

graphical processing unit (GPU) computing methods. In contrast, the redundancy resolution 

approach we present in this paper is computationally inexpensive and requires no a priori 
information. Of course, the tradeoff for these advantages is that a redundancy resolution 

approach like ours makes no claims of global optimization to a desired final path—it 

will only locally optimize among competing objectives at each time step—but it is useful 

for teleoperation when anatomical constraints are not accurately known and/or the user’s 

intended path is not known a priori. The ability of our method to move the robot away from 

unstable configurations is also an advantage over the rapid planning method in (Leibrandt 

et al. 2017a); if the user enforces a particular trajectory, it is possible that the online inverse 

kinematics solver cannot escape local minimum due to the formulation of the stability 

constraint. Leibrandt et al. also used the online inverse kinematics solver to integrate 

dexterity goals; the dexterity measure penalizes columns of the Jacobian based on joint 
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limits, anatomical collisions, and configuration stability (Leibrandt et al. 2017b). Since we 

employ a computationally efficient Jacobian-based approach, the controller moves the robot 

away from instability using knowledge of each joint’s effect on the robot’s stability. This is 

a noted limitation of (Leibrandt et al. 2017b) that arises from the high computational cost 

of the rapid planning GPU approach. Additional extensions in this paper beyond the work 

of (Leibrandt et al. 2017b,a) include the integration of stiffness objectives, and experimental 

evaluation on a physical robot prototype. A final distinction is our use of a stability metric 

derived from first principles (Gilbert et al. 2016), whereas Leibrandt et al. used a torsional 

windup stability metric (Bergeles and Dupont 2013).

Khadem et al. employ a redundancy resolution approach to integrating instability avoidance 

into an online concentric tube robot controller (Khadem et al. 2019). They use a gradient 

projection method in which the secondary control goal is to reshape a force-velocity 

manipulability ellipsoid toward a sphere to ensure that the Jacobian is full rank. Our method 

uses a stability metric that is derived from first principles which enables the controller to 

enforce an exact stability threshold. In addition, our use of a WDLS redundancy resolution 

formulation enables the controller to override user trajectories that will make the robot 

unstable, whereas null-space methods must always satisfy the primary tracking task even 

when that task could cause instability. An additional advantage of our approach is that 

it pushes the system away from instability, whereas approaches that seek to iteratively 

maximize manipulability, like that of Khadem et al., can sometimes push the system toward 

instability.

It is also desirable to control the stiffness of a concentric tube robot in real time, based on 

application requirements. Recognizing this, Mahvash and Dupont proposed the first stiffness 

controller for concentric tube robots (Mahvash and Dupont 2011). They use a deflection 

model to control the robot tip stiffness, based on real-time measurements of tip location 

made with a magnetic tracking coil. In some applications, it may be advantageous to keep 

an open lumen in the concentric tube robot for surgical instruments or suction/injection, 

rather than consuming it with such a tracking coil and image-based tip position sensing may 

be unavailable or insufficiently accurate. Yet control of tip mechanical impedance may still 

be useful, such as to enable the robot to gently interact with delicate tissues or forcefully 

interact with tissue (as must occur when a needle is being driven through tissue), as has 

been shown in the past with tendon-operated and multi-backbone continuum robots (e.g., 

see Kim et al. (2014); Bajo and Simaan (2016)). One method for controlling tip stiffness is 

to examine its unified force-velocity manipulability ellipsoid (Khadem et al. 2018, 2019). 

In these works, the controller seeks to reshape the force-velocity manipulability ellipsoid in 

order to increase its force application capabilities. Our approach seeks to optimize stiffness 

using the compliance matrix at the tip of the robot (although different metrics could easily 

be incorporated into the framework).

The redundancy resolution framework we present in this paper enables both stiffness tuning 

and instability avoidance. Redundancy resolution has previously been applied to other kinds 

of continuum robots to accomplish a variety of objectives. For example, controllers for 

hyper-redundant robots have been developed that simultaneously command both end effector 

pose and backbone shape (Chirikjian and Burdick 1994, 1995). Redundancy resolution has 
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also been used to reduce actuation forces of tendon-actuated (Camarillo et al. 2008; Yip and 

Camarillo 2014) and variable diameter continuum robots (Abah et al. 2018), avoid buckling 

in multi-backbone continuum robots (Simaan 2005), improve stability in magnetically 

controlled continuum catheters (Edelmann et al. 2017), avoid joint limits in multi-backbone 

robots (Bajo et al. 2012) and robots with multiple rolling joints (Berthet-Rayne et al. 2018), 

and reduce visual occlusion of the endoscope field of view during surgery (Sarli and Simaan 

2017).

Toward the goal of enabling higher curvatures than have traditionally been used in 

continuum robot prototypes (i.e., to facilitate the stable use of robots with elastic instabilities 

in their workspaces) while also achieving stiffness objectives, we present a new redundancy 

resolution technique in this paper. Our approach makes several contributions with respect to 

existing literature. Compared to rapid planning and parallelized kinematics approaches, our 

approach has low computational burden by locally optimizing stability (and/or stiffness) at 

each servo cycle with an efficient Jacobian-based WDLS method. Our method also requires 

no a priori knowledge of the planned path. We use a stability metric derived from first 

principles which exactly defines when a robot is stable or unstable, as well as how far a 

given configuration is from instability. Our redundancy resolution approach is formulated 

with the joint-specific relationship of configuration to stability and uses this knowledge to 

actively move the robot away from instability only when necessary. A preliminary version 

of some results in this paper was presented in conference workshop form in (Anderson et al. 

2017). Extensions in the current paper beyond the results in (Anderson et al. 2017) include 

more extensive simulation results, the integration of stiffness objectives into the framework, 

and experimental results on a physical robot prototype.

