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Visuo-frontal interactions during social 
learning in freely moving macaques

Melissa Franch1, Sudha Yellapantula2, Arun Parajuli1, Natasha Kharas1, Anthony Wright1, 
Behnaam Aazhang2 & Valentin Dragoi1,2,3,4 ✉

Social interactions represent a ubiquitous aspect of our everyday life that we acquire 
by interpreting and responding to visual cues from conspecifics1. However, despite 
the general acceptance of this view, how visual information is used to guide the 
decision to cooperate is unknown. Here, we wirelessly recorded the spiking activity  
of populations of neurons in the visual and prefrontal cortex in conjunction with 
wireless recordings of oculomotor events while freely moving macaques engaged in 
social cooperation. As animals learned to cooperate, visual and executive areas 
refined the representation of social variables, such as the conspecific or reward, by 
distributing socially relevant information among neurons in each area. Decoding 
population activity showed that viewing social cues influences the decision to 
cooperate. Learning social events increased coordinated spiking between visual  
and prefrontal cortical neurons, which was associated with improved accuracy of 
neural populations to encode social cues and the decision to cooperate. These  
results indicate that the visual-frontal cortical network prioritizes relevant sensory 
information to facilitate learning social interactions while freely moving macaques 
interact in a naturalistic environment.

Social cooperation is a complex behaviour whereby animals look at 
each other to perceive and interpret social cues to decide whether to 
interact2,3. These cues range from body language and facial expressions 
to rewarding stimuli and have been notoriously difficult to identify and 
analyse so far. Although previous studies have been instrumental in 
our understanding of the neural encoding of specific social variables, 
such as reward value4,5, actions6–8, agent identity9,10 and social rank11–13, 
they did not attempt to examine the neural processes that mediate 
the emergence of visually guided social decision-making and coop-
eration behaviour. Indeed, traditional studies examining the neural 
underpinnings of social behaviour have typically been completed using 
stationary animals performing passive tasks using synthetic stimuli. 
Technical limitations have prevented the recording of visual cues to 
further examine how they are used to shape social behaviour while 
animals interact with each other.

Macaques exhibit social behaviour in natural and laboratory environ-
ments, such as cooperation14–16 and competition17, and they strategically 
acquire social information from viewing eye and facial expressions3, 
hence making them an ideal model to study social cognition. Previ-
ous work in non-human primates has identified brain regions that are 
activated when viewing other agents in person or socially interacting 
animals in images and videos18–20, but examining how the brain pro-
cesses social signals originating from interacting conspecifics in real 
time to initiate goal-directed behaviour has not, to our knowledge, been 
explored until now. Here, we developed an approach that combines 
behavioural and wireless eye tracking and neural monitoring to study 
how pairs of freely moving, interacting macaques use visually guided 

signals to learn social cooperation for food reward. Our approach allows 
us to investigate behaviours and neural computations promoting coop-
eration and how they change over time while learning to cooperate. 
Harnessing the versatility of wireless neural and eye-tracking record-
ings combined with markerless behavioural tracking21, we examined 
how pairs of macaques learn to cooperate by identifying the visual cues 
used to guide decision-making along a visual-frontal cortical circuit.

Two unique and familiar pairs of macaques learned to cooperate for 
food reward across weeks. Owing to macaques’ natural social hierarchy, 
each pair consisted of a subordinate monkey (‘self’) and a dominant 
monkey (‘partner’). Animals cooperated in an arena, separated by a 
clear divider, so they could visually but not physically interact. Each 
monkey could freely move around their side, and each monkey had 
their own push button. At the start of a trial, perceivable but remote 
pellets dispensed into the animals’ respective trays, and animals could 
cooperate at any time by simultaneously pushing and holding individual 
buttons that moved their trays, delivering reward to each animal (Fig. 1a 
and Methods). A trial began when pellets dispensed and ended when 
the trays reached the animals (each session included 100–130 coopera-
tion trials: 18 learning sessions with monkey pair 1 and 17 sessions with 
monkey pair 2). Button pressing was recorded for each monkey while 
neural and eye-tracking data were wirelessly recorded simultaneously 
from the subordinate (‘self’) monkey (Fig. 1b,c). We chronically recorded 
from populations of neurons in the midlevel visual cortex (area V4) and 
dorsolateral prefrontal cortex (area dlPFC) of the several ‘self’ animals, 
as these are key areas involved in processing complex visual features22–26 
and planning social actions6,27,28. In each monkey (n = 2), we used dual 
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Utah arrays to stably record from the same neural population (averaging 
136 units per session in monkey 1 (M1) and 150 units per session in mon-
key 2 (M2), including single units and multi-units; M1, 34 V4 cells and 102 
dlPFC cells; M2, 104 V4 cells and 46 dlPFC cells) across several sessions29 
(Figs. 1b and 3a and Extended Data Fig. 3). Videos from the wireless eye 
tracker’s scene camera capturing the self-monkey’s field of view were 
analysed with DeepLabCut21 to identify objects of interest that the ani-
mal viewed in their environment (Fig. 1d and Methods).

Learning social cooperation
To quantify changes in cooperation performance over time, we analysed 
features of both animals’ actions, such as the coordination of their push 
onset and duration, the conditional probability of cooperating and 
the delay to cooperate. In a pair, each monkey’s choice to cooperate 
can be represented as an array of zeros (not pushing) and ones (push-
ing, Fig. 1e). Cross-correlation analysis between the button pushes of 
each monkey (Methods) in each session showed that their actions are 
coordinated and not random (Fig. 1f, left; shuffling push times resulted 
in near zero coincident pushing, red plot). In the first session, for each 
animal pair, cross-correlograms (CCGs) peaked at 0.6 coincidences: 
that is, animals pushed together for 60% of the session and increased 
to 80–90% coincident pushing in the last session (Fig. 1f, left). Indeed, 
animals learned to cooperate by significantly reducing the amount 
of time between each of their pushes (Fig. 1f, right; all P < 0.05, linear 
regression), thereby improving response coordination across ses-
sions (Fig. 1f,g; all P < 0.01, linear regression). Additionally, for each 
monkey, we computed the probability to cooperate given that the 
other monkey is pushing. Conditional probability exhibited a mean 
54% increase across sessions, thus reflecting learning cooperation 
(Fig. 1h; P < 0.001, linear regression). Finally, the delay to cooperate 
or amount of time it takes for a monkey to respond from the trial start 
decreased by 93% across sessions, indicating that animals’ motivation 
to cooperate increased during learning (Fig. 1i; P < 0.05, linear regres-
sion). Overall, this demonstrates that animals learned to cooperate 

across sessions by improving their action coordination, conditional 
probability and reaction times.

Social cues drive learning cooperation
We further examined whether animals’ viewing behaviour changes dur-
ing learning to cooperate by identifying the self-monkey’s fixations on 
objects in the environment (Fig. 2a and Methods). To determine which 
objects were salient for cooperation, we computed the fixation rate 
on each object during the cooperation trial and during the intertrial 
interval. Fixation rates on the food reward system (pellets in tray and 
pellet dispenser) and partner-monkey were significantly higher during 
the trial, particularly before cooperation, when both monkeys began 
pushing, than during the intertrial period (Fig. 2b; P < 0.01, Wilcoxon 
signed-rank test). Therefore, these relevant fixations, ‘view reward’ 
and ‘view partner’, constitute social cues. ‘View reward’ includes the 
self-monkey’s fixations on the pellets in their tray and pellet dispenser, 
and ‘view partner’ includes fixations on the partner-monkey, on both 
the head and body. Eye-movement analysis showed behavioural pat-
terns in which at the beginning of a trial, the monkey typically views 
the reward followed by a push, while frequently looking at their con-
specific before the partner’s push (Fig. 2c). The ability to view the other 
monkey is important for cooperation, as control experiments using 
an opaque divider that obstructed animal’s ability to view each other 
yielded a significant decrease in cooperation performance (Extended 
Data Fig. 6a).

To examine whether the relationship between social cues (‘view 
reward’ and ‘view partner’) and actions changes during learning, we 
used a Markov model to compute the probability of transitioning from 
one social event, or state, to another. Notably, the transitional prob-
abilities between visually driven event pairs, but not action-driven 
ones, significantly increased across sessions while learning to coop-
erate (Fig. 2d; all P < 0.01, linear regression). Although each monkey 
pair exhibited unique transitional probability matrices for social 
events, this was consistent across animal pairs (Extended Data Fig. 2).  
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Fig. 1 | Tracking of behavioural, oculomotor and neural events during 
learning cooperation. a, Behavioural task. Two animals learned to cooperate 
for food reward. Left, cooperation paradigm. Right, trial structure. b, Wireless 
neural recording equipment (Blackrock Neurotech). Red arrows represent 
information processing between areas. c, Wireless eye tracker and components. 
d, DeepLabCut labelling of partner-monkey and buttons from the eye tracker’s 
scene camera. The yellow cross represents self-monkey’s point of gaze.  
e, Example voltage traces of each animal’s button-push activity from pair 1.  
A line increase to 1 indicates the monkey began pushing. f, Left, example CCGs 
of pair 1’s button pushes from the first and last session, using actual and shuffled 
data. Self-monkey leads cooperation more often in early sessions, as the peak 
occurs at positive time lag (2 s). Right, session average time lag between pushes 

