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Socialinteractions represent a ubiquitous aspect of our everyday life that we acquire
by interpreting and responding to visual cues from conspecifics'. However, despite
the general acceptance of this view, how visual informationis used to guide the
decisionto cooperate is unknown. Here, we wirelessly recorded the spiking activity

of populations of neurons in the visual and prefrontal cortex in conjunction with
wireless recordings of oculomotor events while freely moving macaques engaged in
social cooperation. As animals learned to cooperate, visual and executive areas
refined the representation of social variables, such as the conspecific or reward, by
distributing socially relevantinformation among neurons in each area. Decoding
population activity showed that viewing social cues influences the decision to
cooperate. Learning social events increased coordinated spiking between visual
and prefrontal cortical neurons, which was associated with improved accuracy of
neural populations to encode social cues and the decision to cooperate. These
results indicate that the visual-frontal cortical network prioritizes relevant sensory
information to facilitate learning social interactions while freely moving macaques
interactin anaturalisticenvironment.

Social cooperation is a complex behaviour whereby animals look at
each other to perceive and interpret social cues to decide whether to
interact>*. These cues range from body language and facial expressions
torewarding stimuli and have been notoriously difficult to identify and
analyse so far. Although previous studies have been instrumental in
our understanding of the neural encoding of specific social variables,
such as reward value**, actions® 8, agent identity®'° and social rank™ 3,
they did not attempt to examine the neural processes that mediate
the emergence of visually guided social decision-making and coop-
eration behaviour. Indeed, traditional studies examining the neural
underpinnings of social behaviour have typically been completed using
stationary animals performing passive tasks using synthetic stimuli.
Technical limitations have prevented the recording of visual cues to
further examine how they are used to shape social behaviour while
animals interact with each other.

Macaques exhibit social behaviourin naturaland laboratory environ-
ments, such as cooperation*'and competition”, and they strategically
acquire social information from viewing eye and facial expressions?,
hence making them an ideal model to study social cognition. Previ-
ousworkinnon-human primates has identified brain regions that are
activated when viewing other agents in person or socially interacting
animals in images and videos'™ ?°, but examining how the brain pro-
cesses social signals originating from interacting conspecifics in real
time toinitiate goal-directed behaviour has not, to our knowledge, been
explored until now. Here, we developed an approach that combines
behavioural and wireless eye tracking and neural monitoring to study
how pairs of freely moving, interacting macaques use visually guided

signalstolearnsocial cooperation forfood reward. Our approachallows
ustoinvestigate behaviours and neural computations promoting coop-
eration and how they change over time while learning to cooperate.
Harnessing the versatility of wireless neural and eye-tracking record-
ings combined with markerless behavioural tracking?, we examined
how pairs of macaques learnto cooperate by identifying the visual cues
used to guide decision-making along a visual-frontal cortical circuit.

Two unique and familiar pairs of macaqueslearned to cooperate for
food reward across weeks. Owing to macaques’ natural social hierarchy,
each pair consisted of a subordinate monkey (‘self’) and adominant
monkey (‘partner’). Animals cooperated in an arena, separated by a
clear divider, so they could visually but not physically interact. Each
monkey could freely move around their side, and each monkey had
their own push button. At the start of a trial, perceivable but remote
pellets dispensed into the animals’ respective trays, and animals could
cooperate at any time by simultaneously pushing and holding individual
buttons that moved their trays, delivering reward to each animal (Fig. 1a
and Methods). A trial began when pellets dispensed and ended when
thetraysreached the animals (each sessionincluded 100-130 coopera-
tiontrials: 18 learning sessions with monkey pair 1and 17 sessions with
monkey pair 2). Button pressing was recorded for each monkey while
neural and eye-tracking datawere wirelessly recorded simultaneously
fromthe subordinate (‘self”) monkey (Fig. 1b,c). We chronically recorded
from populations of neuronsinthe midlevel visual cortex (area V4) and
dorsolateral prefrontal cortex (area dIPFC) of the several ‘self” animals,
astheseare key areas involved in processing complex visual features® 2
and planning social actions®*”?, In each monkey (n=2), we used dual
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Fig.1| Tracking of behavioural, oculomotor and neural events during
learning cooperation. a, Behavioural task. Two animals learned to cooperate
forfood reward. Left, cooperation paradigm. Right, trial structure. b, Wireless
neuralrecordingequipment (Blackrock Neurotech). Red arrows represent
information processingbetween areas. ¢, Wireless eye tracker and components.
d, DeepLabCutlabelling of partner-monkey and buttons from the eye tracker’s
scene camera. The yellow cross represents self-monkey’s point of gaze.

e, Example voltage traces of each animal’s button-push activity from pair 1.
Alineincrease tolindicates the monkey began pushing. f, Left, example CCGs
of pair I'sbutton pushes fromthe first and last session, using actual and shuffled
data. Self-monkey leads cooperation more oftenin early sessions, as the peak
occursatpositive timelag(2s). Right, session average time lag between pushes

Utaharrays to stably record from the same neural population (averaging
136 units per sessioninmonkey 1(M1) and 150 units per sessionin mon-
key 2 (M2), including single units and multi-units; M1, 34 V4 cellsand 102
dIPFC cells; M2,104 V4 cells and 46 dIPFC cells) across several sessions
(Figs.1band 3aand Extended DataFig. 3). Videos from the wireless eye
tracker’s scene camera capturing the self-monkey’s field of view were
analysed with DeepLabCut® to identify objects of interest that the ani-
mal viewed in their environment (Fig. 1d and Methods).

Learningsocial cooperation

To quantify changes in cooperation performance over time, we analysed
features of both animals’ actions, suchas the coordination of their push
onset and duration, the conditional probability of cooperating and
the delay to cooperate. In a pair, each monkey’s choice to cooperate
canberepresented as an array of zeros (not pushing) and ones (push-
ing, Fig. 1e). Cross-correlation analysis between the button pushes of
each monkey (Methods) in each session showed that their actions are
coordinated and not random (Fig. 1f, left; shuffling push times resulted
innear zero coincident pushing, red plot). In the first session, for each
animal pair, cross-correlograms (CCGs) peaked at 0.6 coincidences:
thatis, animals pushed together for 60% of the session and increased
to 80-90% coincident pushingin the last session (Fig. 1f, left). Indeed,
animals learned to cooperate by significantly reducing the amount
of time between each of their pushes (Fig. If, right; all P< 0.05, linear
regression), thereby improving response coordination across ses-
sions (Fig. 1f,g; all P< 0.01, linear regression). Additionally, for each
monkey, we computed the probability to cooperate given that the
other monkey is pushing. Conditional probability exhibited a mean
54% increase across sessions, thus reflecting learning cooperation
(Fig.1h; P<0.001, linear regression). Finally, the delay to cooperate
oramount of time it takes for amonkey to respond from the trial start
decreased by 93% across sessions, indicating that animals’ motivation
to cooperateincreased duringlearning (Fig. 1i; P< 0.05, linear regres-
sion). Overall, this demonstrates that animals learned to cooperate
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when maximum coincident pushes occur. Pair1: P=0.03 and r=-0.5; pair 2:
P=0.02andr=-0.5.g, Push coordination. Session average maximum number
of coincident pushes (thatis, peaks) from CCGs. Pair1: P=0.001and r= 0.7; pair
2P=0.008andr=0.7.h,Sessionaverage conditional probability to cooperate
foreach monkey. Pair1: P=0.0004,r=0.7and P=6.02 x10°¢, r=0.8; pair 2:
P=0.001,r=0.7and P=0.0004 and r= 0.8, selfand partner, respectively.

i, Sessionaverage delay to cooperate or response time for each monkey. Pair 1:
P=0.01,r=-0.6and P=0.001,r=-0.6; pair2: P=0.01,r=-0.6and P=0.006,
r=-0.6,selfand partner, respectively. All Pvalues are from linear regression,
andris Pearson correlation coefficient. Onall plots, circles represent the mean,
witherrorbarss.e.m.*P<0.05,**P<0.01,**P<0.001.1llustrationsinaand b
were created using BioRender.

across sessions by improving their action coordination, conditional
probability and reaction times.

Social cues drive learning cooperation

We further examined whether animals’ viewing behaviour changes dur-
inglearningto cooperate by identifying the self-monkey’s fixations on
objectsinthe environment (Fig.2a and Methods). To determine which
objects were salient for cooperation, we computed the fixation rate
on each object during the cooperation trial and during the intertrial
interval. Fixation rates on the food reward system (pelletsin tray and
pellet dispenser) and partner-monkey were significantly higher during
the trial, particularly before cooperation, when both monkeys began
pushing, than during the intertrial period (Fig. 2b; P < 0.01, Wilcoxon
signed-rank test). Therefore, these relevant fixations, ‘view reward’
and ‘view partner’, constitute social cues. ‘View reward’ includes the
self-monkey’s fixations on the pelletsin their tray and pellet dispenser,
and ‘view partner’includes fixations on the partner-monkey, on both
the head and body. Eye-movement analysis showed behavioural pat-
terns in which at the beginning of a trial, the monkey typically views
the reward followed by a push, while frequently looking at their con-
specificbefore the partner’s push (Fig. 2c). The ability to view the other
monkey is important for cooperation, as control experiments using
an opaque divider that obstructed animal’s ability to view each other
yielded asignificant decrease in cooperation performance (Extended
DataFig. 6a).