2 Redundancy Resolution Algorithm

To achieve redundancy resolution with multiple control objectives for concentric tube 

robots, we use a weighted damped least squares control strategy. This section describes 

the objective function and resulting update law that incorporate instability avoidance and 

stiffness tuning objectives into resolved rates control.

2.1 Choice of Joint Space

In this work, we use the mechanics-based model of concentric tube robots described in 

(Rucker et al. 2010; Dupont et al. 2010). For a concise form of the equations see (Gilbert 

et al. 2016). The simulations and experiments in this paper use a three-tube, six-degree-of-

freedom concentric tube robot (see Fig. 2). Such a robot has a joint space q given by,

q = ψ1L ψ2L ψ3L r1 r2 r3
T,

(1)

where ψiL is the angle between the material frame of the ith tube and a Bishop frame RB at 

the tip of the robot, and ri is the exposed length of each tube, or
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r1 = β1 + L1 − β2 − L2
r2 = β2 + L2 − β3 − L3 .
r3 = β3 + L3

(2)

The inner, middle, and outer tubes correspond to subscripts 1, 2, and 3, respectively.

We use tip angles ψL as joint variables here because they correspond to a unique 

configuration of the robot, which enables us to solve a single differential equation to 

determine the shape of the robot, rather than performing a shooting method on the 

differential equation, as would be needed if base angles were used. Note that after solving 

the initial value problem differential equation, the base angles ψβ are known and can be 

commanded to the actuators. Furthermore, if base angles are used, the robot’s configuration 

is not guaranteed to be uniquely specified, and can depend on actuation history (Hendrick et 

al. 2015; Gilbert et al. 2016).

Throughout this paper, we use the elastic stability measure proposed in (Gilbert et al. 

2016). We give this stability measure the symbol S, a scalar that is positive when the robot 

configuration is stable and negative when the robot configuration is unstable. Physically, the 

robot goes unstable when there is a direction in the solution space in which the robot can 

move to a lower energy state. This is identified mathematically by a negative eigenvalue 

of the second variation operation of the energy functional of the robot’s twist angles. See 

(Gilbert et al. 2016) for a complete derivation and evaluation of the metric.

2.2 Redundancy Resolution Framework

During resolved rates teleoperation, the surgeon commands a desired trajectory, which is 

converted to a desired task space velocity ẋd ∈ ℝm × 1. The robot’s Jacobian J ∈ ℝm × n maps 

instantaneous joint velocities q̇ ∈ ℝn × 1 to instantaneous task space velocities: Jq̇ = ẋd. Note 

that we use the hybrid Jacobian (Murray et al. 1994) throughout this paper, with the desired 

task space velocity specified in the robot’s base frame coordinates.

To control a concentric tube robot to track a sequence of desired tip coordinates, we use 

the weighted damped least squares framework (Wampler II 1986), into which we previously 

incorporated tracking, damping, and joint limits (Burgner et al. 2014). In this work, we 

use the same tracking, damping, and joint limit goals as Burgner et al.; our contribution to 

this framework is the addition of instability avoidance and desired stiffness as additional 

objectives within this algorithm.

The damped least squares framework defines a cost function and applies weights to these 

potentially competing objectives. The cost function H, using the notation from (Burgner et 

al. 2014), is given as,

H = 1
2 Jq̇ − ẋd

⊤W0 Jq̇ − ẋd + ∑
i = 1

p
q̇ − vi

⊤Wi q̇ − vi ,
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(3)

where Wi are non-negative symmetric weighting matrices. The first term penalizes any q̇
which does not follow the surgeon’s command, while subsequent terms can be used to 

damp high velocities (if vi is set to zero), to penalize joint configurations that are near joint 

limits, or to encourage joint velocities in the direction of the gradient, vi, of some objective 

function. The necessary condition for q̇ to minimize H is found by setting ∂H
∂q̇ = 0, and can 

be shown to be

q̇ = J⊤W0J + ∑
i = 1

p
Wi

−1
J⊤W0ẋd + ∑

i = 1

p
Wivi .

(4)

In this paper, we will use a cost function and update law with standard tracking, damping, 

and joint limit avoidance terms that will be augmented with novel instability avoidance and 

stiffness tuning terms. The cost function is given by

H = 1
2( Jq̇ − ẋd

⊤W0 Jq̇ − ẋd

Tracking 
+ q̇⊤WDq̇

Damping 
+ q̇⊤WJq̇

 Joint Limit Avoidance 
+ q̇ − vi

⊤Wi q̇ − vi

Secondary Goal 
),

(5)

which can again by minimized by setting ∂H
∂q̇ = 0. The resulting instantaneous joint velocity 

vector that minimizes H is

q̇ = J⊤W0J + WD + WJ(q) + Wi(q) −1 J⊤W0ẋd + Wi(q)vi .

(6)

We will examine each term in this cost function and resulting update law in subsequent 

subsections. In particular, the instability avoidance and stiffness tuning terms are an 

important contribution of this work. The gains used in the algorithm are summarized in 

Table 1.

2.2.1 Tracking—The first term in the cost function (5) penalizes joint velocities q̇ that 

differ from those specified by the surgeon. The desired task space velocity is calculated 

using the current tip position ptip given by the kinematic model and the desired tip position 

pdes from the surgeon interface:

e=pdes − ptip

ẋdes  = vmag 
e
e

(7)

where vmag is a piecewise continuous function of the magnitude of e given by
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vmag =
vmin e ≤ emin

v emin < e < emax

vmax e ≥ emax

.

