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Abstract
Purpose  The potential of targeting forkhead box C1 (FOXC1) as a therapeutic approach for triple-negative breast can-
cer (TNBC) is promising. However, a comprehensive understanding of FOXC1 regulation, particularly upstream factors, 
remains elusive. Expression of the L1 cell adhesion molecule (L1CAM), a transmembrane glycoprotein associated with 
brain metastasis, was observed to be positively associated with FOXC1 transcripts. Thus, this study aims to investigate their 
relationship in TNBC progression.
Methods  Publicly available FOXC1 and L1CAM transcriptomic data were obtained, and their corresponding proteins were 
analyzed in four TNBC cell lines. In BT549 cells, FOXC1 and L1CAM were individually silenced, while L1CAM was 
overexpressed in BT549-shFOXC1, MDA-MB-231, and HCC1937 cells. CCK-8, transwell, and wound healing assays were 
performed in these cell lines, and immunohistochemical staining was conducted in tumor samples.
Results  A positive correlation between L1CAM and FOXC1 transcripts was observed in publicly available datasets. In BT549 
cells, knockdown of FOXC1 led to reduced L1CAM expression at both the transcriptional and protein levels, and conversely, 
silencing of L1CAM decreased FOXC1 protein levels, but interestingly, FOXC1 transcripts remained largely unaffected. 
Overexpressing L1CAM resulted in increased FOXC1 protein expression without significant changes in FOXC1 mRNA 
levels. This trend was also observed in BT549-shFOXC1, MDA-MB-231-L1CAM, and HCC1937-L1CAM cells. Notably, 
alterations in FOXC1 or L1CAM levels corresponded to changes in cell proliferation, migration, and invasion capacities. 
Furthermore, a positive correlation between L1CAM and FOXC1 protein expression was detected in human TNBC tumors.
Conclusion  FOXC1 and L1CAM exhibit co-regulation at the protein level, with FOXC1 regulating at the transcriptional level 
and L1CAM regulating at the post-transcriptional level, and together they positively influence cell proliferation, migration, 
and invasion in TNBC.
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Introduction

In 2020, breast cancer surpassed lung cancer as the most 
frequently diagnosed malignancy worldwide [1]. Among 
the distinct subtypes of breast cancer, triple-negative 
breast cancer (TNBC) accounts for approximately 15%, 
and is characterized by the absence of estrogen receptor 
(ER), progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2) expression [2]. TNBC is 
associated with a higher risk of visceral metastases, par-
ticularly to the lungs and brain [3]. Due to the lack of ER 
and HER2 expression, endocrine therapy and anti-HER2-
targeted therapy are ineffective for TNBC, and patients 
with TNBC brain metastases have a poor prognosis with 
an average survival time of less than two years [4]. Current 
treatment primarily relies on chemotherapy, underscoring 
the need for additional therapeutic targets for TNBC.

FOXC1 (forkhead box C1) is a member of the FOX 
family of transcription factors [5]. While it plays a criti-
cal role in embryonic development [6], its involvement in 
tumor progression across various cancers has been demon-
strated. Notably, FOXC1 is consistently present in basal-
like breast cancer, an intrinsic subtype that comprises the 
majority of triple-negative tumors [7], and its detrimen-
tal role is indicated by its activation of NF-κB signaling 
[8], induction of epithelial-to-mesenchymal transition 
[9], promotion of breast cancer stem cell properties [10], 
and downregulation of ER expression [11]. In breast can-
cer, FOXC1 expression is also positively associated with 
brain and lung metastases [12]. We previously have shown 
that FOXC1 enhances TNBC cell invasion, motility, and 
lung metastasis, possibly by activating the transcription 
of chemokine receptor-4 [13]. However, for translational 
medicine purposes, a comprehensive understanding of 
FOXC1's upstream and downstream regulators in TNBC 
necessitates further investigation [5].

L1 cell adhesion molecule (L1CAM), an immunoglobu-
lin (Ig) superfamily member, is a transmembrane glyco-
protein [14]. While its primary functions relate to neuronal 
migration, axon growth, and synapse formation in the 
brain, L1CAM has been consistently detected in tumors 
over the past two decades and is implicated in tumor pro-
gression [14]. In breast cancer, L1CAM expression is 
observed in all molecular subtypes but shows a preference 
for TNBC and is associated with aggressive behavior [15, 
16]. L1CAM has been implicated in vascular co-option in 
brain metastasis [17], although the triggers for L1CAM 
expression in cancer cells remain incompletely understood 
[18]. Thus, further elucidation of regulators affecting 
L1CAM expression in TNBC is needed.

In our study, we analyzed publicly available RNA 
sequencing data from breast cancer patients, and identified 

a positive correlation between FOXC1 and L1CAM 
expression (Pearson correlation coefficient = 0.370, 0.244). 
Given their shared characteristics in tumor progression, it 
is plausible that L1CAM may be associated with FOXC1 
in TNBC. We observed that (1) silencing FOXC1 reduced 
L1CAM expression, potentially through transcriptional 
inactivation; (2) dysregulation of L1CAM resulted in 
corresponding changes in FOXC1 levels, independent of 
transcriptional regulation; (3) aberrant expression of either 
FOXC1 or L1CAM positively influenced TNBC cell pro-
liferation, migration, and invasion in vitro. These results 
suggest the existence of reciprocal co-regulation between 
FOXC1 and L1CAM, contributing at least partially to the 
aggressive behavior of TNBC cells.