To examine whether the relationship between social cues (‘view
reward’ and ‘view partner’) and actions changes during learning, we
used aMarkov model to compute the probability of transitioning from
one social event, or state, to another. Notably, the transitional prob-
abilities between visually driven event pairs, but not action-driven
ones, significantly increased across sessions while learning to coop-
erate (Fig. 2d; all P< 0.01, linear regression). Although each monkey
pair exhibited unique transitional probability matrices for social
events, this was consistent across animal pairs (Extended Data Fig. 2).
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Fig.2|Interactionsbetween actionand viewing whilelearning to
cooperate. a, Identifying fixations on various objects. Left, during fixations
(highlighted inyellow), eye speed remained below threshold (dashed line) for at
least100 ms. Right, scene cameraimages of objects the animal viewed, labelled
with DeepLabCut (coloured dots). The yellow cross represents self-monkey’s
pointof gaze. b, Histograms of session mean fixation rates for each object
computed during the trial (before cooperation) and intertrial interval.
Asterisks representsignificance of Wilcoxon signed-rank test only where
fixations rates were higher during cooperation compared to intertrial period.
Pair1:P=0.0002,0.0002,0.13,0.002and 0.0002; pair 2: P=0.005,0.0004,
0.95,0.001and 0.7 for fixation rates on objectslisted left to right. ¢, Sequence

Thelowest transitional probabilities (0.1) occurred between two actions
(‘self-push’to ‘partner-push’), indicating that fixations typically occur
between pushes, and monkeys cannot simply push their button to moti-
vate the other monkey to cooperate (Fig. 2d,e). Instead, there were high
transitional probabilities (0.6-0.9) for event pairs in which fixations
onasocial cue occurred before or after a push (that s, ‘view partner’ >
‘self-push’ or ‘self-push’ > ‘view partner’), thus demonstrating the
importance of viewing social cues to promote cooperation (Fig. 2d,e).
Indeed, we found a mean 220% increase in transitional probabilities
for event pairs beginning with viewing social cues (Fig. 2d, top row; all
P <0.01). These analyses show that across sessions, animals become
more likely to cooperate after viewing social cues, indicating that fixa-
tions on social cues drive cooperation during learning.

Single cellsrespond to social variables

We investigated the relationship between neural signals and social
events leading to cooperation by analysing the neurons’ responses
between the start of a trial and cooperation onset when both animals
began pushing. We identified fixations on social cues (that is, ‘'view
‘reward and ‘view partner’) and non-social objects (that is, monkey’s
buttons or arena floor) within neurons’ receptive fields (Fig. 3b and
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ofactionand viewing events occurring during cooperation across arandom
subset of trialsinasession. d, Markov model transitional probabilities for
example event pairs that begin with a viewing (top row) or action event (bottom
row). Toprow:P=0.0008,P=0.0008,P=0.003,P=0.003andallr=0.7;
bottomrow: P=0.84,0.9,0.01and 0.2;r=0.6 (‘partner-push’to ‘view partner’);
fromlefttoright, linearregression and Pearson correlation. Two plots oneach
row came from each monkey pair. Mean transitional probability withs.e.m.is
plotted. For complete transitional probability matrices for each monkey, see
Extended DataFig.2. e, Hidden Markov model transitional probabilities
averaged across both monkey pairs for all event pairs. *P < 0.05, **P< 0.01,
***P<0.001.

Methods). Neuronsinboth cortical areas significantly increased mean
firing ratesinresponse tofixations onsocial cues compared to baseline
measured during the intertrial interval (Fig. 3d,e; P < 0.01, Wilcoxon
signed-rank test with false discovery rate (FDR) correction). Adistinct
feature of the ‘social brain’is the ability to process information about
one’s self and others®***, We explored this feature by identifying self
and partner-monkey pushes or decisions to cooperate that occurred
separatelyintime (morethanlsfromeachother; Extended DataFig. 4).
Importantly, we hypothesized that the self-monkey’s neurons process
allocentric information during partner-choice, because the monkey
views the partner during most of the partner’s pushes but not during
their own push (Fig. 3c). Over time, the self-monkey viewed social cues
(reward or partner) before pushing, indicating that viewing social cues
informs decision-making as learning emerges (Fig. 3c, bottom; P < 0.05,
linear regression). Indeed, 70% of dIPFC cellsincreased their firing rate
duringeachanimal’s pushrelative to baseline, with responses beginning
1,000 msbefore push onset (Fig.3d,e; P < 0.01, Wilcoxon signed-rank
testwith FDR correction). Notably, most dIPFC cells responded to both
selfand partner-choice, as opposed tojust one or the other (Extended
DataFig.4b). Overall, dIPFC neurons responded to both fixations and
choice (Fig. 3e, left; all P < 0.01, Wilcoxon signed-rank test with FDR
correction), with 55% of dIPFC neurons exhibiting mixed selectivity
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Fig.3|V4and dIPFCcell responses to social events. a, Raster plot of spiking
activity from M1’s V4 units 1-35 and dIPFC units 36-140 during one trial.

b, Social cues within neurons’ receptive fields. Left, overlapping receptive
fields of V4 and dIPFC neurons. V4 receptive field sizes, 4-6°; dIPFC receptive
field sizes, 6-13°. Thered squarerepresents the point of fixation. Right, scene
cameraimages measuring 35 x 28° (length x height), for which social cues were
withinreceptive fields during fixation. c, Self-and partner-choice to cooperate.
Top, percentage of pushes for which fixations on the partner occurred within
1,000 msof choicein eachsession.Pair1,P=191x10* pair2,P=2.44x107%
Wilcoxonsigned-rank test. Bottom, percentage of pushes for which fixations
onthe partnerand/or reward system occurred within1,000 ms of choicein
eachsession.Pair1,P=0.0004,r=0.7and P=0.03,r=0.5; pair2,P=0.002,
r=0.7and P=0.2,r=0.3;selfand partner-choice, respectively; linear

(Fig. 3e, right). Although a fraction of V4 neurons (28%) exhibited a
changeinfiring rate around push time, most responded to fixations on
social cues (36% and 52% fixations on reward and partner, respectively).
Thatis, in contrast to dIPFC, most cellsin V4 responded only to fixations
on social cues; 22% of V4 neurons exhibited mixed selectivity. These
results indicate that mixed-selectivity neurons, especially in dIPFC,
may support the behavioural diversity observed in our naturalistic
and cognitively demanding social environment®,

Sociallearning improves the neural code

Next, we examined the ability of neural populations to encode social
cues and animals’ choice to cooperate during learning. A support
vector machine (SVM) classifier with tenfold cross-validation was
trained to decode fixations on social cues and cooperation choices
from single observations (Methods). Fixations on the reward system
and partner-monkey were accurately decoded from the population
response in each brain area. The accuracy of decoding between the
availablesocial cuesineach areaincreased onaverage by 328% during
learning (Fig. 4a; all P< 0.01, linear regression). (Our main popula-
tionresultsinFigs.4 and 5also hold when only the stable unitsin both
areasareincludedin the analysis (Extended Data Fig. 7)). By contrast,
whereas non-social objects, such as fixations on the self-monkey’s but-
tonand random floor objects, could be reliably decoded from V4 and
dIPFC activity, decoder performance did notimprove across sessions

2 2 0 2

regression and Pearson correlation. d, Peri-event time histogram and raster
examples of four distinct V4 and dIPFC cells responding to each social event.
Dashed linesrepresent eventonset, and the grey shaded box represents the
response period used in analyses. e, Significant responses. Left, percentage
of cells of the total recorded (M1, 34 V4 cellsand 102 dIPFC cells; M2,104 V4
cellsand 46 dIPFC cells) that exhibited a significant change in firing rate from
baseline (intertrial period) during social events, averaged across sessions and
monkeys. For each cell, P< 0.01, Wilcoxon signed-rank test with FDR correction.
Right, percentage of neurons of thetotal recorded that responded only to
choice (selfand/or partner), only to fixations (reward and/or partner), both
fixations and choice (‘mixed’) or none atall (‘other’). *P< 0.05,**P< 0.01,
***P<0.001.

(Fig.4b). Thus, duringlearning cooperation, both V4 and dIPFC selec-
tively improve the encoding of visual features of social objects (for
example, reward system and partner) but not that of other objects.
Furthermore, dIPFC neurons accurately discriminated between social
and non-social object categories, as decoder performance significantly
improved by 228% during learning (Fig. 4c; all P< 0.01, linear regres-
sion). Thus, the representations of social cues and their distinction
from non-social cues in dIPFC improves while animals learn to coop-
erate (Fig. 4c¢). Importantly, neural activity during visual fixations in
both areas was only minimally influenced by animals’ head and body
movements**** (Extended Data Fig. 5¢,d).