(8)

where

v = vmax − vmin
emax − emin

e − emax + vmax

(9)

We also set a converged radius ρ, so that if ∥e∥ < ρ, ẋdes = 0. The control gains for selecting 

the task space velocity are found in Table 2. The tracking weighting matrix is defined as

W0 = α0I3 × 3,

(10)

where α0 is a proportional tracking gain. Note that if tracking in a certain direction is more 

important than others, the elements of this weighting matrix could be adjusted accordingly 

by using a higher gain for these directions.

2.2.2 Damping—The second term in the cost function (5) penalizes high joint velocities 

q̇, adding numerical damping. The damping term has a weighting matrix defined by

WD = αD
bRI3 × 3 0

0 bTI3 × 3
,

(11)

where αD is an overall proportional damping gain, bR is a rotational damping gain, and bT 

is a translational damping gain. We distinguish bR and bT due to the different rotation and 

translation units.

2.2.3 Joint Limit Avoidance—The third term in the cost function (5) penalizes joint 

velocities q̇ that violate joint limits. Here, we define joint limits based on the exposed length 

of each tube. For each tube, we define a minimum and maximum exposed length, ri,min and 

ri,max. In the simulations that follow, we make the choice to prevent a given tube from being 

retracted beyond the tip of the tube surrounding it, meaning that all ri,min must be greater 

than zero. Note that this joint limit definition could be relaxed if desired; it is not an intrinsic 

part of the algorithm. Specifically, we set all ri,min to 1 mm and all ri,max to 40 mm for the 

simulation studies. For the robotic experiments, we define the maximum limits based on the 

robot actuation unit travel limits. To avoid these joint limits, we define a joint limit penalty 

function as
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J(r) = ∑
i = 1

3 1
4

ri, max − ri, min
2

ri, max − ri ri − ri, min
.

(12)

which was inspired by results in (Chan and Dubey 1995). We then define a weighting matrix 

as,

WJ(q) = αJdiag 1 + ∇Jq

(13)

where

∇Jq = 0 0 0 Jr1 Jr2 Jr3 ,

(14)

Jri = ∂J
∂ri

, and αJ is a proportional joint limit avoidance gain. We do not enforce rotational 

joint limits, so the first three elements of ∇Jq are zero. With this strategy, the joint limit 

avoidance term dominates the cost function when a joint value ri approaches its limits.

2.2.4 Instability Avoidance—When resolving redundancy to avoid elastic instability, 

the final term in the cost function (5) (i.e., the secondary goal) is designed to dominate the 

cost function when the robot configuration approaches instability as given by the metric S, 

derived in (Gilbert et al. 2016). We define an instability avoidance weighting matrix as

WS = e
1

S − S* − 1 I6 × 6,

(15)

in which each diagonal element approaches infinity as S approaches the stability threshold 

S*. In such cases, we want the update law to command joint velocities that move the robot 

away from unstable configurations. To do so, we define

vS = αS
∂S
∂q = αS ∇Sq .

(16)

By choosing the proportional gain αS > 0, the system will ascend the stability gradient when 

the instability avoidance term dominates the cost function, moving the robot to a more 

stable configuration. We numerically compute the stability gradient ∇Sq using centered finite 

difference (translational step = 0.01 mm, rotational step = 0.05°). When computing this 

gradient, we take advantage of our choice of joint variables (see section 2.1). Controlling tip 
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angles and solving the kinematic model as an initial value problem with a single differential 

equation improves computational speed.

The instability avoidance weighting matrix (15) is designed such it does not impact the 

control law (6) when the robot’s stability S is far from the stability threshold S*. In these 

cases, the diagonal elements of WS are nearly zero. The closer the stability metric is to 

the threshold, the more the instability avoidance term dominates the control law, causing 

the controller to steer the robot toward more stable configurations. This approach does 

not seek to continually maximize stability; rather, instability avoidance is only employed 

when necessary, allowing the controller to use as much of the stable configuration space as 

possible. Note that when this term is used in the remainder of the paper, we will refer to (6) 

as the “instability avoidance control law.”

2.2.5 Stiffness Tuning—When resolving redundancy to tune stiffness, we set a 

stiffness-based secondary goal in the cost function (5). To accomplish this, we make use 

of the concentric tube robot’s compliance matrix C ∈ ℝ6 × 6, which maps a tip wrench 

ω ∈ ℝ6 × 1 to a tip deflection δ ∈ ℝ6 × 1 as Cω = δ (see (Rucker and Webster III 2011)). 

In surgical scenarios, it is common for the robot to experience tip loads; therefore, we will 

utilize Cf, which is the top left 3 × 3 submatrix of C that maps a force f to a position 

deflection δx.

While a variety of stiffness objectives can be defined based on this tip stiffness matrix, in the 

simulations that follow we simply use the maximum singular value of Cf, for which we use 

the symbol σC. More precisely, we have that

Cf = UΣV⊤

(17)

and define σC as

σC ≜ max(diag(Σ)) .

(18)

This means that when σC is maximized, the system will attempt to achieve configurations 

with maximal compliance in its most compliant direction. On the other hand, when σC 

is minimized, the system will attempt to achieve configurations with minimal compliance 

in its most compliant direction. Alternative metrics for stiffness tuning include minimizing 

tip deflection (if the applied load vector is known) or optimizing stiffness in a particular 

direction (e.g., axial or lateral stiffness, which could be beneficial for different applications).

We define a compliance weighting matrix as

WC = kCI6 × 6 .

(19)
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In order to maximize or minimize σC, we define a joint space velocity vector vC as

vC = αC
∂σC
∂q = αC ∇σC .

(20)

which points along the positive gradient of σC if the user defines αC > 0 and along the 

negative gradient of σC if the user defines αC < 0. This will command joint velocities 

that make the robot more (or less) compliant in its most compliant direction. We compute 

∂σC/∂q numerically using the same centered finite difference parameters as Sec. 2.2.4. 