when maximum coincident pushes occur. Pair 1: P = 0.03 and r = −0.5; pair 2: 
P = 0.02 and r = −0.5. g, Push coordination. Session average maximum number 
of coincident pushes (that is, peaks) from CCGs. Pair 1: P = 0.001 and r = 0.7; pair 
2 P = 0.008 and r = 0.7. h, Session average conditional probability to cooperate 
for each monkey. Pair 1: P = 0.0004, r = 0.7 and P = 6.02 × 10−6, r = 0.8; pair 2: 
P = 0.001, r = 0.7 and P = 0.0004 and r = 0.8, self and partner, respectively.  
i, Session average delay to cooperate or response time for each monkey. Pair 1: 
P = 0.01, r = −0.6 and P = 0.001, r = −0.6; pair 2: P = 0.01, r = −0.6 and P = 0.006, 
r = −0.6, self and partner, respectively. All P values are from linear regression, 
and r is Pearson correlation coefficient. On all plots, circles represent the mean, 
with error bars s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001. Illustrations in a and b 
were created using BioRender.
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The lowest transitional probabilities (0.1) occurred between two actions 
(‘self-push’ to ‘partner-push’), indicating that fixations typically occur 
between pushes, and monkeys cannot simply push their button to moti-
vate the other monkey to cooperate (Fig. 2d,e). Instead, there were high 
transitional probabilities (0.6–0.9) for event pairs in which fixations 
on a social cue occurred before or after a push (that is, ‘view partner’ →  
‘self-push’ or ‘self-push’ → ‘view partner’), thus demonstrating the 
importance of viewing social cues to promote cooperation (Fig. 2d,e). 
Indeed, we found a mean 220% increase in transitional probabilities 
for event pairs beginning with viewing social cues (Fig. 2d, top row; all 
P < 0.01). These analyses show that across sessions, animals become 
more likely to cooperate after viewing social cues, indicating that fixa-
tions on social cues drive cooperation during learning.

Single cells respond to social variables
We investigated the relationship between neural signals and social 
events leading to cooperation by analysing the neurons’ responses 
between the start of a trial and cooperation onset when both animals 
began pushing. We identified fixations on social cues (that is, ‘view 
’reward and ‘view partner’) and non-social objects (that is, monkey’s 
buttons or arena floor) within neurons’ receptive fields (Fig. 3b and 

Methods). Neurons in both cortical areas significantly increased mean 
firing rates in response to fixations on social cues compared to baseline 
measured during the intertrial interval (Fig. 3d,e; P < 0.01, Wilcoxon 
signed-rank test with false discovery rate (FDR) correction). A distinct 
feature of the ‘social brain’ is the ability to process information about 
one’s self and others6,30,31. We explored this feature by identifying self 
and partner-monkey pushes or decisions to cooperate that occurred 
separately in time (more than 1 s from each other; Extended Data Fig. 4). 
Importantly, we hypothesized that the self-monkey’s neurons process 
allocentric information during partner-choice, because the monkey 
views the partner during most of the partner’s pushes but not during 
their own push (Fig. 3c). Over time, the self-monkey viewed social cues 
(reward or partner) before pushing, indicating that viewing social cues 
informs decision-making as learning emerges (Fig. 3c, bottom; P < 0.05, 
linear regression). Indeed, 70% of dlPFC cells increased their firing rate 
during each animal’s push relative to baseline, with responses beginning 
1,000 ms before push onset (Fig. 3d,e; P < 0.01, Wilcoxon signed-rank 
test with FDR correction). Notably, most dlPFC cells responded to both 
self and partner-choice, as opposed to just one or the other (Extended 
Data Fig. 4b). Overall, dlPFC neurons responded to both fixations and 
choice (Fig. 3e, left; all P < 0.01, Wilcoxon signed-rank test with FDR 
correction), with 55% of dlPFC neurons exhibiting mixed selectivity 
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***P < 0.001.
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(Fig. 3e, right). Although a fraction of V4 neurons (28%) exhibited a 
change in firing rate around push time, most responded to fixations on 
social cues (36% and 52% fixations on reward and partner, respectively). 
That is, in contrast to dlPFC, most cells in V4 responded only to fixations 
on social cues; 22% of V4 neurons exhibited mixed selectivity. These 
results indicate that mixed-selectivity neurons, especially in dlPFC, 
may support the behavioural diversity observed in our naturalistic 
and cognitively demanding social environment32.

Social learning improves the neural code
Next, we examined the ability of neural populations to encode social 
cues and animals’ choice to cooperate during learning. A support 
vector machine (SVM) classifier with tenfold cross-validation was 
trained to decode fixations on social cues and cooperation choices 
from single observations (Methods). Fixations on the reward system 
and partner-monkey were accurately decoded from the population 
response in each brain area. The accuracy of decoding between the 
available social cues in each area increased on average by 328% during 
learning (Fig. 4a; all P < 0.01, linear regression). (Our main popula-
tion results in Figs. 4 and 5 also hold when only the stable units in both 
areas are included in the analysis (Extended Data Fig. 7)). By contrast, 
whereas non-social objects, such as fixations on the self-monkey’s but-
ton and random floor objects, could be reliably decoded from V4 and 
dlPFC activity, decoder performance did not improve across sessions 

(Fig. 4b). Thus, during learning cooperation, both V4 and dlPFC selec-
tively improve the encoding of visual features of social objects (for 
example, reward system and partner) but not that of other objects. 
Furthermore, dlPFC neurons accurately discriminated between social 
and non-social object categories, as decoder performance significantly 
improved by 228% during learning (Fig. 4c; all P < 0.01, linear regres-
sion). Thus, the representations of social cues and their distinction 
from non-social cues in dlPFC improves while animals learn to coop-
erate (Fig. 4c). Importantly, neural activity during visual fixations in 
both areas was only minimally influenced by animals’ head and body 
movements33,34 (Extended Data Fig. 5c,d).

We further examined whether neural populations encode each 
monkey’s decision to cooperate. Control experiments using ‘solo’ and 
‘social’ trials (Methods) showed that prepush activity is influenced by 
social context (Extended Data Fig. 6b–d): that is, animals’ actions dur-
ing learning-cooperation sessions reflect a social choice to cooperate. 
By decoding each animal’s push from population activity, we found 
that in V4, choice events can be decoded only in a small number of ses-
sions (Fig. 4d). By contrast, decoder performance in dlPFC increased 
on average by 5,481% while animals learned to cooperate (Fig. 4d; all 
P < 0.01, linear regression). Because we found that the self-monkey 
viewed different social cues during self- and partner-pushes (Extended 
Data Fig. 4c), we examined whether neural activity during pushing 
reflects decision-making or changes in visual input. Thus, we decoded 
each animal’s choice to cooperate during two scenarios: (1) pushes with 
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r = 0.7 and P = 0.2, r = 0.3; self and partner-choice, respectively; linear 

regression and Pearson correlation. d, Peri-event time histogram and raster 
examples of four distinct V4 and dlPFC cells responding to each social event. 
Dashed lines represent event onset, and the grey shaded box represents the 
response period used in analyses. e, Significant responses. Left, percentage  
of cells of the total recorded (M1, 34 V4 cells and 102 dlPFC cells; M2, 104 V4 
cells and 46 dlPFC cells) that exhibited a significant change in firing rate from 
baseline (intertrial period) during social events, averaged across sessions and 
monkeys. For each cell, P < 0.01, Wilcoxon signed-rank test with FDR correction. 
Right, percentage of neurons of the total recorded that responded only to 
choice (self and/or partner), only to fixations (reward and/or partner), both 
fixations and choice (‘mixed’) or none at all (‘other’). *P < 0.05, **P < 0.01, 
***P < 0.001.
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preceding fixations (within 1,000 ms) on social cues (reward system 
or partner) and (2) pushes without preceding fixations on social cues 
(the number of events in the two scenarios were balanced; Methods). 
In both V4 and dlPFC, decoder performance for choice was signifi-
cantly reduced (by 65% and 24%, respectively) when pushes with pre-
ceding fixations on social cues were excluded (Fig. 4e, grey; P < 0.001,  
Wilcoxon signed-rank test). However, in dlPFC, the accuracy of decod-
ing the choice to cooperate remained correlated with learning (Fig. 4e, 
bottom row; all P < 0.05, linear regression). This demonstrates that 
dlPFC encodes each animal’s decision to cooperate and that viewing 
social cues during decision-making improves choice encoding. By 
contrast, V4 decoder performance was close to chance when button 
pushes preceded by fixations on social cues were removed from the 
analysis, indicating that V4 activity before choice mostly represents 
viewing social cues, not decision-making (Fig. 4e). Altogether, this 
demonstrates that improved encoding of egocentric (self) and allo-
centric (partner) choice in dlPFC, but not V4, correlates with learning 

cooperation. Finally, task-irrelevant variables such as head, body and 
eye movement and pupil size during pushes may influence neuronal 
activity34,35. However, consistent with our previous work36, we found 
only a small percentage of neurons whose activity was correlated with 
movements or pupil size during pushing (less than 12% of correlated 
neurons, n = 1,157 cells; Pearson correlation P < 0.01; Extended Data 
Figs. 4d,e and 5a,b).