We further examined whether neural populations encode each
monkey’s decision to cooperate. Control experiments using ‘solo’ and
‘social’ trials (Methods) showed that prepush activity is influenced by
social context (Extended Data Fig. 6b—d): that s, animals’actions dur-
inglearning-cooperation sessions reflect asocial choice to cooperate.
By decoding each animal’s push from population activity, we found
thatin V4, choice events canbe decoded only inasmall number of ses-
sions (Fig. 4d). By contrast, decoder performance in dIPFC increased
on average by 5,481% while animals learned to cooperate (Fig. 4d; all
P<0.01, linear regression). Because we found that the self-monkey
viewed different social cues during self-and partner-pushes (Extended
Data Fig. 4c), we examined whether neural activity during pushing
reflects decision-making or changes in visual input. Thus, we decoded
eachanimal’s choice to cooperate during two scenarios: (1) pushes with
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respectively. c, Decoding performance for object categories: fixations on
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P=0.001,r=0.8,V4and dIPFC, respectively.d, Decoding performance for each
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P=0.002,r=0.7,V4and dIPFC, respectively. e, Viewing social cues improves
choice encoding. Left, Decoding performance for each animal’s choice using

preceding fixations (within 1,000 ms) on social cues (reward system
or partner) and (2) pushes without preceding fixations on social cues
(the number of events in the two scenarios were balanced; Methods).
In both V4 and dIPFC, decoder performance for choice was signifi-
cantly reduced (by 65% and 24%, respectively) when pushes with pre-
ceding fixations on social cues were excluded (Fig.4e, grey; P < 0.001,
Wilcoxonsigned-rank test). However, in dIPFC, the accuracy of decod-
ingthe choice to cooperate remained correlated with learning (Fig. 4e,
bottom row; all P< 0.05, linear regression). This demonstrates that
dIPFC encodes each animal’s decision to cooperate and that viewing
social cues during decision-making improves choice encoding. By
contrast, V4 decoder performance was close to chance when button
pushes preceded by fixations on social cues were removed from the
analysis, indicating that V4 activity before choice mostly represents
viewing social cues, not decision-making (Fig. 4e). Altogether, this
demonstrates that improved encoding of egocentric (self) and allo-
centric (partner) choice in dIPFC, but not V4, correlates with learning
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pushes with preceding fixations on either social cue within1,000 ms of push
(navy and gold) compared to pushes without fixations onsocial cues (grey).
V4M1,P=0.48andP=0.4;,M2,P=0.49and P=0.71.dIPFCM1,P=0.0002,r=0.8
andP=0.02,r=0.5;M2,P=0.008,r=0.6and P=0.02,r=0.6; withand without
social cues, respectively. Right, decoding accuracy for choice averaged across
both monkeys for each condition. V4 P=7.44 x107and dIPFCP=3.46 x10°%;
Wilcoxon signed-rank test. f, Distribution of absolute valued neurons’ weights
from the SVM model for decoding social cues (V4,98 and 102 neurons; dIPFC,
82and101neuronsinfirstand lastsession).g, Variance of weight distributions
for each session from SVM models decoding social and non-social cues, as seen
ina,b. V4 dataare M2 (average 104 cells per session), and PFC dataare M1
(average 102 cells persession).V4,P=0.01,r=-0.63and P=0.57; dIPFC,
P=1.67x107%,r=-0.83and P=0.29; social and non-social cue models,
respectively.*P<0.05,**P<0.01,***P<0.001.

cooperation. Finally, task-irrelevant variables such as head, body and
eye movement and pupil size during pushes may influence neuronal
activity®**>, However, consistent with our previous work*, we found
only asmall percentage of neurons whose activity was correlated with
movements or pupil size during pushing (less than 12% of correlated
neurons, n=1,157 cells; Pearson correlation P < 0.01; Extended Data
Figs.4d,eand 5a,b).

How does the contribution of each neuron to decoder accuracy
change during learning? In linear SYM models, each cell is associated
with a weight representing its contribution to the decision bound-
ary for separating one decoded event from another (that is, self and
partner-choice or reward and partner stimuli). We confirmed in our
modelsthatinasession, the higher the weight magnitude, the greater
the neuron’s contribution to event classification (Extended Data
Fig. 8c,d) and selectivity to social events (Extended Data Fig. 9¢). To
compare across sessions, we normalized the weights in a session and
analysed the absolute value of weights of individual stable neurons
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Fig.5|Spike-timing coordination while learning socialinteractions. a, Top,
example CCGs of a V4 cell pair and a dIPFC cell pair during two social events,
averaged across observations. Bottom, example CCGs of V4-dIPFC cell pairs.
b, Temporal coordination for social and non-social events. Top, mean
coordination plotted across sessions for each social eventin V4, dIPFC and
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P=5.68x107%,r=0.9;P=0.003,r=0.7,P=1.25x10"*,r=0.7and P= 0.07. V4~
dIPFC,P=2.89x10%r=0.8;P=0.01,r=0.6;P=9.93x10™*, r=0.7and P=0.27.
Linearregression with Pearson’s correlation coefficient). Bottom: mean
coordination during fixations onrandom objects and during random events
(intertrial period). V4, P= 0.4 and 0.7; dIPFC, P= 0.4 and 0.09; V4-dIPFC: P= 0.4
and 0.1;random event and fixations, respectively. All data from M1; for M2, see
Extended DataFig.10a.c, Colour map of within/between area Pvalues from

and neural population distributions across sessions from each decod-
ing model® (Methods). Surprisingly, although some (approximately
15%) individual neurons exhibited systematic changes in decoding
weight or discriminability during learning (Extended Data Fig. 9d), we
found more significant changes at the population level. Specifically,
the variance, kurtosis and skewedness of population weight distri-
butions decreased across sessions for decoding models exhibiting
improved performance, such as those distinguishing between social
cues (Fig. 4f,g and Extended Data Fig. 9a,b). By contrast, adecrease in
weight variance, kurtosis or skewedness was not observed in models
inwhich decoding performance did notimprove, such as when distin-
guishing between non-social cues (Fig. 4g) or between categories and
choice in V4. These findings were consistent across brain areas and
were present in each monkey (Extended Data Fig. 9b). The decrease
in these weight metrics indicates that early during learning, a select
number of cells contribute most to social interactions relative to the
rest of the population. However, although learning progressed, the
magnitude of the weights decreased, and information about social
events became distributed more evenly across the population (Fig. 4f
and Extended Data Fig. 9a).

linear regression of mean coordination for each social event in each monkey.
Temporal coordinationincreases during learning. d, Histograms of time-lag
values of CCG peaks between all significantly correlated V4-dIPFC cell pairs
across sessions and monkeys for each social event. e, Correlated V4-dIPFC
neurons contribute more to encoding of social events. Probability density
plots of decoder weights of V4 and dIPFC neurons significantly correlated
and the remaining uncorrelated population during each social event. Weights
were averaged across neuronsin each session foreach monkey and then
combined. V4 from lefttoright, P=6.48 x10™,P=6.38 x10™*,P=0.33,P=0.24;
PFC:P=0.002,P=0.001,P=7.41x10"*, P=0.14; Wilcoxon signed-rank test.

f, Cartoon of social learning model: increased interarea spike-timing
coordinationimproves the encoding of social variables to mediate learning
socialinteraction. NS, not significant.

Learning improves spiking coordination

Temporal coordination of neuronal spikingis believed to be correlated
with neuronal communication and information flow***, We computed
spike time correlations between pairs of cellsin V4 and dIPFC and across
areas. Only significant CCGs were used in the analysis (the peak of
shuffle-corrected CCGs was greater than 4.5 standard deviations of the
tails*®; Methods). To account for the delay in information transmission
within and between areas, we only analysed within-area CCGs (average
of 668 cell pairs per session) that peaked at +0-6 ms time lag and inter-
areal CCGs (average of 45 pairs per session) that peaked at +15-60 ms
lag (Fig. 5a). The mean coordination, or the average of significant cell
pair maximum coincident spikes (CCG peaks), significantly increased
across sessions during social events (Fig. 5b,c). Improved spike-timing
coordination was not due to individual neurons’ time locking with
respect to social events during learning, reflecting communication
within and across cortical areas (Extended Data Fig.10b).In V4, pairwise
synchrony increased by 114% across sessions during fixations on social
cues but not before choice events, whereas in dIPFC, synchronized
spiking increased on average by 137% during fixations on social cues
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and self-choice but not during partner-choice. As animals learned to
cooperate, coordination between V4 and dIPFC increased by 160% for
all social events except partner-choice (Fig. 5b,c). Importantly, both
within and between areas, coordination during fixations on random
floor objects or random time periods (for example, intertrial interval)
did not change across sessions, indicating that increased coordina-
tion exclusively correlates with learning of social events (Fig. 5b and
Extended DataFig.10a). Additionally, asignificant number of V4-dIPFC
pairs exhibited maximum coincident spiking at both positive (V4 leads)
and negative (dIPFC leads) time lags during social events, indicating
that V4-dIPFC coordination reflects both feedforward and feedback
interactions.

Finally, we asked whether the V4 and dIPFC cells that were coordi-
nated in their spike timing would also exhibit improved encoding of
social variables. Notably, significantly correlated pairs of V4-dIPFC
neurons contributed more to the encoding of social events in each
brain area, as their normalized weight values from decoding models
for social cues and choice were significantly higher than the weights of
theremaining population (Fig. 5e; Wilcoxon signed-rank test, P < 0.01).
InV4, thisresultapplied for the encoding of social cues but not choice,
whereasindIPFCitapplied toall events except partner-choice (Fig. 5e).
Taken together, we propose a general mechanism for learning social
interactions whereby increased spike timing coordination between
areas V4 and dIPFC during social events leads to improved encod-
ing and distributed representation of social variables within each
area (Fig. 5f).

Discussion

Socialinteractions, especially cooperation, require aninterpretation
and exchange of sensory information, including relevant visual cues,
among engaging agents. However, technological limitations have
prevented an understanding of how visual information is encoded
and passed on to executive areas to guide social decisions in freely
moving animals. Our results show that across sessions, animals are
more likely to engage in cooperation after viewing social cues. This
is supported by increased coordinated spiking between visual and
prefrontal cortical neurons during learning to cooperate, which is
associated with improved accuracy of neural populations to encode
social cues and the decision to cooperate. This provides the first evi-
dence, to our knowledge, of the role of the visual cortex in encoding
socially relevantinformation. Somewhat surprisingly, dIPFC neurons
outperformed thosein V4 in their ability to discriminate between sev-
eral visual social cues, probably because dIPFC receives and integrates
diverse sensory modalities®*, which may enable abetter prediction of
highly dimensional incoming stimuli. We further discovered that early
during learning, a select number of cells contributed most to social
interactions compared to the rest of the population. However, although
learning progresses, the information about social and decision-
making signals became more evenly distributed across the neural
population.