Unlike the instability avoidance term in the control law, which changes in magnitude based 

on proximity to the stability threshold, the compliance optimization term seeks to always 

move the robot into more (or less) compliant configurations due to the constant gain kC used 

to compute the weighting matrix WC. Note that when this term is used in the paper, we will 

refer (6) as the “stiffness tuning control law.”

3 Simulations

We first tested our redundancy resolution algorithm for both instability avoidance and 

stiffness tuning in simulation to verify its effectiveness, analyze its impact on the robot’s 

behavior, and tune the control gains. This section describes first the instability avoidance 

simulations, followed by the stiffness tuning simulations.

3.1 Instability Avoidance Simulations

To test our elastic stability-aware redundancy resolution algorithm, we simulated the real-

time control of a three-tube concentric tube robot made of superelastic nitinol tubes (E 
= 50 GPa, ν = 0.33, see Table 3 for tube dimensions) along a desired trajectory. In this 

simulation, we used the gain parameters given in Tables 1 and 2, as well as a minimum 

stability threshold of S* = 0.

3.1.1 Desired Trajectory—During teleoperation, the desired input velocities are those 

commanded by the surgeon. Here, to create an example trajectory to use in simulation, 

we chose a helix wrapping around a torus, as shown in Fig. 3. The equations defining the 

desired tip position were

pdes =
R + rcos NTθ cos(θ)
R + rcos NTθ sin(θ)

rsin NTθ + zoff

,

(21)

where the torus’ major radius (R) was 15.0 mm, its minor radius (r) was 3.0 mm, the number 

of helix turns (NT) was 5, the offset from the x-y plane (zoff) was 55.0 mm, and θ ∈ [0, 2π). 

The robot’s home position was given by ψL = 0 and r1 = r2 = r3 = 20 mm. We used a total 

simulation time of 10 s with a step time of 5 ms and implemented a standard resolved rates 
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scheme in which the desired tip velocities were calculated using the error vector between the 

current position and desired position at each time step.

3.1.2 Simulation Results—We performed the simulation both with (the “stability-

aware” case) and without (the “stability-unaware” case) the instability avoidance term 

included in the cost function and control law. In Fig. 4(a), we show the stability metric 

and tracking error throughout the entire trajectory for the stability-unaware case. Due to 

the high curvature of the tubes and the commanded trajectory, the robot snaps twice. 

However, the controller has no knowledge of this instability nor does it have a way to 

avoid it. Based purely on the kinematic model, the robot appears to be tracking well from 

the controller’s perspective. However, the physical robot is in a different local minimum 

energy solution than the local minimum energy solution assumed by the controller, due to 

the uncontrolled snapping. As soon as the stability metric first crosses to S < 0, the robot 

snaps to a configuration far away and tracking is lost.

Fig. 4(b) shows that using the instability avoidance control law enables the robot to avoid 

instabilities while maintaining good tracking (~1 mm) in task space. Note that the error 

along the chosen trajectory is due to the dynamic trajectory and high damping; the error 

quickly reduces to < 0.01 mm when regulating a constant desired tip position. At the 

beginning of the trajectory, stability moves toward zero, but unlike Fig. 4(a), the instability 

avoidance term causes the robot to move to a more stable configuration while continuing to 

track the desired trajectory.

3.1.3 Computing the Robot’s Post-Snap Configuration—In order to generate the 

simulated unstable robot trajectory, we calculated the new physical configuration of the 

robot in cases where the robot snaps. This was necessary for finding the results of Fig. 4(a). 

The key idea behind this problem is that, when the robot is in an unstable configuration, 

there are multiple configurations in model space (and therefore multiple sets of tip angles 

ψL) corresponding to the same base rotational angles ψβ. When the robot snaps, the current 

tip angles are unstable, and the physical solution must be found. To find the new, post-snap 

configuration, one must search the tip angle space for a configuration corresponding to the 

same base angles ψβ. Note that the relative tube angles affect stability, not the absolute 

angles, so the search for the new configuration is done in the relative angle space and then 

converted back to absolute angles. We define the relative joint angles as θi = ψi(s) − ψ1(s).

When the stability of the robot in the simulation goes to 0, we use MATLAB’s fzero 

function to find the exact relative tube angles θL,unstable at the edge of the unstable 

configuration space. This point is shown by the “before snap” points in Fig. 5. Once this 

unstable configuration is found, we calculate the unique relative base angles θβ using the 

kinematic model. Then, we use MATLAB’s fsolve function to find another set of relative tip 

angles θL,stable that produce the same relative base angles as the unstable solution.

Because the relative joint space is wrapped from 0 to 2π radians we must convert the new 

relative tip angles to absolute angles. To do so, we first assume a configuration of ψL,guess = 

[0, θ2L,stable, θ3L,stable]⊤. Solving the kinematic model returns absolute base angles that have 
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the same relative angles but are offset from the original absolute base angles by Δψ. We then 

add this offset to the tip angle guess to get the new, stable configuration:

ψL, stable = 0 θ2L, stable θ3L, stable
⊤ + Δψ .

(22)

The new robot configuration is shown by the “after snap” points in Fig. 5. This approach 

could potentially be used in a physical system to “recover” tracking should a snap occur.