How does the contribution of each neuron to decoder accuracy 
change during learning? In linear SVM models, each cell is associated 
with a weight representing its contribution to the decision bound-
ary for separating one decoded event from another (that is, self and 
partner-choice or reward and partner stimuli). We confirmed in our 
models that in a session, the higher the weight magnitude, the greater 
the neuron’s contribution to event classification (Extended Data 
Fig. 8c,d) and selectivity to social events (Extended Data Fig. 9c). To 
compare across sessions, we normalized the weights in a session and 
analysed the absolute value of weights of individual stable neurons 
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non-social objects. M1, P = 0.26 and 0.41; M2, P = 0.18 and 0.52, V4 and dlPFC, 
respectively. c, Decoding performance for object categories: fixations on 
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in a,b. V4 data are M2 (average 104 cells per session), and PFC data are M1 
(average 102 cells per session). V4, P = 0.01, r = −0.63 and P = 0.57; dlPFC, 
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respectively. *P < 0.05, **P < 0.01, ***P < 0.001.
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and neural population distributions across sessions from each decod-
ing model37 (Methods). Surprisingly, although some (approximately 
15%) individual neurons exhibited systematic changes in decoding 
weight or discriminability during learning (Extended Data Fig. 9d), we 
found more significant changes at the population level. Specifically, 
the variance, kurtosis and skewedness of population weight distri-
butions decreased across sessions for decoding models exhibiting 
improved performance, such as those distinguishing between social 
cues (Fig. 4f,g and Extended Data Fig. 9a,b). By contrast, a decrease in 
weight variance, kurtosis or skewedness was not observed in models 
in which decoding performance did not improve, such as when distin-
guishing between non-social cues (Fig. 4g) or between categories and 
choice in V4. These findings were consistent across brain areas and 
were present in each monkey (Extended Data Fig. 9b). The decrease 
in these weight metrics indicates that early during learning, a select 
number of cells contribute most to social interactions relative to the 
rest of the population. However, although learning progressed, the 
magnitude of the weights decreased, and information about social 
events became distributed more evenly across the population (Fig. 4f 
and Extended Data Fig. 9a).

Learning improves spiking coordination
Temporal coordination of neuronal spiking is believed to be correlated 
with neuronal communication and information flow38,39. We computed 
spike time correlations between pairs of cells in V4 and dlPFC and across 
areas. Only significant CCGs were used in the analysis (the peak of 
shuffle-corrected CCGs was greater than 4.5 standard deviations of the 
tails40; Methods). To account for the delay in information transmission 
within and between areas, we only analysed within-area CCGs (average 
of 668 cell pairs per session) that peaked at ±0–6 ms time lag and inter-
areal CCGs (average of 45 pairs per session) that peaked at ±15–60 ms 
lag (Fig. 5a). The mean coordination, or the average of significant cell 
pair maximum coincident spikes (CCG peaks), significantly increased 
across sessions during social events (Fig. 5b,c). Improved spike-timing 
coordination was not due to individual neurons’ time locking with 
respect to social events during learning, reflecting communication 
within and across cortical areas (Extended Data Fig. 10b). In V4, pairwise 
synchrony increased by 114% across sessions during fixations on social 
cues but not before choice events, whereas in dlPFC, synchronized 
spiking increased on average by 137% during fixations on social cues 
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and self-choice but not during partner-choice. As animals learned to 
cooperate, coordination between V4 and dlPFC increased by 160% for 
all social events except partner-choice (Fig. 5b,c). Importantly, both 
within and between areas, coordination during fixations on random 
floor objects or random time periods (for example, intertrial interval) 
did not change across sessions, indicating that increased coordina-
tion exclusively correlates with learning of social events (Fig. 5b and 
Extended Data Fig. 10a). Additionally, a significant number of V4–dlPFC 
pairs exhibited maximum coincident spiking at both positive (V4 leads) 
and negative (dlPFC leads) time lags during social events, indicating 
that V4–dlPFC coordination reflects both feedforward and feedback 
interactions.

Finally, we asked whether the V4 and dlPFC cells that were coordi-
nated in their spike timing would also exhibit improved encoding of 
social variables. Notably, significantly correlated pairs of V4–dlPFC 
neurons contributed more to the encoding of social events in each 
brain area, as their normalized weight values from decoding models 
for social cues and choice were significantly higher than the weights of 
the remaining population (Fig. 5e; Wilcoxon signed-rank test, P < 0.01). 
In V4, this result applied for the encoding of social cues but not choice, 
whereas in dlPFC it applied to all events except partner-choice (Fig. 5e). 
Taken together, we propose a general mechanism for learning social 
interactions whereby increased spike timing coordination between 
areas V4 and dlPFC during social events leads to improved encod-
ing and distributed representation of social variables within each  
area (Fig. 5f).

Discussion
Social interactions, especially cooperation, require an interpretation 
and exchange of sensory information, including relevant visual cues, 
among engaging agents. However, technological limitations have 
prevented an understanding of how visual information is encoded 
and passed on to executive areas to guide social decisions in freely 
moving animals. Our results show that across sessions, animals are 
more likely to engage in cooperation after viewing social cues. This 
is supported by increased coordinated spiking between visual and 
prefrontal cortical neurons during learning to cooperate, which is 
associated with improved accuracy of neural populations to encode 
social cues and the decision to cooperate. This provides the first evi-
dence, to our knowledge, of the role of the visual cortex in encoding 
socially relevant information. Somewhat surprisingly, dlPFC neurons 
outperformed those in V4 in their ability to discriminate between sev-
eral visual social cues, probably because dlPFC receives and integrates 
diverse sensory modalities25,41, which may enable a better prediction of 
highly dimensional incoming stimuli. We further discovered that early 
during learning, a select number of cells contributed most to social 
interactions compared to the rest of the population. However, although 
learning progresses, the information about social and decision- 
making signals became more evenly distributed across the neural  
population.

We propose that learning cooperation emerges from improved popu-
lation coding and communication between visuo-frontal circuits during 
social viewing. Notably, the strongest coupled neurons across areas 
were those that contributed the most to the encoding of social events. 
As animals acquired cooperation behaviour, they increased the viewing 
of social cues before deciding to cooperate (Figs. 2d and 3c). This raises 
the possibility that during task-relevant events, increased spike timing 
coordination between visual and prefrontal cortical neurons reflects 
strengthened synapses between cells42,43 or aligned communication 
subspaces (that is, firing rate patterns) between neuronal populations 
in each area44,45. Surprisingly, an increase in spiking coordination was 
not observed in dlPFC or between V4–dlPFC before the conspecific’s 
choice (Fig. 5b,c), which indicates that dlPFC may encode the predic-
tion of the other’s behaviour in mean firing rates but not spike timing 

coordination. We further suggest that increased spiking coordination 
may also occur between dlPFC and other brain areas during allocentric 
events, which could be explored in future studies7,19,46.

Finally, by allowing animals to move freely during social cooperation, 
our study represents a move towards studying the neural underpinnings 
of naturalistic behaviour in a free-roaming setting. Although this para-
digm shift has long been suggested47,48, recent advances in low-power, 
high-throughput electrophysiological devices coupled with wireless 
behavioural monitoring and large-scale computing36,49,50 made this 
research feasible only now. Critical to our work is our simultaneous use 
of wireless neural and eye-tracking recordings to examine how visual 
events and social cues guide the decision to cooperate. Analysing the 
relationship between the behavioural repertoires of each freely inter-
acting agent allowed us to uncover the neural computations involving 
prioritization of social visual cues that were essential to social learning. 
Thus, vision may be the social language of primates, probably govern-
ing learning of various social activities such as grooming, play and 
collective foraging. Future research will investigate how other sensory 
cues, such as odours, vocalizations and touch51,52, complement visual 
information to guide neural processes underlying social decisions. A 
shift towards more natural behaviour in which multisensory informa-
tion is recorded wirelessly in conjunction with large-scale population 
recordings will be essential for understanding the neural mechanisms 
of social cognition53,54.
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Methods

Animals
All experiments were performed under protocols approved by the 
University of Texas at Houston Animal Care and Use Committee and 
the Institutional Animal Care and Use Committee for the University of 
Texas Health Science Center at Houston (UTHealth). Four adult male 
rhesus monkeys (Macaca mulatta; selfM1: 10 kg, 11 years old; partM1: 
12 kg, 10 years old; selfM2: 14 kg, 12 years old; partM2: 12 kg, 16 years 
old) were used in the experiments.