We propose that learning cooperation emerges fromimproved popu-
lation codingand communicationbetween visuo-frontal circuits during
social viewing. Notably, the strongest coupled neurons across areas
were those that contributed the most to the encoding of social events.
Asanimalsacquired cooperation behaviour, they increased the viewing
of social cues before deciding to cooperate (Figs.2d and 3¢). This raises
the possibility that during task-relevant events, increased spike timing
coordination between visual and prefrontal cortical neurons reflects
strengthened synapses between cells*** or aligned communication
subspaces (thatis, firing rate patterns) between neuronal populations
ineach area***, Surprisingly, an increase in spiking coordination was
not observed in dIPFC or between V4-dIPFC before the conspecific’s
choice (Fig. 5b,c), which indicates that dIPFC may encode the predic-
tion of the other’s behaviour in mean firing rates but not spike timing
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coordination. We further suggest thatincreased spiking coordination
may also occur between dIPFC and other brain areas during allocentric
events, which could be explored in future studies™*,

Finally, by allowing animals to move freely during social cooperation,
our study represents amove towards studying the neuralunderpinnings
of naturalistic behaviour ina free-roaming setting. Although this para-
digmshift has long been suggested**®, recent advances in low-power,
high-throughput electrophysiological devices coupled with wireless
behavioural monitoring and large-scale computing®***° made this
research feasible only now. Critical to our work is our simultaneous use
of wireless neural and eye-tracking recordings to examine how visual
events and social cues guide the decision to cooperate. Analysing the
relationship between the behavioural repertoires of each freely inter-
actingagentallowed us to uncover the neural computationsinvolving
prioritization of social visual cues that were essential to social learning.
Thus, vision may be the social language of primates, probably govern-
ing learning of various social activities such as grooming, play and
collective foraging. Future research willinvestigate how other sensory
cues, such as odours, vocalizations and touch®*?, complement visual
information to guide neural processes underlying social decisions. A
shift towards more natural behaviour in which multisensory informa-
tionis recorded wirelessly in conjunction with large-scale population
recordings will be essential for understanding the neural mechanisms
of social cognition®>**,
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Methods

Animals

All experiments were performed under protocols approved by the
University of Texas at Houston Animal Care and Use Committee and
the Institutional Animal Care and Use Committee for the University of
Texas Health Science Center at Houston (UTHealth). Four adult male
rhesus monkeys (Macaca mulatta; selfM1:10 kg, 11 years old; partM1:
12 kg, 10 years old; selfM2: 14 kg, 12 years old; partM2: 12 kg, 16 years
old) were used in the experiments.

Behavioural training and experiments
Before starting learning cooperation experiments, we trained individual
monkeys in their home cage to press a button resembling that in the
cooperation arena to receive a food reward. Therefore, when begin-
ning social experiments, each monkey was familiar with the button and
button press-reward association. The cooperation arena measured
7 x4 x 3 ft (length x width x height) and was constructed out of polyvinyl
chloride piping, plastic and plexiglass. Animals were acclimated to the
arena and button before beginning social learning experiments. But-
tons in the arena were strategically placed next to the clear divider so
that monkeys could easily see each other’s actions. During cooperation
experiments, animals had tolearnto push and hold buttons simultane-
ously with their partner-monkey to receive reward. Each animal’s tray
contained their ownamount of food reward (banana-flavoured pellet;
not accessible by the other monkey), and the trays moved together at
the same speed while animals were simultaneously pressing. If one
monkey stops pressing, the trays stop at their location on the track
and continue moving forward only when both monkeys begin pressing
again. We used the term ‘intertrial interval’ for the 20 s period consisting
ofal0 s pause after atrial ends followed by tray movement back to the
pellet dispensers (approximately 5 s) and another 5 s pause before the
next trial begins. Trial durations ranged from 10 s to 30 min, depend-
ing on how long it took for animals to cooperate. Although learning
sessions consisted of 100-130 trials, the behavioural events examined
(‘partner-push’, ‘self-push’, fixations on reward’, ‘fixations on partner’)
oftenoccurred more thanonce per trial. For complete quantification of
events, see ‘Neural responses during social cooperation’. For non-social
control experiments, after learning cooperation sessions, we recorded
control sessions in which animals completed the cooperationtask with
anopaquedivider separating them, so animals could no longer see each
otherbut couldstillhear and smell one another. The opaque divider was
athin (6 mmthickness), opaque grey piece of plexiglass and was placed
over the clear plexiglass that already divided the animals. The end of the
plexiglass nearest the buttons protruded out of the arenato ensure that
animals could not see each other pressing. We recorded four control
sessions with the opaque divider for each monkey pair. Opaque-divider
sessions had the same number of trials with the same trial structure as
regular learning cooperation experiments. The first opaque-divider
session completely confused the animals as they did not even attempt
to push after reward dispensed. However, they did eventually complete
trials together by using the ‘click’ sound of the button wheniit is pressed.
Sometimes one monkey would push the button many times to signal
their partner to push, but cooperation performance in these sessions
was significantly impaired (Extended Data Fig. 6a). Although macaques
do vocalize, they did not produce vocalizations during these experi-
ments and did not seem to use vocalizations to coordinate behaviour.
Solo-and-social control experiments (Extended Data Fig. 6b-d)
occurred after learning experiments and included periods of solo tri-
alsinwhich the self-monkey was alone in the arena, pellets dispensed
onlyintheir tray,and the monkey pushed their button to deliver reward.
Werecorded nine more sessions using these ‘solo blocks’ whereby the
self-monkey completed sets of cooperation trials entirely by them-
selves. Soloblocks were interspersed with regular cooperation blocks
conducted with two animals. Solo-and-social sessions included 60 solo

and 60 social trials that were executed in an alternating block design to
eliminate confounds of recording quality or stability in a session. We
alternated 30 solo trials, 60 social trials, 30 solo trials and vice versa
between days.

Chronicimplantation of the Utah array

Atitanium headpost was implanted medially with anchor screws. After
acclimatization and behavioural training (described in the previous
section), animals were implanted with a 64-channel dual Utah arrayin
theleft hemisphere dIPFC (anterior of the arcuate sulcus and dorsal of
the principal sulcus) and left V4 (ventrally anterior to lunate sulcus and
posterior tosuperior temporal sulcus) and a pedestal on the caudal skull
(Blackrock Neurotech). We used Brainsight, a neuronavigational sys-
tem, and the animals’ magnetic resonanceimaging scans to determine
thelocation for V4 and dIPFC craniotomies (Rogue Research). During
surgery, visual identification of arcuate and principal sulci guided
preciseimplantation of arraysinto the dIPFC, and visual identification
of the lunate and superior temporal sulci supported array placement
in area V4. The dura was sutured over each array, and two reference
wires were placed above the duramater and under the bone flap. Bone
flaps from craniotomies were secured over the arrays using titanium
bridges and screws. After the implant, the electrical contacts on the
pedestal were always protected using a plastic cap except during the
experiment. Following array implantation, animals had a three-week
recovery period before recording from the arrays.

Wireless electrophysiology

To record the activity of neurons while minimizing interference with
the animals’ behaviour, we used a lightweight, rechargeable battery-
powered device (Cereplex-W, Blackrock Neurotech) that communi-
cates wirelessly witha central amplifier and digital processor (Cerebus
Neural Signal Processor, Blackrock Neurotech). First, the monkey was
head-fixed, the protective cap of the array’s pedestal was removed and
the wireless transmitter was screwed to the pedestal. Neural activity
wasrecorded in the head-fixed position for 10 minto ensure the quality
of the signal before releasing the monkey in the experimental arena.
The arena was surrounded by eight antennas. Spikes from each brain
area were recorded simultaneously at 30 kHz and detected online
(Cerebus Neural Signal Processor, Blackrock Neurotech) using a
manually selected upper and lower threshold on the amplitude of the
recorded signal in each channel, which was helpful to eliminate noise
fromthe animal chewing, or by using the software’s automatic thresh-
olding, whichwas +6.25 times the standard deviation of the raw signal.
The onsite digitization in the wireless device showed lower noise than
common wired head stages. The remaining noise from the animal’s
movements and muscle activity was removed offline using the auto-
matic algorithms in Offline Sorter v.4 (Plexon). In brief, this was done
by removing the outliers (outlier threshold = 4-5 standard deviations)
in a three-dimensional (3D) space that was formed by the first three
principal components of the spike waveforms. Then, the principal
components were used to sort single units using the k-means clustering
algorithm. Each signal was then automatically evaluated and manually
checked as multi- or single-unit using several criteria: consistent spike
waveforms, waveform shape (slope, amplitude, trough-to-peak) and
exponentially decayinginterspike-interval histogram with nointerspike
interval shorter than the refractory period (1 ms). The analyses here
used all single- and multi-unit activity.

Receptive field mapping

Weidentified receptive fields of recorded neuronsina head-fixed taskin
whichthe animal was trained to maintain fixation during stimulus pres-
entation on a monitor. Neural activity was recorded and thresholded
using awired head-stage and recording system, similar to the methods
described above in ‘Wireless electrophysiology’ (Cerebus Neural Signal
Processor, Blackrock Neurotech). We divided the right visual field intoa



3 x 3 grid consisting of nine squares with each square covering 8 x 8° of
visual space. The entire grid covered 24 x 24° of visual space. Each of the
ninesquareswas furthersubdividedintoa 6 x 6 grid. Ineachttrial, one of
the ninesquares wasrandomly chosen, and the receptive field mapping
stimuli were presented ateachof the 36 locationsinarandomorder. The
receptive field mapping stimuli consisted of areverse correlation movie
withred, blue, green and white patches (approximately 1.33° each). A
complete receptive field session is composed of ten presentations of
thereceptive field mappingstimuliin each of the nine squares forming
the 3 x 3 grid. We averaged the responses over several presentations to
generate receptive field heatmaps and corresponding receptive field
plots (as shown in Fig. 3b). As recorded populations remained stable
across days (Extended Data Fig. 3), receptive field mapping was done
before starting learning sessions and performed once every month
during recordings.