3.1.4 Effect of Instability Avoidance—When using the weighted damped least 

squares approach for redundancy resolution, there are several interacting variables (damping, 

joint limit avoidance, tracking, and instability avoidance) which interact in a nonlinear 

manner. Selecting gains can be challenging and the performance of the algorithm can be 

sensitive to these gain selections. There was one analysis tool that proved particularly useful 

towards selecting these gains. If we define the 6 × 6 inverted matrix from (6) as A, then we 

can re-express this update law as

q̇ = AJ⊤W0ẋd

q̇T

+ AWS(q)vS

q̇S

,

(23)

and it becomes clear that the joint velocity q̇T is related to tracking, and the joint velocity q̇S

is related to instability avoidance. We can compare the norm of these two competing joint 

velocities to better understand which term is dominating the simulation. Fig. 6 shows the 

relative norm of these joint velocities, or

ϕS = q̇S
q̇S + q̇T

(24)

for both rotational (ϕS, ψL) and translational (ϕS, r) joint velocities for the simulation. As is 

clear from the figure, when S is low, the effect of q̇S becomes more prominent. In addition, 

there appears to be an oscillating exchange of control priority from tracking to instability 

avoidance.

3.1.5 Effect of Stability Threshold—We explored the effect of the stability threshold 

S* on the robot’s behavior. We performed the trajectory-following simulation with S*
chosen as 0.0, 0.1, 0.2, and 0.3. The results of these simulations are shown in Fig. 7. In each 

case, the controller tracks well and does not violate the stability threshold. As can be seen in 

Fig.7(Top), the stability trajectories are nearly identical and only differ by an offset in S. The 

initial tracking response time is slower for higher values of S*, as shown in Fig. 7(Bottom).
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3.2 Stiffness Tuning Simulations

To test our stiffness-tuning redundancy resolution algorithm, we simulated the real-time 

control of a three-tube concentric tube robot. For this simulation, we used tubes of the 

same dimensions as Table 3 with curvatures of 10, 12, and 22 m−1 for tubes 1, 2, and 3, 

respectively.

3.2.1 Stiffness Tuning with Trajectory Following—First, we optimized σC while 

the robot follows the torus trajectory given by (21). The results for this redundancy 

resolution controller are shown in Fig. 8. The first panel depicts σC throughout the trajectory 

with αC set to 300 (maximize σC), −300 (minimize σC), and 0 (nominal performance). 

The second panel shows the difference in performance when maximizing or minimizing 

σC. This shows that the redundancy resolution algorithm is capable of commanding a robot 

configuration that is nearly four times more compliant (in its most compliant direction) than 

the least compliant case. The third panel shows the tracking error in task space is similar and 

small for each case (~1 mm).

It is likely this difference in compliance would be apparent to a surgeon. It has been shown 

that the peak forces during minimally invasive surgery are around 2 N for suturing skin, 

around 1 N for suturing muscle, and typically less than 0.5 N for suturing liver tissue 

(Peirs et al. 2004). The forces during other tissue interactions (i.e. not driving needles) are 

typically much less than these. As a specific example of the potential utility of this control 

law, consider a 0.5 N force on the tip of the concentric tube manipulator investigated here. 

In maximum compliance mode, this could generate a deflection of up to 20 mm, and in 

minimum compliance mode, this would generate a deflection as small as 5 mm. This could 

very well be the difference between being able to drive the needle and not drive the needle.

3.2.2 Stiffness Tuning with Position Regulation—Next, we sought to maximize or 

minimize σC while keeping the tip position of the robot at a fixed position in space, which 

illustrates the degree of stiffness tuning self-motion. We commanded a static tip position at p 
= [1, 1, 55]⊤ mm, which is near the center of the robot’s workspace. The simulation lasted 

for 40 seconds, where every 10 seconds we changed the goal from maximizing (αC > 0) to 

minimizing (αC < 0) σC, or vice versa. This is shown in the first panel of Fig. 9.

The second and third panels of Fig. 9 show the configuration variable paths that move the 

robot from compliant configurations to stiff configurations, and vice versa. The translational 

joint values shown in the third panel make intuitive sense: when maximizing σC, the outer 

tube nearly fully retracts (r3 approaches 0 mm), meaning that the exposed length of the 

robot is almost entirely made up of the middle and inner tubes, which are more flexible. 

The fourth panel of Fig. 9 shows σC throughout the simulation as it is clearly maximized 

and minimized according to αC. Also, note that the error is not plotted here, but quickly 

approaches ~0.1 mm and remains there throughout the trajectory.

4 Experiments

After exploring the ability of the controller to avoid instabilities and tune stiffness in 

simulation, we conducted experiments to verify performance on physical hardware. This is 
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an important contribution of this paper, since previous investigations of controllers including 

stability metrics have been primarily in simulation.

4.1 Instability Avoidance Experiments

To evaluate the elastic stability-aware redundancy resolution algorithm on robotic hardware, 

we performed a series of experiments using a three-tube concentric tube robot. The tube 

dimensions are listed in Table 4. First, we conducted a trajectory following experiment to 

compare the simulation results to a physical robotic system. Next, we used a teleoperation 

experiment to demonstrate the use of the redundancy resolution algorithm.

For both experiments, we used the robotic setup shown in Fig. 10. The desired joint 

velocities are calculated in (6) at each time step of the trajectory following or teleoperation 

process. The joint values are converted to motor position commands and sent to the six 

motors that rotate the tubes and translate the tubes along linear slides. Further information 

on the design and use of this robot can be found in (Burgner et al. 2014; Swaney et al. 2015; 

Wirz et al. 2015).

Throughout the experiments, the tip position of the robot was tracked using an 

electromagnetic tracking coil (Aurora, Northern Digital, Inc.) inserted into the inner tube. 

The tracker data is used for recording purposes only and is not fed back into the controller 

(i.e., the controller is open loop with respect to the tip position). We set the joint limit r1,min 

= 10 mm to ensure that the tracking coil is not accidentally dislodged from the inner tube 

during operation.