Behavioural training and experiments
Before starting learning cooperation experiments, we trained individual 
monkeys in their home cage to press a button resembling that in the 
cooperation arena to receive a food reward. Therefore, when begin-
ning social experiments, each monkey was familiar with the button and 
button press–reward association. The cooperation arena measured 
7 × 4 × 3 ft (length × width × height) and was constructed out of polyvinyl 
chloride piping, plastic and plexiglass. Animals were acclimated to the 
arena and button before beginning social learning experiments. But-
tons in the arena were strategically placed next to the clear divider so 
that monkeys could easily see each other’s actions. During cooperation 
experiments, animals had to learn to push and hold buttons simultane-
ously with their partner-monkey to receive reward. Each animal’s tray 
contained their own amount of food reward (banana-flavoured pellet; 
not accessible by the other monkey), and the trays moved together at 
the same speed while animals were simultaneously pressing. If one 
monkey stops pressing, the trays stop at their location on the track 
and continue moving forward only when both monkeys begin pressing 
again. We used the term ‘intertrial interval’ for the 20 s period consisting 
of a 10 s pause after a trial ends followed by tray movement back to the 
pellet dispensers (approximately 5 s) and another 5 s pause before the 
next trial begins. Trial durations ranged from 10 s to 30 min, depend-
ing on how long it took for animals to cooperate. Although learning 
sessions consisted of 100–130 trials, the behavioural events examined 
(‘partner-push’, ‘self-push’, ‘fixations on reward’, ‘fixations on partner’) 
often occurred more than once per trial. For complete quantification of 
events, see ‘Neural responses during social cooperation’. For non-social 
control experiments, after learning cooperation sessions, we recorded 
control sessions in which animals completed the cooperation task with 
an opaque divider separating them, so animals could no longer see each 
other but could still hear and smell one another. The opaque divider was 
a thin (6 mm thickness), opaque grey piece of plexiglass and was placed 
over the clear plexiglass that already divided the animals. The end of the 
plexiglass nearest the buttons protruded out of the arena to ensure that 
animals could not see each other pressing. We recorded four control 
sessions with the opaque divider for each monkey pair. Opaque-divider 
sessions had the same number of trials with the same trial structure as 
regular learning cooperation experiments. The first opaque-divider 
session completely confused the animals as they did not even attempt 
to push after reward dispensed. However, they did eventually complete 
trials together by using the ‘click’ sound of the button when it is pressed. 
Sometimes one monkey would push the button many times to signal 
their partner to push, but cooperation performance in these sessions 
was significantly impaired (Extended Data Fig. 6a). Although macaques 
do vocalize, they did not produce vocalizations during these experi-
ments and did not seem to use vocalizations to coordinate behaviour.

Solo-and-social control experiments (Extended Data Fig. 6b–d) 
occurred after learning experiments and included periods of solo tri-
als in which the self-monkey was alone in the arena, pellets dispensed 
only in their tray, and the monkey pushed their button to deliver reward. 
We recorded nine more sessions using these ‘solo blocks’ whereby the 
self-monkey completed sets of cooperation trials entirely by them-
selves. Solo blocks were interspersed with regular cooperation blocks 
conducted with two animals. Solo-and-social sessions included 60 solo 

and 60 social trials that were executed in an alternating block design to 
eliminate confounds of recording quality or stability in a session. We 
alternated 30 solo trials, 60 social trials, 30 solo trials and vice versa 
between days.

Chronic implantation of the Utah array
A titanium headpost was implanted medially with anchor screws. After 
acclimatization and behavioural training (described in the previous 
section), animals were implanted with a 64-channel dual Utah array in 
the left hemisphere dlPFC (anterior of the arcuate sulcus and dorsal of 
the principal sulcus) and left V4 (ventrally anterior to lunate sulcus and 
posterior to superior temporal sulcus) and a pedestal on the caudal skull 
(Blackrock Neurotech). We used Brainsight, a neuronavigational sys-
tem, and the animals’ magnetic resonance imaging scans to determine 
the location for V4 and dlPFC craniotomies (Rogue Research). During 
surgery, visual identification of arcuate and principal sulci guided 
precise implantation of arrays into the dlPFC, and visual identification 
of the lunate and superior temporal sulci supported array placement 
in area V4. The dura was sutured over each array, and two reference 
wires were placed above the dura mater and under the bone flap. Bone 
flaps from craniotomies were secured over the arrays using titanium 
bridges and screws. After the implant, the electrical contacts on the 
pedestal were always protected using a plastic cap except during the 
experiment. Following array implantation, animals had a three-week 
recovery period before recording from the arrays.

Wireless electrophysiology
To record the activity of neurons while minimizing interference with 
the animals’ behaviour, we used a lightweight, rechargeable battery- 
powered device (Cereplex-W, Blackrock Neurotech) that communi-
cates wirelessly with a central amplifier and digital processor (Cerebus 
Neural Signal Processor, Blackrock Neurotech). First, the monkey was 
head-fixed, the protective cap of the array’s pedestal was removed and 
the wireless transmitter was screwed to the pedestal. Neural activity 
was recorded in the head-fixed position for 10 min to ensure the quality  
of the signal before releasing the monkey in the experimental arena. 
The arena was surrounded by eight antennas. Spikes from each brain 
area were recorded simultaneously at 30 kHz and detected online  
(Cerebus Neural Signal Processor, Blackrock Neurotech) using a 
manually selected upper and lower threshold on the amplitude of the 
recorded signal in each channel, which was helpful to eliminate noise 
from the animal chewing, or by using the software’s automatic thresh-
olding, which was ±6.25 times the standard deviation of the raw signal. 
The onsite digitization in the wireless device showed lower noise than 
common wired head stages. The remaining noise from the animal’s 
movements and muscle activity was removed offline using the auto-
matic algorithms in Offline Sorter v.4 (Plexon). In brief, this was done 
by removing the outliers (outlier threshold = 4–5 standard deviations) 
in a three-dimensional (3D) space that was formed by the first three 
principal components of the spike waveforms. Then, the principal 
components were used to sort single units using the k-means clustering 
algorithm. Each signal was then automatically evaluated and manually 
checked as multi- or single-unit using several criteria: consistent spike 
waveforms, waveform shape (slope, amplitude, trough-to-peak) and 
exponentially decaying interspike-interval histogram with no interspike 
interval shorter than the refractory period (1 ms). The analyses here 
used all single- and multi-unit activity.

Receptive field mapping
We identified receptive fields of recorded neurons in a head-fixed task in 
which the animal was trained to maintain fixation during stimulus pres-
entation on a monitor. Neural activity was recorded and thresholded 
using a wired head-stage and recording system, similar to the methods 
described above in ‘Wireless electrophysiology’ (Cerebus Neural Signal 
Processor, Blackrock Neurotech). We divided the right visual field into a 



3 × 3 grid consisting of nine squares with each square covering 8 × 8° of 
visual space. The entire grid covered 24 × 24° of visual space. Each of the 
nine squares was further subdivided into a 6 × 6 grid. In each trial, one of 
the nine squares was randomly chosen, and the receptive field mapping 
stimuli were presented at each of the 36 locations in a random order. The 
receptive field mapping stimuli consisted of a reverse correlation movie 
with red, blue, green and white patches (approximately 1.33° each). A 
complete receptive field session is composed of ten presentations of 
the receptive field mapping stimuli in each of the nine squares forming 
the 3 × 3 grid. We averaged the responses over several presentations to 
generate receptive field heatmaps and corresponding receptive field 
plots (as shown in Fig. 3b). As recorded populations remained stable 
across days (Extended Data Fig. 3), receptive field mapping was done 
before starting learning sessions and performed once every month 
during recordings.

Wireless eye tracking
We used a custom wireless eye tracker (ISCAN) to measure pupil position 
and diameter from the self-monkey during experiments. The portable 
wireless eye tracker, mounted dorsally, right above the animal’s head, 
consisted of an eye mirror, an eye camera for detecting pupil size and 
eye position, and a scene camera situated above the eye camera (see also  
ref. 50), which records animal’s field of view. All data were recorded at 
30 Hz. To train animals to wear the device without damaging it, its 3D 
geometry was modelled (Sketchup Pro), and dummies were 3D-printed 
and fitted with eye mirrors. To properly position the eye tracker and 
dummies relative to the eye, custom adaptors were designed and 
3D-printed to attach directly to the animal’s headpost and serve as 
an anchor point for the eye tracker. These adaptors were designed to 
interface with the headpost without touching the animal directly, to 
minimize discomfort and reduce the likelihood of the device being tam-
pered with. These dummy eye trackers were worn by animals for several 
mock recording sessions to adjust them to wearing the device. Once the 
animals grew accustomed to wearing the dummy and stopped touching 
it altogether, the real device was used. Before each experiment, the eye 
tracker was secured on the animal and we performed a calibration pro-
cedure (‘point-of-regard’ calibration) while the animal was head-fixed, 
which mapped the eye position data to the matrix of the head-mounted 
scene camera (Extended Data Fig. 1a). Animals were trained to view five 
calibration points within the field of view of the scene camera (640 × 480 
pixel space of a scene camera frame maps to 35 × 28°, length × height), 
including a centre calibration point and four outer points positioned at 
±8 to ±10° with respect to the centre (we chose the distance between the 
animal’s eye and calibration monitor on the basis of the approximate 
range of eye-stimulus distances during free viewing, which was 70 cm). 
As the animal viewed each point, the eye-calibration software synchro-
nized the eye-movement data with the image frames recorded by the 
scene camera. After calibration, the animal’s centre of gaze is displayed 
on each scene camera frame in real time as a crosshair (Figs. 1d and  2a). 
If the animal looks outside the field of view of the scene camera frames, 
gaze location is not detected and the crosshair will not appear on the 
scene camera frames. When this occurs, eye position data are reflected 
as zero (Extended Data Fig. 1c). Therefore, only scene camera frames 
that included a crosshair were used in analysis, which usually occurred 
(60–85%; Extended Data Fig. 1e). We used the horizontal and vertical 
coordinates of the pupil to compute eye speed. To extract fixations, we 
used movement-threshold identification to determine the conserva-
tive speed threshold that best separated the bimodal distribution of 
eye speed in a session55. A fixation was defined as a minimum 100 ms  
period when the eye speed remained below this threshold.

