Skip to main content
. Author manuscript; available in PMC: 2024 Mar 22.
Published in final edited form as: Comput Biol Med. 2024 Jan 28;170:108058. doi: 10.1016/j.compbiomed.2024.108058

Table 2.

Comparison with the state-of-the-art algorithms for multi-omics data classification. The bold texts indicate the best performance.

Dataset ROSMAP
LGG
ACC F1 AUC ACC F1 AUC

KNN 65.7 ± 3.6 67.1 ± 4.5 70.9 ± 4.5 72.9 ± 3.4 73.8 ± 3.8 79.9 ± 3.8
SVM 77.0 ± 2.4 77.8 ± 2.6 77.0 ± 2.6 75.4 ± 4.6 75.7 ± 4.6 75.4 ± 4.6
LR 69.4 ± 3.7 73.0 ± 3.5 77.0 ± 3.5 76.1 ± 1.8 76.7 ± 2.7 82.3 ± 2.7
RF 72.6 ± 2.9 73.4 ± 1.9 81.1 ± 1.9 74.8 ± 1.2 74.2 ± 1.0 82.3 ± 1.0
NN 75.5 ± 2.1 76.4 ± 2.5 82.7 ± 2.5 73.7 ± 2.3 74.8 ± 3.7 81.0 ± 3.7
GRridge 76.0 ± 3.4 76.9 ± 2.3 84.1 ± 2.3 74.6 ± 3.8 75.6 ± 4.4 82.6 ± 4.4
BPLSDA 74.2 ± 2.4 75.5 ± 2.5 83.0 ± 2.5 75.9 ± 2.5 73.8 ± 2.3 82.5 ± 2.3
BSPLSDA 75.3 ± 3.3 76.4 ± 2.1 83.8 ± 2.1 68.5 ± 2.7 66.2 ± 2.6 73.0 ± 2.6
MOGONET 81.5 ± 2.3 82.1 ± 1.2 87.4 ± 1.2 81.6 ± 1.6 81.4 ± 2.7 84.0 ± 2.7
TMC 82.5 ± 0.9 82.3 ± 0.6 88.5 ± 0.6 81.9 ± 0.8 81.5 ± 0.4 87.1 ± 0.4
CF 78.4 ± 1.1 78.8 ± 0.5 88.0 ± 0.5 81.1 ± 1.2 82.2 ± 0.4 88.1 ± 0.4
GMU 77.6 ± 2.5 78.4 ± 1.6 86.9 ± 1.6 80.3 ± 1.5 80.8 ± 1.2 88.6 ± 1.2
MMDynamics 84.2 ± 1.3 84.6 ± 0.7 91.2 ± 0.7 83.3 ± 1.0 83.7 ± 0.4 88.5 ± 0.4
UIMC 87.1 ± 0.0
MLCLNet 84.4 ± 1.5 85.2 ± 1.5 89.3 ± 1.1 83.5 ± 1.4 84.0 ± 1.3 88.6 ± 1.2
KGCCA 69.5 ± 0.0 68.0 ± 0.0 69.7 ± 0.0 75.7 ± 0.0 73.7 ± 0.0 75.9 ± 0.0
SCCA 81.0 ± 0.0 81.1 ± 0.0 81.0 ± 0.0 78.3 ± 0.0 78.7 ± 0.0 78.3 ± 0.0
MVAE 75.2 ± 2.6 75.0 ± 3.1 75.3 ± 2.5 82.6 ± 1.6 82.5 ± 1.6 82.7 ± 1.6
CPM 74.2 ± 2.4 72.9 ± 2.7 74.1 ± 2.4 76.8 ± 2.9 75.8 ± 5.3 76.8 ± 3.0
DCP 78.5 ± 0.0 80.5 ± 0.0 78.6 ± 0.0 79.4 ± 0.0 73.4 ± 0.0 77.8 ± 0.0