After shape-setting the tube curvatures using the procedure described in (Gilbert and 

Webster III 2016), we measured the resulting curvatures and tube lengths (see Table 4). 

We then performed an calibration process to register the base pose of the robot (i.e., the 

exit point s = 0 from the base plate shown in Fig. 2) to the tracker frame. We moved the 

robot joints to 82 configurations and recorded the actuator vectors q and corresponding 

tip positions in the tracker frame. We used MATLAB’s fmincon function to find the 

transformation between the tracker frame and the robot base frame by minimizing the total 

euclidean error between the tip position transformed into the base frame and the tip position 

found with the forward kinematics model. The parameters for the optimization routine were 

the position vector of the transformation, the ZYX Euler rotation angles, and the torsional 

and bending stiffness of each tube.

4.1.1 Trajectory Following Experiment—We had the robot follow a helix trajectory 

similar to the simulations described in Sec.3.1.1, with the parameters R = 28 mm, r = 12 

mm, NT = 2, and zoff = 110 mm, and a total time of 50 sec. We completed the trajectory 3 

times with and without the instability avoidance control law. For each trial, the robot began 

at the home configuration ψL = 0 and r1 = r2 = r3 = 20 mm. From the home configuration, 

the robot was commanded to the first point of the trajectory (x = 40 mm, y = 0 mm, z = 

110 mm) using the instability avoidance control law; this was done so that the robot began at 

the trajectory in the same configuration whether or not the instability avoidance term would 

be used for that particular trial. Once the robot tip reached the first point in the trajectory, it 

stopped for 10 seconds before following the trajectory; here, we jostled the tubes to remove 
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small static frictional effects that may have built up during the transition between the home 

configuration and the initial trajectory configuration. This again was to ensure uniformity 

between trials.

During the experiments, the magnetic tracker recorded data at a rate of 40 Hz, and the 

robot positions were set to update at a loop rate of 125 Hz. The tracking output produced 

approximately 2000 data points. The tracking output was then transformed from the tracker 

frame to the robot’s base frame using the calibrated transformation between the two frames. 

Taking the euclidean norm between the desired trajectory and sensor data provides the 

trajectory following error at each time step.

As seen in Fig. 11(b), the robot does not snap when using the instability avoidance control 

law. However, without the control law (Fig. 11(a)), the robot exhibits poor tracking and 

snaps. Snap points are marked with yellow diamonds and the post-snap position is at the tips 

of the black arrows. Results of this experiment can also be seen in Extension 1.

The tracking errors are shown in time in Fig. 12. We performed these experiments with 

a stability threshold S* of 0.5. The mean error and mean normalized error are shown 

for the stable and unstable cases as horizontal dashed lines. The mean error for all data 

across 3 trials with the elastic stability-aware redundancy resolution was 4.18±1.98 mm. 

When normalized by the extended arclength of the robot at each time step, the mean error 

is 3.56±1.58 %. The mean error with elastic stability-unaware redundancy resolution was 

13.84±10.95 mm (11.95±9.58 % when normalized by arclength). More importantly, the 

robot undergoes an uncontrolled snap when the controller does not include the instability 

avoidance term.

Note that these levels of error are excellent considering the intrinsic error in concentric tube 

robot models. The standard kinematic model for concentric tube robots does not include 

effects such as friction, tube clearances, and nonlinear material properties. Experimental 

evaluations of the model report errors of 1.5–3.0% (Rucker et al. 2010) and 2.1% (Dupont 

et al. 2010) of robot arclength. Thus, our results of 3.56±1.58 % of arclength represent very 

good tracking.

It is interesting to note that a simulation of this experiment reveals that the stability measure 

goes below zero twice when not using instability avoidance, but only one snap occurred 

during the experimental trials. This is to be expected based on the experiments in (Gilbert 

et al. 2016), which show the stability measure to be generally conservative; i.e., the physical 

robot generally snaps at a relative angle greater than that predicted by the model due to 

unmodeled frictional effects.

4.1.2 Teleoperation Experiment—Applying redundancy resolution methods to 

concentric tube robots to avoid elastic instabilities is motivated by the need for stable control 

without the significant computational overhead or a priori knowledge necessary for path 

planning. While the trajectory following experiment described above is not “pre-planned” 

(in the sense that the controller gets a new desired task space velocity at each time step 

and calculates a joint space velocity based only on that time step, without knowledge of 

Anderson et al. Page 15

Int J Rob Res. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the entire trajectory), it is still worthwhile to validate the algorithm’s performance in a 

teleoperated scenario with a user in the loop and no prescribed trajectory.

The user was instructed to control the tip position of the robot to explore the robot’s 

workspace. This was conducted with and without the instability avoidance control law. The 

user controlled the robot using a 3D Systems Touch haptic device. The user’s commanded 

tip position was compared to the previous position to compute the desired task space 

velocity ẋdes using (7).

Fig. 13 shows all points that the robot can reach in stable configurations (blue) overlaid 

with all points that if reached would be unstable (red). Note that there is overlap between 

the two areas due to the robot’s redundancy—many points can be reached in both stable 

and unstable configurations. The user’s teleoperated position time history is overlaid using 

a black line. With instability avoidance turned off, the user experienced several uncontrolled 

snaps while moving the manipulator. These snapping points are marked with yellow 

diamonds in Fig. 13. Results of this experiment can also be seen in Extension 2.

This experiment demonstrates the importance of using the stability metric for redundancy 

resolution in a real-time control scenario on a prototype with highly curved tubes. Without 

the elastic stability-aware algorithm, the robot cannot be reliably teleoperated throughout 

much of its workspace.