Behavioural tracking
We captured a top-down, or overhead, video of the animals during the 
experiments using a COSOOS CCTV LED home surveillance security 
camera. We recorded overhead and scene camera (wireless eye tracker) 

videos using a CORENTSC DVR (I.O. Industries). This DVR recorded all 
videos at 30 frames per second and sent pulses to the Blackrock Cer-
ebus neural recording system for every captured frame from each 
camera, as well as the start and end of video recording. We used the 
timestamps of these pulses to synchronize overhead video frames to 
neural and behavioural data. Owing to imperfect transmission of wire-
less eye-tracking data, frames were sometimes dropped from the 
recording. Therefore, to verify the timestamp of each scene camera 
frame, we used a custom object character recognition software (devel-
oped by S. Yellapantula) to automatically read the timestamp listed on 
each scene camera frame and align with neural data. Using DeepLabCut 
v.2.0, we trained a network to automatically label relevant objects in 
the frames, such as the crosshair, reward dispensers and trays, each 
animal’s button and various body parts of the partner-monkey includ-
ing eyes, head, ears, nose, shoulders, limbs, chest, back, face, paws and 
butt (Extended Data Fig. 1d). The DeepLabCut output included the 
location coordinates of all the objects found in the frames. Therefore, 
we used a degree-to-pixel conversion and the coordinates of the cross-
hair and object labels to identify which objects were in the receptive 
fields of the neurons in any given frame (Extended Data Fig. 1b;  
5° = 90 × 80 pixels, on the basis of the equation d xTan ∅ = ÷ , where  
d is the measured length and height of the scene camera frame when 
viewing from distance x).

Finally, to compute head, limb and torso speed (movement) of the 
animal, as shown in Extended Data Fig. 5, we used DeepLabCut to label 
body parts of the self-monkey in the overhead camera frames. ‘Head 
movements’ included labels from the centre of the head, snout and 
each ear. ‘Limb or arm’ movement was computed from shoulder, elbow 
and paw labels. ‘Torso or whole-body’ movement was calculated from 
the animal’s upper and mid back labels. To compute the average speed 
of each label during frames of interest, we calculated the Euclidean 
distance between the label coordinates across consecutive frames. Sub-
sequently, we quantified the overall movement of each body area (head, 
limb or torso) by averaging the speeds of the corresponding labels.

Conditional probability
For each trial in a session, we computed the conditional probability 
of cooperating for the self- and partner-monkey, respectively, using 
the equations

P
P

P
P

P
P

(Self Part) =
(Self and Part)

(Part)
and (Part Self) =

(Self and Part)
(Self)

The probabilities were derived from button-push sequences for 
each monkey that were represented as a time series of zeros and ones 
in 100 ms bins. Conditional probabilities were averaged across trials 
in a session (100 in monkey pair 1 and 120 in monkey pair 2) to create 
the values plotted in Fig. 1h.

Markov model
To explore the relationship between fixation and push events, we used a 
Markov model to estimate the transitional probabilities between social 
events as they occurred in a sequence across a trial, using the function 
hmmestimate in MATLAB 2020b. Sequences consisted of four events/
states: ‘view reward’, ‘view partner’, ‘self-push’ and ‘partner-push’, result-
ing in 16 event pairs and transitional probabilities. We only included 
trials in which all four events occurred, which was on average 40% of 
trials per session. For each event pair, transitional probabilities were 
averaged across trials for a session mean transitional probability, as 
seen in Fig. 2d. Transitional probabilities for each session and each 
monkey pair are shown in Extended Data Fig. 2.

Identifying stable units across sessions
We used principal component analysis (PCA) of waveforms from each 
session to identify stable spike waveforms across sessions. First, we 
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performed PCA on a matrix of 100 samples of waveforms of single units 
and multi-units from every session using the pca function in MATLAB 
2020b. Then, for each session, we used the first seven components of 
the principal component coefficients to compute the Mahalanobis 
distance between distributions of all waveforms for each combination 
of cell pairs in that session. The Mahalanobis distance between two 
objects in a multidimensional vector space quantifies the similarity 
between their features as measured by their vector components. It takes 
into account the covariance along each dimension56. The Mahalanobis 
distance between two clusters of spike waveforms A and B belonging 
to a pair of neurons in seven-dimensional vector space was computed 
using the following formula:

A B V A BMD = (( − ) ( − )) ,T −1

where T represents the transpose operation, V −1 is the inverse of the 
covariance matrix and A and B are the first seven components of the 
principal component coefficients for each neuron in the pair. Impor-
tantly, because this analysis was performed among cell pairs in a ses-
sion, this distribution reflects the Mahalanobis distances for distinct, 
individual cells. We combined the distances across sessions to create 
one distribution and used this to identify a waveform threshold, which 
was the fifth percentile of the distribution. Therefore, Mahalanobis 
distances between waveforms of cell pairs that are less than the thresh-
old reflect waveform distributions that belong to the same neuron.

For each channel (electrode), we computed the Mahalanobis distance 
using PCA waveform coefficients from all the neurons identified on 
that channel across all sessions. Some channels recorded two units 
each day, and others did not record any isolated single-unit activity 
or multi-unit activity. Ninety-six electrodes were recorded from each 
subject’s brain; however, electrodes without single units or multi-units 
for at least ten (that is, half) of the learning sessions were not used in 
the analysis. Analysis included 90 total electrodes from M1 and 86 total 
electrodes from M2. Mahalanobis distance values that were less than the 
threshold represented stable units, and cell pairs whose Mahalanobis 
distance was above the threshold indicated that the same neuron was 
not recorded across both sessions. Channels with stable units and a 
channel with stable multi-unit activity but unstable single-unit activity 
are shown in Extended Data Fig. 3a. The number of stable cells divided 
by the total number of cells is the percentage of stable units in each 
area for each monkey, as shown in Extended Data Fig. 3b. In monkey 1,  
81% of recorded units (504/620) in V4 and 74% of recorded units in 
dlPFC (1,350/1837) were consistent across sessions. In monkey 2, 83% 
of recorded units in V4 (1,479/1,773) and 71% of recorded units in dlPFC 
(561/794) were stable (Extended Data Fig. 3b). Overall, our analysis 
yields results comparable to other electrophysiological studies with 
Utah array recordings, which also found that chronically implanted 
Utah arrays typically record from the same neurons across days and 
months29,49,57. The neural analyses in Figs. 4 and 5 were repeated using 
only the units that remained stable across sessions (Extended Data 
Fig. 7), and the main results remain unchanged from those using the 
entire population (Figs. 4 and 5).

Neural responses during social cooperation
We identified four salient events for cooperation: ‘fixations on 
the reward’, ‘fixations on the partner-monkey’, ‘self-pushes’ and 
‘partner-pushes’. ‘View reward’, or ‘fixations on the reward’, includes 
fixations on the food reward system: the pellet dispenser and tray. 
(Note that the tray always contained pellets during tray fixations. The 
only time a tray did not contain food reward was during the intertrial 
interval, and we did not include fixations from this period in the analy-
sis.) ‘View partner’, or ‘fixations on the partner’, includes all fixations on 
the partner-monkey (head and body). ‘Social cues’ includes all fixations 
categorized as ‘view reward’ and ‘view partner’. On average, there were 
826 fixations on the reward, 936 fixations on the partner, 116 self-pushes 

and 43 partner-pushes (lead trials only; Extended Data Fig. 4a) per ses-
sion for each animal pair. To determine whether a cell was significantly 
responding to one or more of these events, we compared the firing rate 
in a baseline period (intertrial time, specifically 4.5 seconds before trial 
start) to the event onset using a Wilcoxon signed-rank test followed by 
FDR correction. Specifically, for each neuron, we calculated its firing 
rate (20 ms bins) occurring 130 ms after fixation onset that accounted 
for visual delay (60 ms for V4 neurons and 80 ms for dlPFC). We chose 
this window as the fixation response period because most of our fixa-
tions were 100–200 ms in duration (Extended Data Fig. 1f). For self- 
and partner-push, we used 100 ms bins to compute the firing rate and 
1,000 ms before push onset as the response period because firing rates 
began to significantly increase during this time. For partner-pushes on 
‘partner lead’ trials only (Extended Data Fig. 4a), we used 500 ms before 
and 500 ms after the push, because the self-monkey viewed them after 
this push (trays were not moving as the self-monkey was not yet push-
ing in these types of observations). Neural activity occurring between 
the moment trays began moving and the end of a trial was never used 
in any analyses in this Article. Additionally, non-fixation rewarding 
events, such as the start of the trial when pellets were dispensed and 
the end of the trial when pellets were received, were not included in 
any analyses. For each neuron, response firing rates were compared to 
baseline firing rates that were computed across the same duration as 
social event responses (130 ms for fixations and 1,000 ms for pushes). 
Some recorded cells did not respond significantly to any social events, 
known as ‘other’ (Fig. 3e, right). The percentage of neurons responding 
to social events did not systematically differ across sessions (Extended 
Data Fig. 3c).

d prime
To assess the discriminability of neural responses between different 
stimuli, we computed d prime (d′) following established methods in 
neuroscience58. d prime is a widely used measure that quantifies the 
signal-to-noise ratio in a discrimination task, indicating the ability of 
a neuron to distinguish between two classes of stimuli. In a session, for 
each neuron, the mean responses (uA and uB) to stimuli A and B as well 
as the standard deviations of responses were obtained. We computed 
d′ using the following formula:

d
u u

σ σ
′ =

−

0.5 × +
A B

A
2
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2

Here, uA and uB are mean responses (averaged across response time 
for each event, described above) of one neuron for each trial to stimuli 
A and B, respectively. Stimuli A and B were those used in decoding 
models (‘self-push’ or ‘partner-push’, ‘view reward’ or ‘view partner’, 
‘view button’ or ‘view random’ and social and non-social categories; 
see Extended Data Fig. 9c,d).