Wireless eye tracking

We used acustomwireless eye tracker (ISCAN) to measure pupil position
and diameter from the self-monkey during experiments. The portable
wireless eye tracker, mounted dorsally, right above the animal’s head,
consisted of an eye mirror, an eye camera for detecting pupil size and
eye position, and ascene camerasituated above the eye camera (see also
ref.50), which records animal’s field of view. All data were recorded at
30 Hz. To train animals to wear the device without damaging it, its 3D
geometry was modelled (Sketchup Pro), and dummies were 3D-printed
and fitted with eye mirrors. To properly position the eye tracker and
dummies relative to the eye, custom adaptors were designed and
3D-printed to attach directly to the animal’s headpost and serve as
an anchor point for the eye tracker. These adaptors were designed to
interface with the headpost without touching the animal directly, to
minimize discomfort and reduce thelikelihood of the device being tam-
pered with. These dummy eye trackers were worn by animals for several
mock recording sessions to adjust themto wearing the device. Once the
animals grew accustomed to wearing the dummy and stopped touching
italtogether, thereal device was used. Before each experiment, the eye
tracker was secured onthe animaland we performed a calibration pro-
cedure (‘point-of-regard’ calibration) while the animal was head-fixed,
which mapped the eye position data to the matrix of the head-mounted
scene camera (Extended DataFig.1a). Animals were trained to view five
calibration points within the field of view of the scene camera (640 x 480
pixel space of ascene cameraframe maps to 35 x 28°, length x height),
includinga centre calibration point and four outer points positioned at
+8to+10°withrespecttothe centre (we chose the distance between the
animal’s eye and calibration monitor on the basis of the approximate
range of eye-stimulus distances during free viewing, which was 70 cm).
Asthe animal viewed each point, the eye-calibration software synchro-
nized the eye-movement data with the image frames recorded by the
scene camera. After calibration, the animal’s centre of gaze is displayed
oneachscene cameraframeinreal time asa crosshair (Figs.1d and 2a).
If the animallooks outside the field of view of the scene camera frames,
gaze location is not detected and the crosshair will not appear on the
scene cameraframes. When this occurs, eye position dataarereflected
as zero (Extended Data Fig. 1c). Therefore, only scene camera frames
thatincluded a crosshair were used in analysis, which usually occurred
(60-85%; Extended Data Fig. 1e). We used the horizontal and vertical
coordinates of the pupil to compute eye speed. To extract fixations, we
used movement-threshold identification to determine the conserva-
tive speed threshold that best separated the bimodal distribution of
eye speed in a session®. A fixation was defined as a minimum 100 ms
period when the eye speed remained below this threshold.

Behavioural tracking

We captured atop-down, or overhead, video of the animals during the
experiments using a COSOOS CCTV LED home surveillance security
camera. Werecorded overhead and scene camera (wireless eye tracker)

videos usinga CORENTSCDVR (I.O. Industries). This DVR recorded all
videos at 30 frames per second and sent pulses to the Blackrock Cer-
ebus neural recording system for every captured frame from each
camera, as well as the start and end of video recording. We used the
timestamps of these pulses to synchronize overhead video frames to
neural and behavioural data. Owing to imperfect transmission of wire-
less eye-tracking data, frames were sometimes dropped from the
recording. Therefore, to verify the timestamp of each scene camera
frame, we used a custom object character recognition software (devel-
opedbyS. Yellapantula) to automatically read the timestamp listed on
eachscene camera frame and align with neural data. Using DeepLabCut
v.2.0, we trained a network to automatically label relevant objects in
the frames, such as the crosshair, reward dispensers and trays, each
animal’s button and various body parts of the partner-monkey includ-
ing eyes, head, ears, nose, shoulders, limbs, chest, back, face, paws and
butt (Extended Data Fig. 1d). The DeepLabCut output included the
location coordinates of all the objects found in the frames. Therefore,
we used adegree-to-pixel conversion and the coordinates of the cross-
hair and object labels to identify which objects were in the receptive
fields of the neurons in any given frame (Extended Data Fig. 1b;
5°=90 x 80 pixels, on the basis of the equation Tan @ =d +x, where
dis the measured length and height of the scene camera frame when
viewing from distance x).

Finally, to compute head, limb and torso speed (movement) of the
animal, as shownin Extended Data Fig. 5, we used DeepLabCut tolabel
body parts of the self-monkey in the overhead camera frames. ‘Head
movements’ included labels from the centre of the head, snout and
each ear. ‘Limb or arm’movement was computed from shoulder, elbow
and paw labels. ‘Torso or whole-body’ movement was calculated from
the animal’s upper and mid back labels. To compute the average speed
of each label during frames of interest, we calculated the Euclidean
distance between thelabel coordinates across consecutive frames. Sub-
sequently, we quantified the overallmovement of eachbody area (head,
limb or torso) by averaging the speeds of the corresponding labels.

Conditional probability

For each trial in a session, we computed the conditional probability
of cooperating for the self- and partner-monkey, respectively, using
the equations

P (Self and Part)
P (Part)

P (Self and Part)

P(Self|Part) = P(Selh)

and P(Part|Self) =

The probabilities were derived from button-push sequences for
each monkey that were represented as a time series of zeros and ones
in 100 ms bins. Conditional probabilities were averaged across trials
inasession (100 in monkey pair 1and 120 in monkey pair 2) to create
the values plotted in Fig. 1h.

Markov model

Toexplore therelationship between fixation and push events, we used a
Markov model to estimate the transitional probabilities between social
eventsastheyoccurredinasequenceacrossatrial, using the function
hmmestimatein MATLAB 2020b. Sequences consisted of four events/
states: ‘view reward’, ‘view partner’, ‘self-push’ and ‘partner-push’, result-
ing in 16 event pairs and transitional probabilities. We only included
trials in which all four events occurred, which was on average 40% of
trials per session. For each event pair, transitional probabilities were
averaged across trials for a session mean transitional probability, as
seenin Fig. 2d. Transitional probabilities for each session and each
monkey pair are shown in Extended Data Fig. 2.

Identifying stable units across sessions
We used principal component analysis (PCA) of waveforms fromeach
session to identify stable spike waveforms across sessions. First, we
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performed PCA onamatrix of 100 samples of waveforms of single units
and multi-units from every session using the pca functionin MATLAB
2020b. Then, for each session, we used the first seven components of
the principal component coefficients to compute the Mahalanobis
distance between distributions of all waveforms for each combination
of cell pairs in that session. The Mahalanobis distance between two
objects in a multidimensional vector space quantifies the similarity
betweentheir features as measured by their vector components. It takes
into account the covariance along each dimension®. The Mahalanobis
distance between two clusters of spike waveforms A and B belonging
to apair of neuronsinseven-dimensional vector space was computed
using the following formula:

MD=/((4-B)V(4-B)),

where T represents the transpose operation, V'is the inverse of the
covariance matrix and A and B are the first seven components of the
principal component coefficients for each neuron in the pair. Impor-
tantly, because this analysis was performed among cell pairs in a ses-
sion, this distribution reflects the Mahalanobis distances for distinct,
individual cells. We combined the distances across sessions to create
onedistributionand used this to identify awaveform threshold, which
was the fifth percentile of the distribution. Therefore, Mahalanobis
distances between waveforms of cell pairs that areless than the thresh-
old reflect waveform distributions that belong to the same neuron.

Foreach channel (electrode), we computed the Mahalanobis distance
using PCA waveform coefficients from all the neurons identified on
that channel across all sessions. Some channels recorded two units
each day, and others did not record any isolated single-unit activity
or multi-unit activity. Ninety-six electrodes were recorded from each
subject’s brain; however, electrodes without single units or multi-units
for at least ten (that is, half) of the learning sessions were not used in
the analysis. Analysisincluded 90 total electrodes from M1and 86 total
electrodes from M2. Mahalanobis distance values that were less than the
threshold represented stable units, and cell pairs whose Mahalanobis
distance was above the threshold indicated that the same neuron was
notrecorded across both sessions. Channels with stable units and a
channel with stable multi-unit activity but unstable single-unit activity
areshownin Extended DataFig. 3a. The number of stable cells divided
by the total number of cells is the percentage of stable units in each
areafor each monkey, as shown in Extended Data Fig. 3b. Inmonkey 1,
81% of recorded units (504/620) in V4 and 74% of recorded units in
dIPFC (1,350/1837) were consistent across sessions. In monkey 2, 83%
ofrecorded unitsin V4 (1,479/1,773) and 71% of recorded units indIPFC
(561/794) were stable (Extended Data Fig. 3b). Overall, our analysis
yields results comparable to other electrophysiological studies with
Utah array recordings, which also found that chronically implanted
Utah arrays typically record from the same neurons across days and
months®** The neural analyses in Figs. 4 and 5 were repeated using
only the units that remained stable across sessions (Extended Data
Fig. 7), and the main results remain unchanged from those using the
entire population (Figs. 4 and 5).