4.2 Stiffness Tuning Experimental Validation

To validate the stiffness tuning approach, we measured the tip deflection of a three-tube 

concentric tube robot. We used the stiffness tuning control law to first minimize and then 

maximize the maximum singular value of the compliance matrix σC while regulating the 

robot’s tip position, as described in the simulations of Sec. 3.2.

The same tube set was used for these experiments as were used in the instability avoidance 

experiments of Sec. 4.1. The commanded tip position was p = [50, 0, 100]⊤ mm. This 

is a suitable point for testing compliance, as the direction of σC in this configuration is 

approximately aligned with the y-axis of the robot base frame (i.e., vertically in the world 

frame).

To evaluate the tip stiffness of the robot, we hung a 50 g mass approximately 4 mm from 

the tip of the inner tube (shown in Fig. 14). We measured the tip position with and without 

the applied load using the same electromagnetic tracking system as Sec. 4.1 in order to 

assess the position regulation error and the deflection. These measurements were taken at the 

nominal configuration (αC = 0), the compliance minimization configuration (αC = −300), 

and the compliance maximization configuration (αC = 300). The robot was driven to these 

positions by commanding a constant tip position, changing the value of αC, and waiting 

for the motors to stop moving (the ability of the robot to change compliance and maintain 

tip regulation is dictated by joint limits and the location of the desired position in the 

workspace). When no further changes in motor positions or σC were observed, tip position 

measurements were taken with and without the applied load. This procedure was repeated 5 

times and the resulting mean and standard deviation for each configuration were computed.
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We compared our experimental results to a simulated robot, using the tip regulation 

simulation described in Sec. 3.2. The simulated robot achieved a nominal σC of 32.4 

mm/N, minimized σC of 24.7 mm/N, and maximized σC of 67.8 mm/N. Using the 

nominal, minimized, and maximized σC and an applied load of 50 g, produced predicted tip 

deflections of 15.9 mm, 12.1 mm, and 33.3 mm, respectively, in the robot’s most compliant 

direction. As shown in Fig. 15, the corresponding measured deflections were 13.5±1.2 mm, 

11.8±0.4 mm, and 27.8±2.0 mm. Fig. 15 also shows the tip regulation error in all three 

cases, computed as the euclidean norm between the commanded tip position p and the 

measured tip position with no load applied. The tip error was 3.23±0.84 mm in the nominal 

configuration, 1.27±0.32 mm in the minimized σC configuration, and 9.33±3.81 mm in the 

maximized σC configuration.

5 Discussion and Conclusion

In this paper, we have proposed a redundancy resolution algorithm for concentric tube 

robots, and shown that it can be implemented on robotic hardware. This approach can be 

employed using real time resolved rates control, making it suitable for teleoperation, and 

utilizes new understanding of elastic stability. Use of this control approach makes it possible 

to use highly curved concentric tube robots that are capable of maneuvering in tight spaces, 

thus increasing the realistic design space of these robots.

We have also shown that concentric tube robots can resolve redundancy to tune their 

compliance. This ability could be used to improve the capabilities of these tools in the 

hands of surgeons and to allow the user to change the properties of their manipulator on 

the fly. We have demonstrated this capability with simulations and an example experimental 

configuration. Future work on redundancy resolution stiffness control of concentric tube 

robots includes further evaluation of the control scheme’s performance with different robot 

configurations. Different stiffness goals, such as optimizing axial or lateral stiffness, could 

be explored as well. In addition, it may be worthwhile to perform user studies in which the 

user can select the desired tip stiffness behavior. Improved designs and stiffness modification 

may one day combine to enable physicians to perform new kinds of surgical procedures that 

cannot be attempted today.
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A Appendix A: Index to Multimedia Extensions

Table 5.

Table of Media Extensions

Extension Media Type Description

1 Video Demonstration of trajectory following instability avoidance experiments

2 Video Demonstration of teleoperation instability avoidance experiments
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Figure 1. 
Three-tube concentric tube robot. Each nested tube can independently translate and rotate. 

Concentric tube robots with highly curved tubes can “snap” from one configuration to 

another due to rapidly released torsional energy. Real time control schemes must be 

developed that prevent these elastic instabilities from occurring during teleoperation.
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Figure 2. 
Key control variables of a concentric tube robot. The robot’s shape has been straightened 

for clarity. The actuation unit grasps each tube at arclength βi. The constrained exit point of 

the robot is marked at arclength s = 0. The section view A-A depicts the centerline Bishop 

frame and the material-attached frames of tubes 1 and 2, with angles ψ1 and ψ2 labeled. The 

controller presented here controls the translation variables ri = βi + Li, which are the exposed 

lengths of each tube, and the rotation variables ψiL, which are the tube distal tip rotations.
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Figure 3. 
(Left) Desired trajectory of a helix wrapping around a torus. (Right) Simulated concentric 

tube robot following the desired trajectory.
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Figure 4. 
(a) When the control law is stability-unaware, the robot’s stability crosses to S < 0 and 

it snaps to a new configuration. Based on the kinematic model alone, tracking appears 

to be good, but tracking of the physical robot has been lost. (b) When the controller is 

stability-aware, the entire trajectory is stabilized. When S approaches zero, the robot moves 

away from the unstable configuration while still tracking the trajectory.
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Figure 5. 
These plots show the relative tip angle configuration space of the simulated three-tube 

concentric tube robot. The colormap depicts the stability measure S, truncated from 0 to 1. 