SVM decoder
We used a SVM decoder59 with a linear kernel to determine whether the 
population firing rates in V4 or dlPFC carry information about visual 
stimuli and/or decision-making (Fig. 4). Specifically, we computed the 
mean firing rates of each neuron in the population for the response 
period (described above) in each observation of fixations or pushes 
(observations of any social event could occur in one trial) and then 
classified binary labels specifying the event (for example, fixations on 
reward were class one, fixations on partner were class two) from neural 
responses. For each session, the number of fixations or pushes was 
always balanced across classes. Random selections of class observa-
tions were repeated for 100 iterations, giving us the average classifi-
cation accuracy over 1,000 test splits of the data for each session. To 
train and test the model, we used a tenfold cross-validation. In brief, 
the data were split into ten subsets, and in each iteration the training 
consisted of a different 90% subset of the data; the testing was done 



with the remaining 10% of the data. We used the default hyperparam-
eters as defined in fitcsvm, MATLAB 2020b. Decoder performance 
was calculated as the percentage of correctly classified test trials. We 
compared model performance for predicting train and test data to 
check for overfitting. In each session and iteration, we trained a separate 
decoder with randomly shuffled class labels. The performance of the 
shuffled decoder was used as a null hypothesis for the statistical test 
of decoder performance.

For improved data visualization in Fig. 4, we plotted the shuffle- 
corrected decoder accuracy (actual − shuffled decoder performance), 
but learning trends remain even when only the actual decoder accuracy 
is evaluated (Extended Data Fig. 8a). Animals cooperate more quickly 
as they learn, and sessions become shorter, so the number of observa-
tions typically decreases across sessions. However, this change in the 
number of observations across sessions did not influence decoding 
performance. We repeated the analysis in Fig. 4a–d, for which we bal-
anced the number of fixations between classes and across sessions. For 
each brain area, decoding accuracy was comparable to the original and 
still significantly improved during learning (Extended Data Fig. 8b).

For the Fig. 4a–c analyses, 14 sessions were analysed from pair 2 
because of an inadequate number of fixations on the stimuli in three 
of the 17 sessions. Similarly, for Fig. 4b, only 16 sessions were included in 
the analysis because monkey 1 did not fixate enough on the self-button 
during two sessions. Sessions with fewer than 30 fixations were not 
included in any neural analyses. For the analysis in Fig. 4e, the number 
of observations matched for ‘with cue’ and ‘without cue’ classes to 
enable fair comparison of decoder performance across conditions. 
Note that in Fig. 4e, V4 and dlPFC accuracies (navy and gold) are differ-
ent than those in Fig. 4d because this analysis always included pushes 
with preceding fixations, whereas the Fig. 4d analysis used pushes with 
or without preceding fixations.

For comparing feature weights of correlated and non-correlated V4 
and dlPFC neurons (Figs. 4f,g and 5e and Extended Data Fig. 9), we first 
normalized weights across the entire population of neurons in each 
session37 using the equation below, where Wo is the current cell weight 
divided by the square root of the sum of all the squared weights in the 
population. n is the cell number:

W

W
normalized weight =

∑i
n

n

o

=1
2

Cross-correlation
CCGs of the animals’ actions in Fig. 1 were computed using the animals’ 
button-push sequences occurring across a trial, represented as a series 
of zeros and ones in 100 ms time bins. For each cooperation trial in a 
session, push series for each monkey (sequences were of equal length) 
were cross-correlated using the xcorr function in MATLAB 2020b. Coef-
ficient normalization was used, which normalizes the sequence so that 
the autocorrelations at zero lag equal 1. The cross-correlations were 
averaged across trials to create a session CCG, as plotted in Fig. 1f. The 
maximum value, or peak, of each session’s CCG is plotted as the mean 
coordination for that session, as shown in Fig. 1g. The time lag at which 
the peak occurred in each session is the push lag, shown in Fig. 1f, right. 
Another ‘shuffled’ analysis was performed for comparison, in which 
the push sequences derived for each monkey were shuffled randomly 
in time for each trial. Trial cross-correlations between animals’ shuf-
fled pushes were calculated and then averaged across trials to create a 
session CCG of shuffled presses, as shown in Fig. 1f. As with the actual 
CCGs, the peak of each session’s shuffled CCG is plotted as the mean 
coordination for that session and shown in Fig. 1g.

CCGs in Fig. 5 were computed by sliding the spike trains of each cell 
pair and counting coincident spikes in 1 ms time bins for each social 
event and pair of neurons (within and between areas) using the xcorr 
function in MATLAB 2020b. Cross-correlations were normalized by the 

geometric mean spike rate to account for changes in individual neurons’ 
firing rates and further corrected for stimulus-induced correlations by 
subtracting an all-way shuffle predictor, efficiently computed from 
the cross-correlation of the peristimulus time histograms38,40,60. Spe-
cifically, the trial-averaged cross-correlation of the binary time series 
spike trains between neurons j and k was computed as

∑ ∑C τ
M

x t x t τ( ) =
1

( ) ( + ), (1)jk
i

M

t

T

j
i

k
i

=1 =1

where M is the number of trials, T is the duration of the spike train seg-
ments, x is the neural response and τ is the lag. We normalized the above 
trial-averaged cross-correlation (equation (1)) by dividing it by the 
triangle function τΘ( )  and the geometric mean of the average firing 
rates of the neurons λ λj k  (ref. 40) to get the unbiased CCG of the spike 
trains in units of coincidences per spike:

τ
C τ

τ λ λ
CCG( ) =

( )

Θ( )
. (2)

jk

j k

The function τΘ( )  is a triangle representing the extent of overlap of 
the spike trains as a function of the discrete time lag τ:

τ T τ T τ TΘ( ) = − (− < < ) , (3)∣ ∣

where T is the duration of the spike train segments used to compute 
Cjk (ref. 40). Dividing Cjk by τΘ( )  corrects for the triangular shape of Cjk 
caused by the finite duration of the data40. Dividing by λ λj k  in equa-
tion (2) results in CCG peaks with relatively constant area as firing rates 
of individual neurons change40,61. In other words, dividing by the geo-
metric mean of the firing rates of the two neurons makes the CCG peaks 
relatively independent of the firing rates.

We computed CCGs using spiking activity that occurred 800 ms 
before choice or random events and 200 ms after fixation onset 
with visual delay (‘Neural responses during social cooperation’). For 
cross-correlation of V4–dlPFC responses to fixations, we used an 80 ms 
visual delay. A CCG was considered significant if the peak (occurring 
within a −6 to +6 ms lag interval within area and ±15–60 ms lag interval 
between areas) exceeded 4.5 times the standard deviations of the noise 
(tail) level occurring ±60 ms from the peak range during non-fixation 
events and ±25 ms from the peak range for fixation events. Mean coor-
dination values for each session are the average of the CCG peaks of all 
significant cell pairs. For random events, we used times from the inter-
trial period, and for random fixations, we used fixations on objects that 
were not social cues. In a session, the number of random observations 
matched those of social events. Mean coordination values for monkey 
pair 2 are in Extended Data Fig. 10a.

Statistics
To assess systematic changes in behavioural and neural metric perfor-
mance or learning, we report the P value from simple linear regression 
and Pearson’s correlation coefficient to report the strength and direc-
tion of linear relationships. The per cent increase or decrease of behav-
ioural and neural metrics was calculated by the percent change 
equation, C =

x x
x
−2 1

1
, where C is the relative change, x1 is the value from 

session 1 and x2 is the value from the last session. Changes were then 
averaged across events or monkeys. For comparing two paired groups 
such as a cell’s firing rate during an event and a baseline period, we used 
the two-sided Wilcoxon signed-rank test. We chose this test rather than 
parametric tests, such as the t-test, for its greater statistical power 
(lower type I and type II errors) when data are not normally distributed. 
When multiple groups of data were tested, we used the FDR multiple- 
comparisons correction, whose implementation is a standard function 
in MATLAB. When comparing two unpaired distributions, we used the 
Wilcoxon rank-sum test.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All source data used to generate experimental figures are available 
at https://zenodo.org/records/10384447. The data that support the 
findings of this study are available from the corresponding authors 
upon reasonable request.

Code availability
Data analysis was performed using MATLAB 2020b (MathWorks). The 
code on which this study was based is available from the corresponding 
author upon reasonable request.
 

55.	 Salvucci, D. D. & Goldberg, J. H. Identifying fixations and saccades in eye-tracking 
protocols. In Proc. 2000 Symposium on Eye Tracking Research & Applications 71–78 
(Association for Computing Machinery, 2000).

56.	 Mahalanobis, P. C. On the generalised distance in statistics. Proc. Natl Acad. Sci. India 2, 
45–49 (1936).

57.	 Luo, T. Z. & Maunsell, J. H. R. Attentional changes in either criterion or sensitivity are 
associated with robust modulations in lateral prefrontal cortex. Neuron 97, 1382–1393.e7 
(2018).

58.	 Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley, 1966).
59.	 Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).
60.	 Pojoga, S. A., Kharas, N. & Dragoi, V. Perceptually unidentifiable stimuli influence cortical 

processing and behavioral performance. Nat. Commun. 11, 6109 (2020).
61.	 Kruger, J. & Aiple, F. Multimicroelectrode investigation of monkey striate cortex: Spike 

train correlations in the infragranular layers. J. Neurophysiol. 60, 798–828 (1988).