Neural responses during social cooperation

We identified four salient events for cooperation: ‘fixations on
the reward’, ‘fixations on the partner-monkey’, ‘self-pushes’ and
‘partner-pushes’. ‘View reward’, or ‘fixations on the reward’, includes
fixations on the food reward system: the pellet dispenser and tray.
(Note that the tray always contained pellets during tray fixations. The
only time a tray did not contain food reward was during the intertrial
interval, and we did notinclude fixations fromthis period in the analy-
sis.) ‘View partner’, or ‘fixations on the partner’,includes all fixations on
the partner-monkey (head and body). ‘Social cues’includes all fixations
categorized as ‘'view reward’ and ‘view partner’. On average, there were
826 fixations onthe reward, 936 fixations on the partner, 116 self-pushes

and 43 partner-pushes (lead trials only; Extended Data Fig. 4a) per ses-
sion for each animal pair. To determine whether a cell was significantly
respondingtoone or more of these events, we compared the firing rate
inabaseline period (intertrial time, specifically 4.5 seconds before trial
start) to the event onset using a Wilcoxon signed-rank test followed by
FDR correction. Specifically, for each neuron, we calculated its firing
rate (20 msbins) occurring 130 ms after fixation onset thataccounted
for visual delay (60 ms for V4 neurons and 80 ms for dIPFC). We chose
thiswindow as the fixation response period because most of our fixa-
tions were 100-200 ms in duration (Extended Data Fig. If). For self-
and partner-push, we used 100 ms bins to compute the firing rate and
1,000 msbefore push onset asthe response period because firing rates
beganto significantly increase during this time. For partner-pushes on
‘partner lead’ trials only (Extended Data Fig. 4a), we used 500 ms before
and 500 ms after the push, because the self-monkey viewed them after
this push (trays were not moving as the self-monkey was not yet push-
inginthese types of observations). Neural activity occurring between
the moment trays began moving and the end of a trial was never used
in any analyses in this Article. Additionally, non-fixation rewarding
events, such as the start of the trial when pellets were dispensed and
the end of the trial when pellets were received, were not included in
any analyses. For each neuron, response firing rates were compared to
baseline firing rates that were computed across the same duration as
social eventresponses (130 ms for fixations and 1,000 ms for pushes).
Some recorded cells did not respond significantly to any social events,
known as ‘other’ (Fig. 3e, right). The percentage of neurons responding
tosocial events did not systematically differ across sessions (Extended
DataFig. 3c).

dprime

To assess the discriminability of neural responses between different
stimuli, we computed d prime (d’) following established methods in
neuroscience’®. d prime is a widely used measure that quantifies the
signal-to-noise ratio in a discrimination task, indicating the ability of
aneuronto distinguish between two classes of stimuli. Ina session, for
eachneuron, the meanresponses (u, and u;) to stimuli Aand B as well
asthe standard deviations of responses were obtained. We computed
d’ using the following formula:

d'= Uy —ug

0.5%./0,2+ 05>

Here, u, and uzare mean responses (averaged across response time
for each event, described above) of one neuron for each trial to stimuli
A and B, respectively. Stimuli A and B were those used in decoding
models (‘self-push’ or ‘partner-push’, ‘view reward’ or ‘view partner’,
‘view button’ or ‘view random’ and social and non-social categories;
see Extended Data Fig. 9c,d).

SVMdecoder

We used aSVM decoder®® with alinear kernel to determine whether the
population firing rates in V4 or dIPFC carry information about visual
stimuliand/or decision-making (Fig.4). Specifically, we computed the
mean firing rates of each neuron in the population for the response
period (described above) in each observation of fixations or pushes
(observations of any social event could occur in one trial) and then
classified binary labels specifying the event (for example, fixations on
reward were class one, fixations on partner were class two) from neural
responses. For each session, the number of fixations or pushes was
always balanced across classes. Random selections of class observa-
tions were repeated for 100 iterations, giving us the average classifi-
cation accuracy over 1,000 test splits of the data for each session. To
train and test the model, we used a tenfold cross-validation. In brief,
the data were split into ten subsets, and in each iteration the training
consisted of a different 90% subset of the data; the testing was done



with the remaining 10% of the data. We used the default hyperparam-
eters as defined in fitcsvm, MATLAB 2020b. Decoder performance
was calculated as the percentage of correctly classified test trials. We
compared model performance for predicting train and test data to
checkforoverfitting. In each sessionand iteration, we trained aseparate
decoder with randomly shuffled class labels. The performance of the
shuffled decoder was used as a null hypothesis for the statistical test
of decoder performance.

For improved data visualization in Fig. 4, we plotted the shuffle-
corrected decoder accuracy (actual - shuffled decoder performance),
butlearning trends remain even when only the actual decoder accuracy
isevaluated (Extended Data Fig. 8a). Animals cooperate more quickly
astheylearn, and sessions become shorter, so the number of observa-
tions typically decreases across sessions. However, this change in the
number of observations across sessions did not influence decoding
performance. We repeated the analysis in Fig. 4a-d, for which we bal-
anced the number of fixations between classes and across sessions. For
eachbrainarea, decodingaccuracy was comparable to the original and
still significantly improved during learning (Extended Data Fig. 8b).

For the Fig. 4a-c analyses, 14 sessions were analysed from pair 2
because of an inadequate number of fixations on the stimuliin three
ofthe 17 sessions. Similarly, for Fig. 4b, only 16 sessions were included in
the analysis because monkey1did not fixate enough on the self-button
during two sessions. Sessions with fewer than 30 fixations were not
includedinany neural analyses. For the analysisin Fig. 4e, the number
of observations matched for ‘with cue’ and ‘without cue’ classes to
enable fair comparison of decoder performance across conditions.
Note thatinFig.4e, V4 and dIPFC accuracies (navy and gold) are differ-
entthanthosein Fig. 4d because this analysis always included pushes
with preceding fixations, whereas the Fig. 4d analysis used pushes with
or without preceding fixations.

For comparing feature weights of correlated and non-correlated V4
and dIPFC neurons (Figs. 4f,g and 5e and Extended Data Fig. 9), we first
normalized weights across the entire population of neurons in each
session® using the equation below, where W, is the current cell weight
divided by the square root of the sum of all the squared weights in the
population. nis the cell number:

normalized weight =
i=1""n

Cross-correlation
CCGs of the animals”actions in Fig.1were computed using the animals’
button-push sequences occurringacross atrial, represented asaseries
of zeros and ones in 100 ms time bins. For each cooperation trialin a
session, push series for each monkey (sequences were of equal length)
were cross-correlated using the xcorr functionin MATLAB 2020b. Coef-
ficient normalization was used, which normalizes the sequence so that
the autocorrelations at zero lag equal 1. The cross-correlations were
averaged acrosstrialsto create asession CCG, as plotted in Fig. 1f. The
maximum value, or peak, of each session’s CCGis plotted as the mean
coordination for that session, as shownin Fig.1g. The timelagat which
the peak occurredin each sessionis the pushlag, showninFig. If, right.
Another ‘shuffled’ analysis was performed for comparison, in which
the pushsequences derived for each monkey were shuffled randomly
in time for each trial. Trial cross-correlations between animals’ shuf-
fled pushes were calculated and then averaged across trialsto create a
session CCG of shuffled presses, as shown in Fig. 1f. As with the actual
CCGs, the peak of each session’s shuffled CCG is plotted as the mean
coordination for that session and shown in Fig. 1g.
CCGsinFig.5were computed by sliding the spike trains of each cell
pair and counting coincident spikes in 1 ms time bins for each social
event and pair of neurons (within and between areas) using the xcorr
functionin MATLAB 2020b. Cross-correlations were normalized by the

geometric mean spike rate toaccount for changesinindividual neurons’
firing rates and further corrected for stimulus-induced correlations by
subtracting an all-way shuffle predictor, efficiently computed from
the cross-correlation of the peristimulus time histograms4°¢°, Spe-
cifically, the trial-averaged cross-correlation of the binary time series
spike trains between neuronsj and k was computed as

M T
Gl =7 > ¥ oo, M

i1 =
where Mis the number of trials, Tis the duration of the spike train seg-
ments, xisthe neural response and ris the lag. We normalized the above
trial-averaged cross-correlation (equation (1)) by dividing it by the
triangle function ©(7) and the geometric mean of the average firing
rates of the neurons, /A1, (ref. 40) to get the unbiased CCG of the spike

trains in units of coincidences per spike:
Cix (1)

o) A4, @

The functionO(7) isatriangle representing the extent of overlap of
the spike trains as a function of the discrete time lag t:

CCG(1) =

0@ =T-|1 (-T<z<T), (3)

where Tis the duration of the spike train segments used to compute
Cy (ref.40). Dividing C; by © (1) corrects for the triangular shape of C;
caused by the finite duration of the data*. Dividing by . /A4, inequa-
tion (2) results in CCG peaks withrelatively constant area as firing rates
of individual neurons change*®®'. In other words, dividing by the geo-
metric mean of the firing rates of the two neurons makes the CCG peaks
relatively independent of the firing rates.

We computed CCGs using spiking activity that occurred 800 ms
before choice or random events and 200 ms after fixation onset
with visual delay (‘Neural responses during social cooperation’). For
cross-correlation of V4-dIPFC responses to fixations, we used an 80 ms
visual delay. A CCG was considered significant if the peak (occurring
withina-6to+6 mslaginterval withinareaand +15-60 mslaginterval
between areas) exceeded 4.5times the standard deviations of the noise
(tail) level occurring +60 ms from the peak range during non-fixation
events and +25 ms from the peak range for fixation events. Mean coor-
dination values for each session are the average of the CCG peaks of all
significant cell pairs. For random events, we used times from the inter-
trial period, and for random fixations, we used fixations on objects that
were not social cues. Inasession, the number of random observations
matched those of social events. Mean coordination values for monkey
pair2arein Extended DataFig. 10a.