The red line  is the boundary of the unstable region. When the robot hits this boundary at 

the “before snap” point ●, it snaps. The new configuration it reaches after the snap can be 

found by searching the configuration space for a set of relative tip angles that produces the 

same relative base angles at the actuators (“after snap” points ●). Note that the shape of the 

unstable region can change substantially based on tube translation variables.
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Figure 6. 
(Top) ϕS, ψL and S in time. When stability is low, stabilizing rotational joint velocities become 

more prominent. (Bottom) ϕS, r and S in time. When stabilility is low, there are short bursts of 

stabilizing translational joint velocities.
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Figure 7. 
(Top) The stability metric S in time for varying choices of S*. (Bottom) The tracking error 

in time for varying choices of S. Note that the time axis is only 0.3 s. The tracking response 

time is correlated with the choice of S.
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Figure 8. 
Top) Trajectories of the compliance metric σC following the path described in (21) with 

the tubes from Table 3. For the nominal trajectory, we utilize the control law from (4), 

for the maximum compliance trajectory we utilize the stiffness tuning update law from (6) 

with αC = 300, and the same law for the minimum compliance trajectory with αC = −300. 

(Middle) The ratio of σC in the maximum compliance trajectory to σC in the minimum 

compliance trajectory. The manipulator becomes nearly four times more compliant by the 

end of the trajectory, which is likely to be significant in a surgical scenario. (Bottom) All 

three trajectories have very similar tracking performance.
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Figure 9. 
These plots show the manipulator tracking a single point at all times. Every 10 seconds, the 

system switches between maximizing and minimizing the compliance metric. Notice that 

the inner tube extends and the outer tube retracts to maximize compliance, and the opposite 

happens to minimize compliance. The tracking error (not shown) goes below 0.1 mm in 0.5 

s and remains there.
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Figure 10. 
Experimental setup. A magnetic tracking coil was embedded in the tip of the three tube 

concentric tube manipulator, which was tracked by the magnetic field generator (Aurora, 

Northern Digital, Inc.).
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Figure 11. 
These plots show the spatial results of the trajectory following experiment in three planar 

views (N = 3 trials for each controller). The blue curve is the desired trajectory. (a) Without 

awareness of elastic stability, the robot snaps while attempting to follow the trajectory. The 

snapping points are marked with yellow diamonds and the post-snap position is at the tip of 

the black arrow. (b) With instability avoidance, the robot tracks the trajectory and remains 

stable.
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Figure 12. 
Trajectory following tracking error and normalized error with (a) the stability-unaware 

controller and (b) the stability-aware controller. Without instability avoidance, the robot 

undergoes an uncontrolled snap. With instability avoidance, the robot both tracks the 

trajectory and remains stable. The error is shown in blue, and the normalized error is shown 

in red, while the mean error and mean normalized error are shown with horizontal dashed 

lines of the same colors.
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Figure 13. 
Results of the teleoperation redundancy resolution experiment without instability avoidance 

(left) and with instability avoidance (right). In both cases, the tracked tip data is projected 

into the (R, z) plane describing the robot’s workspace. The red region contains robot 

configurations that are unstable and physically unachievable, while the blue region contains 

configurations that are stable. The elastic stability-aware controller allows the user to 

navigate the robot throughout the workspace without snapping. Without this control law, 

the robot snaps 10 times, as marked by the yellow diamonds.
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Figure 14. 
Experimental setup for the stiffness tuning redundancy resolution experiment. The robot 

maximized and minimized compliance while regulating tip position. A 50 g mass was hung 

from the tip of the robot and the resulting deflection was measured with the electromagnetic 

tracker.
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Figure 15. 
Results of the robotic stiffness tuning experiment (N = 5 trials). When the compliance metric 

σC is minimized, the robot exhibits the least amount of tip deflection under an applied load; 

when σC is maximized, it exhibits the highest tip deflection. The measured tip deflections 

are all close in magnitude to the corresponding theoretical tip deflections in the robot’s most 

compliant direction. Also shown is the tip regulation error in the unloaded cases.
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Table 1.

Control gains. Note that joint units are in radians and meters, so what appear as large gains are reasonable, 

considering task space and translational joint velocities here are in the mm/s range.

Parameter Symbol Value

Tracking Proportional Gain α0 1.0 × 108

General Damping Proportional Gain α D 0.1

Nominal Translation Damping b T 5.0 × 108

Nominal Rotation Damping b R (180/2π)2

Joint Limit Damping Proportional Gain α J 20.0

Stability Proportional Gain αS 10.0

Compliance Proportional Gain α C 300

Compliance Weight k C 1000
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Table 2.

Control gains used for selecting the desired task space velocity ẋdes.

Parameter Symbol Value Units

Maximum Task Space Velocity v max 100.0 mm/s

Minimum Task Space Velocity v min 13.0 mm/s

Maximum Velocity Error e max 5.0 mm

Minimum Velocity Error e min 1 .0 mm

Converged Radius ρ 1.0 × 10−5 mm
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Table 3.

Tube parameters used in the simulations. Each undeformed tube has an initial straight section, followed by a 

tip section with constant curvature.

Tube 1 Tube 2 Tube 3 Units

Outer Diameter 1.1 1.4 1.7 mm

Inner Diameter 1.0 1.3 1.6 mm

Total Tube Length 150.0 100.0 50.0 mm

Straight Tube Length 100.0 60.0 25.0 mm

Precurvature 30.0 30.0 30.0 m−1
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Table 4.

Tube parameters used in the instability avoidance and stiffness tuning robotic experiments. Each undeformed 

tube has a proximal straight section, with a constant curvature section near its tip.

Tube 1 Tube 2 Tube 3 Units

Outer Diameter 1.2446 2.0547 2.540 mm

Inner Diameter 1.0287 1.6002 2.2479 mm

Total Tube Length 398.1 284.7 162.3 mm

Straight Tube Length 301.0 200.2 89.96 mm

Precurvature 9.174 10.075 4.794 m−1
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