Acknowledgements This work was supported by the National Institutes of Health BRAIN 
Initiative grant nos. U01NS108680 (B.A., A.W. and V.D.) and 1F31MH125451 (M.F.). We thank  
N. Shahidi and A. Jones for their electrical design and software programming of the cooperation 
paradigm and S. Pojoga for programming work. Figure 1a,b and Extended Data Fig. 1a (monkey 
head) were created with Biorender.com, using images provided by Blackrock Neurotech and 
with design ideas from A. McConnell. The neural transmitter and Utah array images in Fig. 1b 
were provided by Blackrock Neurotech. The wireless eye tracker image in Fig. 1c was designed 
by A. Parajuli. The brain in Fig. 5f was drawn by A. Andrei.

Author contributions A.W., V.D. and B.A. conceptualized the research. M.F. designed the 
methodology and software. M.F., S.Y., A.P. and N.K. analysed the data. M.F. V.D., B.A., A.W. and 
M.F. provided resources for the investigation. M.F., A.P., S.Y. and N.K. curated the data. M.F. and 
V.D. wrote the original draft of the paper and reviewed and edited it. M.F., S.Y., A.P., N.K. V.D., 
B.A. and A.W. supervised the project, with project administration by V.D. and M.F. Funding 
acquisition was performed by V.D., B.A., A.W. and M.F.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-024-07084-x.
Correspondence and requests for materials should be addressed to Valentin Dragoi.
Peer review information Nature thanks Stefano Panzeri and Steve Chang for their contribution 
to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://zenodo.org/records/10384447
https://doi.org/10.1038/s41586-024-07084-x
http://www.nature.com/reprints


Extended Data Fig. 1 | Wireless eye tracking methods and fixation 
statistics. a, Eye tracking calibration procedure. As the animal views five 
points on a monitor, this information is entered into the program (ISCAN Inc.), 
which projects a crosshair indicating the animal’s point of gaze onto scene 
camera frames. b, Using the equation in panel a, pixel space of the scene camera 
is converted to degrees to identify when objects in the scene camera frames are 
within the receptive fields of neurons. Here, the animal’s shoulder and upper 
arm are within receptive fields. c, Raw traces of eye x and y coordinates, and 
pupil diameter recorded with the wireless eye tracker. The zero values at 
1 second are due to a blink, while the zero values of x and y coordinates at 

7 seconds are due to the animal viewing an object located out of the field of view 
captured by the scene camera. d, Number of objects (sorted) that DeepLabCut 
labeled in the scene camera frames from one session. e, Session-averaged 
percentage of scene camera frames out of total recorded that contained the 
crosshair for each monkey. M1: 2382652 frames labeled out of 2844338 total 
frames. M2: 1158612 frames labeled out of 2421325 total frames. Each circle is 
the percentage of crosshair labeled frames for each session. f, Histogram of 
fixation durations from one representative session that consisted of 12,378 
fixations. 70% of the fixations were 200 ms duration or less. Illustrations in a 
were created using BioRender.
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Extended Data Fig. 2 | Markov Model transitional probabilities between 
social events for each monkey pair. a, Left - Transitional probabilities from 
Markov Modeling estimation, plotted across sessions for each event pair 
combination in monkey pair 1. The P value is included if simple linear regression 

P < 0.05. Across monkeys, most increasing trends occur for event pairs that 
begin with or include a viewing behavior. Right – the transitional probability 
matrix for all event pairs, averaged across sessions. b, Same as in a, but for 
monkey pair 2.



Extended Data Fig. 3 | Neural population stability. a, Example single units 
from one monkey showing spike waveforms recorded across sessions. Each 
panel represents the average waveform of the unit from one session, with 
session 1 plotted in a dark color and increasing in transparency across sessions. 
The unstable unit shows spike waveforms representing stable MUA (Black) and 
unstable SUA (red); the single unit was only present for 4 out of the 18 sessions. 
b, The number of stable cells divided by the total number of cells is the 
percentage of stable units in each area for each monkey. In monkey 1, 81% of 
recorded units (504/620) in V4 and 74% of recorded units in dlPFC (1350/1837) 

were consistent across sessions. In monkey 2, 83% of recorded units in V4 
(1479/1773) and 71% of recorded units in dlPFC (561/794) were consistent. c, For 
each brain region, the percentage of cells out of the total recorded (M1: 34 V4 
cells, 102 dlPFC cells; M2: 104 V4 cells, 46 dlPFC cells) that exhibited a statistically 
significant change in firing rate from baseline (intertrial interval firing rate) 
during social events (as shown in Fig. 3e but plotted across sessions for each 
monkey). For each cell, P < 0.01 Wilcoxon signed-rank test with FDR correction. 
The percentage of responding cells does not systematically change across 
sessions.
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Extended Data Fig. 4 | Neural responses and oculomotor events during 
pushes. a, Self and partner pushes consist of push types that occurred in their 
respective outlined boxes. ‘Partner only’ pushes rarely occurred and were not 
used in analysis. For total number of pushes, see Methods: Firing Rate and 
Response. b, PSTHs from two example dlPFC units that show an increase in 
firing rate before self-monkey and partner pushes. Bottom: pie chart reflecting 
the percentage of push-modulated dlPFC units that respond only to self-push, 
only to partner push, or to both (“mixed”). Percentages averaged across 
sessions and monkeys. M1: 102 total dlPFC cells, 73 are push responsive; M2: 46 
total dlPFC cells, 41 are push responsive. c, The distribution of the number 
fixations on each object that occurred before (1000 ms pre) self and partner 
(1000 ms pre, 500 ms post) pushes in each session. Self-monkey views the 

partner more during partner pushes compared to self-pushes, but he viewed 
the reward more before self-pushes. Pair 1 P Values: 0.005 and 5.79e−5, Pair 2  
P values: 0.03 and 0.003, Wilcoxon rank-sum test. d, Pupil size and eye speed, 
averaged across sessions and animals, that occurred before (1000 ms pre) the 
self and partner monkey pushes. There is no significant difference in pupil size 
and eye speed between animal’s choices, Wilcoxon rank-sum test, P > 0.05.  
e, The distribution of Pearson correlation coefficients from the correlation of 
V4 and dlPFC neuron’s firing rates with pupil size and eye speed occurring 
before (1000 ms pre) self and partner pushes. N = 1157 neurons from eight 
sessions across two animals. Percent significant represents neurons with a 
significant correlation coefficient, P < 0.01. *P < 0.05, **P < 0.01, ***P < 0.001.



Extended Data Fig. 5 | Neural firing rate correlations to movements during 
pushes and fixations. a, Self-monkey’s head movement, limb movement, or 
torso movement occurring around (1000 ms pre, 500 ms pre, or 500 post) self 
or partner monkey pushes, averaged across six sessions from two monkeys. 
Head movement: P = 2.07e−19, P = 2.49e−18, P = 0.001; Limb movement: 
P = 7.12e−18, P = 7.39e−11, P = 2.49e−7; Torso movement: P = 7.01e−9, P = 0.46, 
P = 0.0007; for Pre 1 s, Pre 0.5 s and Post 0.5 s respectively, Wilcoxon rank-sum 
test. On each boxplot, the central horizontal mark indicates the median, and 
the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. The whiskers extend to the most extreme data points not 
considered outliers, and the outliers are plotted individually using the ‘o’ 
symbol. b, Distribution of Pearson correlation coefficients from the 
correlation of V4 and dlPFC neuron’s firing rates with head movement 

occurring around (1000 ms pre, 500 ms pre, or 500 post) self and partner 
pushes. N = 900 neurons from six sessions across two animals. “% sig” represents 
neurons with a significant correlation coefficient, P < 0.01. c, Self-monkey’s 
head movement occurring 200 ms after onset of fixations on reward and partner 
monkey, averaged across six sessions from two monkeys. Head movement: 
P = 2.44e−9; Limb movement: P = 0.29; Torso movement: P = 0.0009; Wilcoxon 
rank-sum test. While there is a significant difference in torso movement across 
reward and partner fixations, the magnitude of the difference is <2%. d, The 
distribution of Pearson correlation coefficients from the correlation of V4 and 
dlPFC neuron’s firing rates with head movement occurring 200 ms after 
fixations on the reward system and partner monkey. N = 900 neurons from six 
sessions across two animals. “% sig” represents the % neurons with a significant 
correlation coefficient, P < 0.01. *P < 0.05, **P < 0.01, ***P < 0.001.
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Extended Data Fig. 6 | Non-social controls. a, Left – Log of the average 
amount of time between self and partner monkey presses during learning 
(‘with viewing’) sessions and control sessions with the opaque divider (‘without 
viewing’). P = 2.30e-08, Wilcoxon rank sum test. Right – Log of the average 
delay to cooperate, or time for both monkeys to be pressing from the start of a 
trial, during learning sessions and control sessions with the opaque divider. 
P = 1.078e-04, Wilcoxon rank sum test. Times were pooled across sessions 
(n = 4 sessions for each condition) and averaged across monkeys. On each 
boxplot, the central red mark indicates the median, and the bottom and top 
edges of the box indicate the 25th and 75th percentiles, respectively. The 
whiskers extend to the most extreme data points not considered outliers, and 
the outliers are plotted individually using the ‘+’ symbol in gold. b, Social and 
solo trial schematic with a peri-event time histogram for a dlPFC cell that 

exhibits a significant change in firing rate between solo and social conditions, 
Wilcoxon rank-sum test, P < 0.05. c, Mean percentage of cells (n = 40 cells/
session from 9 sessions) responding significantly to self-choice in each 
condition when compared to baseline and compared across conditions 
(context difference), P < 0.01 Wilcoxon signed-rank test with FDR correction 
and Wilcoxon rank-sum test for context difference. Pie chart: Session averaged 
percentage of modulated (context difference) cells that exhibit significantly 
higher firing rates before self-choice during solo or social condition. d, Actual 
and shuffled decoding performance for solo and social trials using dlPFC 
activity occurring 1000 ms before self-choice, averaged across session values 
plotted as circles. P = 0.004, Wilcoxon signed-rank test. Dashed line represents 
chance. SEM is represented with error bars. *P < 0.05, **P < 0.01, ***P < 0.001. 
Illustrations in b were created using Biorender.