LHGN 75.9 ± 1.5 75.6 ± 2.3 76.0 ± 1.5 79.9 ± 1.5 80.3 ± 1.3 79.9 ± 1.6
CLCLSA 83.0 ± 0.6 83.6 ± 0.9 88.3 ± 0.0 85.0 ± 0.1 85.4 ± 0.4 90.6 ± 0.7
Dataset BRCA KIPAN
ACC F1 AUC ACC F1 AUC
KNN 74.2 ± 2.4 68.2 ± 2.5 73.0 ± 2.5 96.7 ± 1.1 96.0 ± 1.4 96.7 ± 1.1
SVM 72.9 ± 1.8 64.0 ± 1.7 70.2 ± 1.7 99.5 ± 0.3 99.4 ± 0.4 99.5 ± 0.3
LR 73.2 ± 1.2 64.2 ± 2.6 69.8 ± 2.6 97.4 ± 0.2 97.2 ± 0.4 97.4 ± 0.2
RF 75.4 ± 0.9 64.9 ± 1.3 73.3 ± 1.3 98.1 ± 0.6 97.5 ± 1.1 98.1 ± 0.6
NN 75.4 ± 2.8 66.8 ± 4.7 74.0 ± 4.7 99.1 ± 0.5 99.1 ± 0.5 99.1 ± 0.5
GRridge 74.5 ± 1.6 65.6 ± 2.5 72.6 ± 2.5 99.4 ± 0.4 99.3 ± 0.4 99.4 ± 0.4
BPLSDA 64.2 ± 0.9 36.9 ± 1.7 53.4 ± 1.7 93.3 ± 1.3 91.9 ± 2.1 93.3 ± 1.3
BSPLSDA 63.9 ± 0.8 35.1 ± 2.2 52.2 ± 2.2 91.9 ± 1.2 89.5 ± 1.4 91.8 ± 1.3
MOGONET 82.9 ± 1.8 77.4 ± 1.7 82.5 ± 1.7 99.9 ± 0.2 99.9 ± 0.2 99.9 ± 0.2
TMC 84.2 ± 0.5 80.6 ± 0.9 84.4 ± 0.9 99.7 ± 0.3 99.4 ± 0.5 99.7 ± 0.3
CF 81.5 ± 0.8 77.1 ± 0.9 81.5 ± 0.9 99.2 ± 0.5 98.8 ± 0.9 99.2 ± 0.5
GMU 80.0 ± 3.9 74.6 ± 5.8 79.8 ± 5.8 97.7 ± 1.6 95.8 ± 3.2 97.6 ± 1.7
MMDynamics 87.7 ± 0.3 84.5 ± 0.5 88.0 ± 0.5 99.9 ± 0.2 99.9 ± 0.3 99.9 ± 0.2
UIMC 82.9 ± 0.0
MLCLNet 86.4 ± 1.6 82.6 ± 1.8 87.8 ± 1.6 99.9 ± 0.7 99.2 ± 0.2 99.2 ± 0.2
KGCCA 73.3 ± 0.0 62.5 ± 0.0 71.0 ± 0.0 93.4 ± 0.0 88.3 ± 0.0 93.1 ± 0.0
SCCA 81.7 ± 0.0 76.8 ± 0.0 81.7 ± 0.0 93.9 ± 0.0 88.6 ± 0.0 93.6 ± 0.0
MVAE 75.9 ± 3.6 65.3 ± 5.2 73.4 ± 5.0 93.7 ± 1.5 92.9 ± 1.7 93.6 ± 1.6
CPM 78.0 ± 2.3 75.0 ± 2.4 78.4 ± 2.2 96.0 ± 1.9 95.3 ± 1.9 96.0 ± 1.9
DCP 81.7 ± 0.0 74.9 ± 0.0 82.3 ± 0.0 97.0 ± 0.0 94.7 ± 0.0 97.0 ± 0.0
LHGN 80.8 ± 0.6 76.6 ± 1.1 80.8 ± 0.7 99.0 ± 0.3 98.4 ± 0.7 99.0 ± 0.3
CLCLSA 87.5 ± 1.0 85.6 ± 0.6 87.8 ± 0.3 99.9 ± 0.3 99.9 ± 0.3 99.9 ± 0.3