Statistics

To assess systematic changes in behavioural and neural metric perfor-
mance or learning, we report the Pvalue from simple linear regression
and Pearson’s correlation coefficient to report the strength and direc-
tion of linear relationships. The per centincrease or decrease of behav-
ioural and neural metrics was calculated by the percent change
equation, C= 22 _lxl, where Cis therelative change, x; is the value from
session1and x, is the value from the last session. Changes were then
averaged across events or monkeys. For comparing two paired groups
suchasacell’sfiringrate during anevent and abaseline period, we used
the two-sided Wilcoxon signed-rank test. We chose this test rather than
parametric tests, such as the t-test, for its greater statistical power
(lower typelandtypellerrors) when dataare not normally distributed.
When multiple groups of data were tested, we used the FDR multiple-
comparisons correction, whoseimplementationis astandard function
in MATLAB. When comparing two unpaired distributions, we used the
Wilcoxon rank-sum test.
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Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All source data used to generate experimental figures are available
at https://zenodo.org/records/10384447. The data that support the
findings of this study are available from the corresponding authors
uponreasonable request.

Code availability

Data analysis was performed using MATLAB 2020b (MathWorks). The
codeonwhichthis study was based is available from the corresponding
author upon reasonable request.
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Extended DataFig.1|Wireless eye tracking methods and fixation
statistics. a, Eye tracking calibration procedure. As the animal views five
points onamonitor, thisinformationis entered into the program (ISCAN Inc.),
which projectsa crosshairindicating the animal’s point of gaze onto scene
cameraframes.b, Using the equationin panel a, pixel space of the scene camera
isconverted to degrees toidentify when objectsinthe scene camera frames are
withinthe receptive fields of neurons. Here, the animal’s shoulder and upper
armare withinreceptive fields. ¢, Raw traces of eye x and y coordinates, and
pupil diameter recorded with the wireless eye tracker. The zero values at
1secondare duetoablink, while the zero values of xand y coordinates at

Fixation duration (ms)

7 seconds are due to the animal viewing an object located out of the field of view
captured by thescene camera.d, Number of objects (sorted) that DeepLabCut
labeled in the scene camera frames from one session. e, Session-averaged
percentage of scene cameraframes out of total recorded that contained the
crosshair for each monkey. M1: 2382652 frames labeled out of 2844338 total
frames.M2:1158612 frames labeled out of 2421325 total frames. Each circleis
the percentage of crosshair labeled frames for each session. f, Histogram of
fixation durations from onerepresentative session that consisted 0f12,378
fixations.70% of the fixations were 200 ms duration or less. Illustrationsina
were created using BioRender.
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Extended DataFig.2|Markov Model transitional probabilities between
social events for eachmonkey pair. a, Left - Transitional probabilities from
Markov Modeling estimation, plotted across sessions for each event pair
combinationin monkey pair1. The P valueisincludedif simplelinear regression

P <0.05.Across monkeys, mostincreasing trends occur for event pairs that
beginwithorinclude aviewingbehavior. Right - the transitional probability
matrix for all event pairs, averaged across sessions. b, Same asina, but for
monkey pair 2.
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Extended DataFig. 3 | Neural populationstability. a, Example single units
from one monkey showing spike waveforms recorded across sessions. Each
panelrepresents the average waveform of the unit from one session, with
session1plottedinadark colorandincreasingintransparency acrosssessions.
The unstable unit shows spike waveforms representing stable MUA (Black) and
unstable SUA (red); the single unit was only present for 4 out of the 18 sessions.
b, The number of stable cells divided by the total number of cells is the
percentage of stable unitsin each areafor each monkey. In monkey 1, 81% of
recorded units (504/620) in V4 and 74% of recorded units in dIPFC (1350/1837)

were consistent across sessions. Inmonkey 2, 83% of recorded units in V4
(1479/1773) and 71% of recorded units in dIPFC (561/794) were consistent.c, For
eachbrainregion, the percentage of cells out of the total recorded (M1: 34 V4
cells, 102 dIPFC cells; M2:104 V4 cells, 46 dIPFC cells) that exhibited a statistically
significant changein firing rate frombaseline (intertrial interval firing rate)
duringsocial events (asshownin Fig.3e but plotted across sessions for each
monkey). For each cell, P < 0.01 Wilcoxon signed-rank test with FDR correction.
The percentage of responding cells does not systematically change across
sessions.
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Extended DataFig. 4 |Neural responses and oculomotor events during
pushes. a, Self and partner pushes consist of push types that occurredin their
respective outlined boxes. ‘Partner only’ pushesrarely occurred and were not
used inanalysis. For total number of pushes, see Methods: Firing Rate and
Response.b, PSTHs from two example dIPFC units that show anincreasein
firingrate before self-monkey and partner pushes. Bottom: pie chart reflecting
the percentage of push-modulated dIPFC units that respond only to self-push,
onlyto partner push, ortoboth (“mixed”). Percentages averaged across
sessions and monkeys. M1:102 total dIPFC cells, 73 are push responsive; M2: 46
total dIPFC cells, 41 are pushresponsive. ¢, The distribution of the number
fixations on each object that occurred before (1000 ms pre) selfand partner
(1000 ms pre, 500 ms post) pushesin each session. Self-monkey views the

0
0 20406080

partner more during partner pushes compared to self-pushes, but he viewed
thereward more before self-pushes. Pair 1 P Values: 0.005 and 5.79¢75, Pair 2
Pvalues: 0.03and 0.003, Wilcoxonrank-sumtest. d, Pupil size and eye speed,
averaged across sessions and animals, that occurred before (1000 ms pre) the
selfand partner monkey pushes. There is no significant difference in pupil size
and eye speed between animal’s choices, Wilcoxon rank-sum test, P > 0.05.

e, Thedistribution of Pearson correlation coefficients from the correlation of
V4 and dIPFC neuron’s firing rates with pupil size and eye speed occurring
before (1000 ms pre) self and partner pushes. N =1157 neurons from eight
sessions across two animals. Percent significant represents neurons with a
significant correlation coefficient, P < 0.01.*P <0.05,**P <0.01, ***P < 0.001.
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Extended DataFig. 5| Neuralfiring rate correlations to movements during occurring around (1000 ms pre, 500 ms pre, or 500 post) selfand partner

pushes and fixations. a, Self-monkey’s head movement, limb movement, or pushes.N =900 neurons fromsix sessionsacross two animals. “% sig” represents
torsomovementoccurringaround (1000 ms pre, 500 ms pre, or 500 post) self neurons with asignificant correlation coefficient, P < 0.01. ¢, Self-monkey’s

or partner monkey pushes, averaged across six sessions from two monkeys. head movementoccurring 200 ms after onset of fixations on reward and partner
Head movement:P=2.07e™, P =2.49¢, P =0.001; Limb movement: monkey, averaged across six sessions from two monkeys. Head movement:
P=712¢78,P=739¢e™, P=2.49¢e7; Torso movement:P=7.0le”*,P= 0.46, P=2.44e% Limbmovement:P = 0.29; Torso movement: P =0.0009; Wilcoxon
P=0.0007;forPrels,Pre0.5sandPost 0.5 srespectively, Wilcoxon rank-sum rank-sumtest. While thereis asignificant differencein torsomovementacross
test.On eachboxplot, the central horizontal mark indicates the median, and reward and partner fixations, the magnitude of the differenceis <2%.d, The
thebottomand top edges of the box indicate the 25th and 75th percentiles, distribution of Pearson correlation coefficients from the correlation of V4 and
respectively. The whiskers extend to the most extreme data points not dIPFC neuron’s firing rates with head movement occurring 200 ms after
considered outliers, and the outliers are plotted individually using the ‘0’ fixations onthereward systemand partner monkey. N =900 neurons from six
symbol. b, Distribution of Pearson correlation coefficients from the sessions across two animals. “% sig” represents the % neurons with asignificant

correlation of V4 and dIPFC neuron’s firing rates with head movement correlation coefficient, P<0.01.*P < 0.05,**P <0.01, ***P < 0.001.
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Extended DataFig. 6 |Non-social controls. a, Left - Log of the average
amount of time between self and partner monkey presses during learning
(‘withviewing’) sessions and control sessions with the opaque divider (‘without
viewing’). P =2.30e-08, Wilcoxon rank sum test. Right - Log of the average
delay to cooperate, or time for both monkeys to be pressing from the start of a
trial, duringlearning sessions and control sessions with the opaque divider.

P =1.078e-04, Wilcoxonrank sum test. Times were pooled across sessions
(n=4sessions for each condition) and averaged across monkeys. On each
boxplot, the central red mark indicates the median, and the bottom and top
edges oftheboxindicate the25thand 75th percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers, and
the outliers are plotted individually using the ‘+'symbolin gold. b, Social and
solotrial schematic with a peri-event time histogram for a dIPFC cell that

exhibits asignificant changein firing rate between solo and social conditions,
Wilcoxon rank-sum test, P < 0.05. ¢, Mean percentage of cells (n =40 cells/
session from 9 sessions) responding significantly to self-choicein each
conditionwhen compared to baseline and compared across conditions
(contextdifference), P < 0.01 Wilcoxon signed-rank test with FDR correction
and Wilcoxon rank-sum test for context difference. Pie chart: Session averaged
percentage of modulated (context difference) cells that exhibit significantly
higher firing rates before self-choice during solo or social condition. d, Actual
and shuffled decoding performance for solo and social trials using dIPFC
activity occurring 1000 ms before self-choice, averaged across session values
plotted ascircles.P=0.004, Wilcoxon signed-rank test. Dashed line represents
chance.SEMisrepresented with error bars.*P <0.05, **P < 0.01, ***P < 0.001.
Illustrationsinbwere created using Biorender.
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Extended DataFig.7|Neural correlates oflearning cooperation from
stable units only. a, Foreach monkey, decodingaccuracy for social cues from
stable neural population activity in each brain areasignificantly improves
duringlearning, as seeninFig.4a.V4P=0.01and 1.32e™*,PFCP =0.002and
0.01; monkeys1land2,linear regression. b, For each monkey, the variance of
weights from the decoding models shown in panel ‘a’significantly decreases
across sessions during learning, as observed in Fig.4g. V4 P=0.03and 0.01;
PFCP=0.004and 0.005; monkey1and2, linearregression. ¢, For each monkey,
mean coordination of stable unit pairs for each social eventin V4, dIPFC, and
betweenbrainareasis plotted across sessions. The same learning trends are
observed asthose shownin Fig.5b, cand Extended Data Fig.10a. Monkey 1