Extended Data Fig. 7 | Neural correlates of learning cooperation from 
stable units only. a, For each monkey, decoding accuracy for social cues from 
stable neural population activity in each brain area significantly improves 
during learning, as seen in Fig. 4a. V4 P = 0.01 and 1.32e−4, PFC P = 0.002 and 
0.01; monkeys 1 and 2, linear regression. b, For each monkey, the variance of 
weights from the decoding models shown in panel ‘a’ significantly decreases 
across sessions during learning, as observed in Fig. 4g. V4 P = 0.03 and 0.01;  
PFC P = 0.004 and 0.005; monkey 1 and 2, linear regression. c, For each monkey, 
mean coordination of stable unit pairs for each social event in V4, dlPFC, and 
between brain areas is plotted across sessions. The same learning trends are 
observed as those shown in Fig. 5b, c and Extended Data Fig. 10a. Monkey 1 

P-values: P = 0.007, 0.02, 0.09, 0.79; P = 0.03, 0.01, 1.93e−4, 0.07; P = 2.9e−4, 0.02, 
0.002, 0.29; Monkey 2 P-values: P = 0.03, 0.01, 0.11, 0.26; P = 0.003, 0.006, 
4.98e−4, 0.25; P = 0.03, 0.01, 0.01, 0.56; within V4, within PFC, and between areas 
respectively, linear regression. d, Probability density plots of decoder weights 
from stable, V4 and dlPFC correlated neurons during viewing social cues. 
Weights were averaged across neurons within each session for each monkey, 
then combined. Results are equivalent to those in Fig. 5e. V4 from left to right: 
P = 0.011 and P = 2.8e−4; PFC from left to right: P = 0.01 and 0.001, Wilcoxon 
signed-rank test comparing correlated neuron weights to remaining population. 
*P < 0.05, **P < 0.01, ***P < 0.001.
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Extended Data Fig. 8 | Decoding performance for social events. a, Actual and 
shuffled decoding performance for each animal’s choice to cooperate and 
discrimination of social cues. Actual and shuffled values are plotted to provide 
an example comparison for the shuffle-corrected plots completed for monkey 1,  
Fig. 4a and d. Shuffled decoder accuracies remained at chance levels (50%) 
across all sessions. This was also the case for every other decoding analyses in 
Fig. 4. b, Decoding performance for social cues, categories, and choice where 
the number of observations remained the same across all sessions and for each 
class. For each brain area, decoding accuracy still significantly improves during 
learning when the number of observations remains unchanged across 
sessions. All P-values are from linear regression and r is Pearson correlation 
coefficient. Social cues M1 dlPFC P = 0.0003, r = 0.75 and V4 P = 0.02, r = 0.53; 
M2 dlPFC P = 9.9e−4, r = 0.78 and V4 P = 0.0003, r = 0.83. Categories M1 dlPFC 
P = 1.3e-4, r = 0.78; M2 dlPFC P = 0.002, r = 0.76. Choice M1 dlPFC P = 6.84e-4, 
r = 0.72; M2 dlPFC P = 0.003, r = 0.68. c, The change in decoding performance 

for social cues (original model accuracy with all neurons minus model with  
n-1 accuracy), is sorted according to the descending weight of the removed 
neuron. X-axis represents the index of a neuron; only one neuron was removed 
from each model. Session-averaged change in accuracy is plotted. Removing 
neurons with high weights decreases performance but the effect is attenuated 
as neurons with lower weights are removed. The change in accuracy for the first 
30 neurons (out of 104 total in V4, 102 total in dlPFC) of descending weights is 
shown for clarity. V4 P = 1.11e-5, r = −0.71 and dlPFC P = 0.0009, r = −0.57; linear 
regression and Pearson correlation. d, For V4 and dlPFC, histograms display 
the change in decoding accuracy from removing upper and lower deciles of 
neurons (11 neurons) with the highest (gold and blue) and lowest (red) weights, 
respectively. Informative and uninformative neurons have significantly 
different effects on model performance. V4 P = 0.005 and dlPFC P = 0.009, 
Wilcoxon rank-sum test. *P < 0.05, **P < 0.01, ***P < 0.001.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Learning reduces variance of neural population 
decoding weights. a, The maximum absolute valued weight for each session  
in SVM models that decode social or non-social cues is plotted for each cortical 
area. V4 social cues maximum weight, P = 0.002, r = −0.74; non-social cues 
P = 0.65, r = −0.12; PFC social cues maximum weight, P = 0.004, r = −0.64;  
non-social cues P = 0.77, r = 0.07, linear regression and Pearson correlation.  
b, Summary of decoding models that exhibit decreased variance, kurtosis, 
skewedness, or maximum weight values for each brain area and monkey. For 
each decoding model, the P value, represented in shades of teal color, reflects 
linear regression of each weight metric with session number, as shown in panel a  
and Fig. 4g. Significantly decreased variance, kurtosis, skewedness, or 
maximum weight value is only observed in decoding models that exhibit 
increased decoding performance during learning. V4 P-values for monkey 1 
kurtosis and skewedness P = 0.02 and P = 0.01, respectively. V4 P-values for 
monkey 2 variance and maximum weight P = 0.01 and 0.002, respectively. PFC 
P-values for monkey 1 variance, kurtosis, skewedness, and maximum weight 
values from social cues model are P = 1.67e−5, P = 0.03, P = 0.006, P = 0.004, 

respectively; from choice model variance P = 0.005; from category model 
variance, kurtosis, skewedness, and maximum weight, P = 9.19e−5, P = 0.01, 
P = 0.006, P = 0.001, respectively. PFC P-values for monkey 2 variance, kurtosis, 
skewedness, and maximum weight values from social cues model are P = 0.004, 
P = 0.02, P = 0.008, P = 0.01, respectively; from choice model kurtosis and 
maximum weight, P = 0.02 and P = 0.03; from category model kurtosis, and 
maximum weight, P = 0.02 and P = 0.03, respectively. c, Within a session, 
neurons’ decoding weight and D-prime values for task variables are positively 
correlated. Example sessions are shown for various decoding models where 
accuracy is above chance. Each circle represents the absolute value of D-prime 
and normalized SVM decoding weight of each neuron within a session. P-values 
and significant Pearson correlation coefficients are shown. d, For each cortical 
area, examples of individual neuron normalized weights and D-prime values 
that significantly increased (dark shade) or decreased (light shade) across 
sessions. N represents the total number of neurons that exhibited changes.  
In dlPFC, 75 stable neurons were recorded/session and in V4, 87 stable neurons 
were recorded/session. *P < 0.05, **P < 0.01, ***P < 0.001.



Extended Data Fig. 10 | Spike-timing coordination and response latency.  
a, Top row: For Monkey 2, mean coordination plotted across sessions for each 
social event in V4, dlPFC, and between brain areas (V4: P = 0.03, r = 0.6; 
P = 0.005, r = 0.7; P = 0.1 and P = 0.2. PFC: P = 0.008, r = 0.7; P = 0.003, r = 0.8; 
P = 0.002, r = 0.7 and P = 0.44. V4-dlPFC: P = 0.02, r = 0.6; P = 0.006, r = 0.7; 
P = 0.01, r = 0.6 and P = 0.48). For ‘view reward’ and ‘view partner’ events, only 14 
sessions were analyzed due to an inadequate number of stimulus fixations in 3 
out of 17 sessions (sessions with <30 fixations were not included in the analysis). 
P-values for these data are reflected in Fig. 5c. Bottom row: For monkey 2, mean 
spike timing coordination during fixations on random objects and during 
random events (intertrial period, 4.5 seconds before trial start) for V4, dlPFC, 
and inter-areal cell pairs. V4: P = 0.03 and 0.9; PFC: P = 0.53 and 0.45; V4-dlPFC: 
P = 0.01 and 0.14, for random events and random fixations, respectively. 

Significant P-values here correspond to decreasing trends. b, For each monkey 
(rows) and social event (columns), boxplots display the distribution of 
differences in V4 and dlPFC response latencies for correlated and uncorrelated 
neuron pairs across all sessions. V4 latencies were subtracted from dlPFC, i.e., 
negative values reflect pairs where the dlPFC neuron responded first. For 
uncorrelated pairs, the difference in latency between every possible combination 
of pairs was computed. The P-value from Wilcoxon rank-sum test comparing 
latency differences from correlated and uncorrelated pairs is displayed. On 
each boxplot, the central red mark indicates the median, and the bottom and 
top edges of the box indicate the 25th and 75th percentiles, respectively. The 
whiskers extend to the most extreme data points not considered outliers, and 
the outliers are plotted individually using the ‘+’ symbol in blue.
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