17
SVM decoder neuron weight (session mean)

P-values:P=0.007,0.02,0.09,0.79; P=0.03,0.01,1.93e*,0.07;P=2.9¢™*,0.02,
0.002,0.29; Monkey 2 P-values: P=0.03,0.01,0.11,0.26; P=0.003,0.006,
4.98¢™,0.25;P=0.03,0.01,0.01, 0.56; within V4, within PFC, and between areas
respectively, linear regression.d, Probability density plots of decoder weights
fromstable, V4 and dIPFC correlated neurons during viewing social cues.
Weights were averaged across neurons within each session for each monkey,
thencombined. Results are equivalent to those in Fig. 5e. V4 from left to right:
P=0.011andP=2.8e™*; PFC fromlefttoright: P =0.01and 0.001, Wilcoxon
signed-rank test comparing correlated neuron weights to remaining population.
*P<0.05,**P<0.01,**P<0.001.
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Extended DataFig. 8| Decoding performance for social events. a, Actual and
shuffled decoding performance for each animal’s choice to cooperate and
discrimination of social cues. Actual and shuffled values are plotted to provide
anexample comparison for the shuffle-corrected plots completed for monkey1,
Fig.4aand d.Shuffled decoder accuracies remained at chance levels (50%)
acrossallsessions. Thiswas also the case for every other decoding analysesin
Fig.4.b, Decoding performance for social cues, categories, and choice where
the number of observations remained the same across all sessions and for each
class.Foreachbrainarea, decoding accuracystill significantly improves during
learning when the number of observations remains unchanged across
sessions. All P-values are from linear regression and r is Pearson correlation
coefficient.Social cuesM1dIPFCP=0.0003,r=0.75and V4P =0.02,r=0.53;
M2dIPFCP=9.9¢™,r=0.78and V4P =0.0003,r=0.83. Categories M1dIPFC
P=1.3e-4,r=0.78; M2 dIPFCP =0.002,r=0.76. Choice M1dIPFCP = 6.84e-4,
r=0.72;M2dIPFCP=0.003,r=0.68.c, The changein decoding performance

Change in decoder accuracy (%)

forsocial cues (original model accuracy with all neurons minus model with
n-laccuracy),issorted according to the descending weight of the removed
neuron. X-axisrepresents theindex of aneuron; only one neuron was removed
from eachmodel. Session-averaged change inaccuracy is plotted. Removing
neurons with high weights decreases performancebut the effectis attenuated
asneurons with lower weights are removed. The changein accuracy for the first
30 neurons (out of104 total in V4,102 total in dIPFC) of descending weights is
shown for clarity. V4 P =1.11e-5,r=-0.71and dIPFCP = 0.0009, r =-0.57; linear
regressionand Pearson correlation. d, For V4 and dIPFC, histograms display
the change in decodingaccuracy from removing upper and lower deciles of
neurons (11neurons) with the highest (gold and blue) and lowest (red) weights,
respectively. Informative and uninformative neurons have significantly
different effects on model performance. V4 P=0.005and dIPFCP =0.009,
Wilcoxonrank-sumtest.*P <0.05, **P < 0.01, ***P < 0.001.
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Article

Extended DataFig.9|Learning reduces variance of neural population
decoding weights. a, The maximum absolute valued weight for each session
inSVM modelsthat decode social or non-social cuesis plotted for each cortical
area. V4 social cues maximum weight, P=0.002, r = -0.74; non-social cues
P=0.65,r=-0.12; PFCsocial cues maximum weight, P=0.004, r =-0.64;
non-socialcuesP=0.77,r=0.07, linear regression and Pearson correlation.

b, Summary of decoding models that exhibit decreased variance, kurtosis,
skewedness, or maximum weight values for each brain areaand monkey. For
each decoding model, the P value, represented in shades of teal color, reflects
linear regression of each weight metric with session number, asshown in panel a
and Fig. 4g. Significantly decreased variance, kurtosis, skewedness, or
maximum weight valueis only observed in decoding models that exhibit
increased decoding performance during learning. V4 P-values for monkey 1
kurtosis and skewedness P = 0.02 and P = 0.01, respectively. V4 P-values for
monkey 2 variance and maximum weight P = 0.01and 0.002, respectively. PFC
P-values for monkey 1variance, kurtosis, skewedness, and maximum weight
values fromsocial cuesmodelareP=1.67e*,P=0.03,P=0.006,P =0.004,

respectively; from choice model variance P = 0.005; from category model
variance, kurtosis, skewedness, and maximumweight, P=9.19¢°,P=0.01,
P=0.006,P=0.001, respectively. PFC P-values for monkey 2 variance, kurtosis,
skewedness, and maximum weight values from social cues model are P=0.004,
P=0.02,P=0.008,P=0.01, respectively; from choice model kurtosis and
maximumweight, P=0.02and P = 0.03; from category model kurtosis, and
maximumweight, P=0.02and P =0.03, respectively. c, Withinasession,
neurons’ decoding weight and D-prime values for task variables are positively
correlated. Example sessions are shown for various decoding models where
accuracyis above chance. Each circlerepresents the absolute value of D-prime
and normalized SVM decoding weight of each neuron within asession. P-values
andsignificant Pearson correlation coefficients are shown.d, For each cortical
area, examples of individual neuron normalized weights and D-prime values
thatsignificantly increased (dark shade) or decreased (light shade) across
sessions. Nrepresents the total number of neurons that exhibited changes.
IndIPFC, 75 stable neurons were recorded/session and in V4, 87 stable neurons
wererecorded/session.*P <0.05,**P <0.01, ***P < 0.001.
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Extended DataFig.10 | Spike-timing coordination and response latency.

a, Top row: For Monkey 2, mean coordination plotted across sessions for each
socialeventin V4, dIPFC, and betweenbrainareas (V4:P=0.03,r=0.6;
P=0.005,r=0.7;P=0.1andP=0.2.PFC:P=0.008,r=0.7;P=0.003,r=0.8;
P=0.002,r=0.7and P=0.44.V4-dIPFC:P=0.02,r=0.6;P=0.006,r=0.7;
P=0.01,r=0.6and P=0.48).For ‘view reward’ and ‘view partner’ events, only 14
sessions were analyzed due to aninadequate number of stimulus fixationsin 3
outof17 sessions (sessions with <30 fixations were notincluded in the analysis).
P-values for these dataare reflected in Fig. 5c. Bottom row: For monkey 2, mean
spike timing coordination during fixations on random objects and during
random events (intertrial period, 4.5 seconds before trial start) for V4, dIPFC,
andinter-areal cell pairs.V4:P=0.03and 0.9; PFC: P = 0.53 and 0.45; V4-dIPFC:
P=0.01and 0.14, forrandom events and random fixations, respectively.
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Significant P-values here correspond to decreasing trends. b, For each monkey
(rows) and social event (columns), boxplots display the distribution of
differencesin V4 and dIPFC response latencies for correlated and uncorrelated
neuron pairs across all sessions. V4 latencies were subtracted from dIPFC, i.e.,
negative valuesreflect pairswhere the dIPFC neuron responded first. For
uncorrelated pairs, the difference inlatency between every possible combination
of pairs was computed. The P-value from Wilcoxon rank-sum test comparing
latency differences from correlated and uncorrelated pairsis displayed. On
eachboxplot, the central red markindicates the median, and the bottom and
top edgesofthe boxindicatethe25thand 75th percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers, and
theoutliers are plotted individually using the ‘+'symbol in blue.
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All source data used to generate experimental Figures is available at https://zenodo.org/records/10384447. The raw data that support the findings of this study are
available from the corresponding authors upon reasonable request.
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We conducted this cooperation study with two distinct monkey pairs consisting of three monkeys, but only recorded neural and eye tracking
data from two monkeys in order to achieve robustness for the behavioral and electrophysiological results despite possible differences in the
behavioral strategies between monkeys (all results were consistent across animals). We limited the number of neurally recorded monkeys to
two for the main results to meet the requirements of lab animal use regulations that requires minimizing the number of animals in each
study. Choosing the sample size of two is typical in electrophisiological studies in monkeys.

For SVM modeling and cross-correlation, some sessions were excluded if they did not contain enough observations to perform the analysis.

Results were replicated across sessions and animals. The main experiments were repeated up to 20 times in each animal, and control
experiments up to 10 times in each animal.

Two distinct pairs of familiar animals completed the same cooperation experiment at separate times, with data always recorded from the
subordinate animal in the pair. In control experiments, conditions were interleaved.

Since no group allocation was done in this study, blinding was not required.
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

Three adult male rhesus monkeys (Macaca mulatta) were used in this study, including Monkey M age 11, Monkey R ages 10 and 12,
and Monkey G age 16 during the time of experiments.

The study did not involve wild animals.
Due to the limited number of animals used for the main study (n=3), no reporting on sex or gender was possible.
The study did not include field-collected samples

All experiments were performed in accordance with The Animal Welfare Committee (AWC) and the Institutional Animal Care and Use
Committee (IACUC) for McGovern Medical School at The University of Texas Health Science Center at Houston.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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