Material and methods

Public databases

Two patient cohorts, consisting of 1108 and 379 individu-
als with breast cancer, were examined in this study. The 
data was sourced from TCGA (The Cancer Genome Atlas, 
Firehose legacy), and the Metastatic Breast Cancer Project 
(Provisional, December 2021). These datasets were accessed 
via the cBioPortal database (https://​www.​cbiop​ortal.​org/, 
accessed on November 18th, 2022) [19, 20]. To assess gene 
expression, messenger RNA (mRNA) values were obtained 
using the RNA-Seq by Expectation–Maximization (RSEM) 
method, which produced logarithmic values on a base-2 
scale. Pearson's correlation analyses were conducted sepa-
rately on the two cohorts, comprising 960 and 157 patients, 
respectively. These patients were selected based on having 
complete information for both L1CAM and FOXC1.

Furthermore, within TCGA, the transcription levels of 
L1CAM were compared between two groups: high expres-
sion (n = 375) and low expression (n = 585) of FOXC1. The 
division between the groups was determined using the mean 
value as the cutoff.

Cell culture 

The SUM149, HCC1937, MDA-MB-231 and BT549 TNBC 
cell lines were obtained from the ATCC (American Type 
Culture Collection, Manassas, VA, USA). Cells were cul-
tured in RPMI 1640 (Gibco, Thermo Fisher, Waltham, USA) 
supplemented with 10% fetal bovine serum (FBS, Biological 
Industry, Kibbutz Beit HaEmek, Israel).

Transient transfection

In preparation for transfection, 2 × 105 cells (BT549, MDA-
MB-231, or HCC1937) were seeded into 6-well plates 

https://www.cbioportal.org/
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and allowed to reach 80–90% confluence within 24 h. For 
L1CAM knockdown, BT549 cells were transiently trans-
fected with L1CAM siRNA (BT549-siL1CAM) or control 
scramble siRNA (BT549-siNC) using Lipofectamine 3000 
according to the manufacturer’s instructions (Invitrogen, 
Carlsbad, CA, USA). The siRNA sequences for L1CAM and 
control scramble were obtained from HIPPOBIO (Shenz-
hen, China) as follows; si-L1CAM: forward: 5’-GAA​CGG​
CAA​CCU​CUA​CUU​UTT-3’ and reverse: 5’-AAA​GUA​
GAG​GUU​GCC​GUU​CTT-3’; siNC: 5’-UUC​UCC​GAA​
CGU​GUC​ACG​UTT-3’ and reverse: 5’-ACG​UGA​CAC​
GUU​CGG​AGA​ATT-3’. To deplete FOXC1, BT549 cells 
were infected with FOXC1 shRNA (BT549-shFOXC1) or 
a scrambled sequence as a control (BT549-shNC), which 
were cloned into the pLV-hU6-Neongreen construct (Syn-
genTech, Beijing, China). Cells with reduced FOXC1 levels 
were selected using 1 μg/mL puromycin. Additionally, to 
overexpress L1CAM, BT549-shFOXC1, MDA-MB-231, 
and HCC1937 cells were transfected with full-length human 
L1CAM mRNA (NM_000425) inserted into the GV358Vec-
tor (GeneChem, Shanghai, China) and were selected using 
Geneticin at concentrations of 400 μg/mL, 1 mg/mL, and 
1 mg/mL for BT549-shFOXC1-L1CAM, MDA-MB-231-
L1CAM, and HCC1937-L1CAM cells, respectively.

Wound healing assays

BT549-shFOXC1, BT549-siL1CAM, BT549-shFOXC1-
L1CAM, MDA-MB-231-L1CAM, and HCC1937-L1CAM 
cell lines, along with their corresponding control cells, were 
plated at a density of 5 × 105 cells per well in 6-well plates. 
A uniform wound was created in the cell monolayer using a 
1 mL plastic pipette tip. After 24 h of incubation, the wound 
width was examined using a phase-contrast microscope 
(NIKON; Konan, Tokyo, Japan). At least 3 random fields 
were photographed, and the closure of the wound distance 
was measured at 0 and 24 h. Cell migration percentages (%) 
were calculated using the formula: [(0-h-gap distance - 24-h-
gap distance)/0-h-gap distance] × 100. All measurements 
were performed using ImageJ software.

Migration and invasion assays

Cell migration and invasion were assessed using Transwell 
chambers (Corning, NY, USA) with a polycarbonate mem-
brane (8 μm pore diameter). For invasion assays, the poly-
carbonate membrane was coated with Matrigel (50 μl BD 
Biosciences, Franklin Lakes, New Jersey, US). Each cell line 
was suspended in 200 μl of serum-free RPMI 1640 medium 
at a concentration of 5 × 104 cells and seeded into the upper 
chamber. The lower chamber was filled with 600 μl of 
RPMI1640 medium supplemented with 10% FBS. After 
24 h, the upper chamber and cells on the upper surface of 

the membrane were removed. The cells that had migrated 
to the lower surface of the membrane were stained with 
0.1% crystal violet and counted under a Leica microscope 
at 100 × magnification (DM3000, Wetzlar, Germany). Four 
randomly selected fields from each sample were used for cell 
counting. Results were averaged from three replicates, and 
each experiment was repeated three times.

Cell proliferation assays

Cell viability was assessed by seeding cells into 96-well 
plates at a concentration of 2000 cells per well. After four 
to five hours, the cells were incubated with 20 μl of CCK-8 
solution (C0038, Beyotime Biotechnology, China) for 2.5 h 
in a humidified chamber at 37 °C. Absorbance was then 
measured at a wavelength of 450 nm using a microplate 
reader (Multiskan MK3, Thermo Fisher, CA, US). The opti-
cal density (OD value) was recorded. Results were based on 
four technical replicates, and each experiment was repeated 
three times.

Real‑time polymerase chain reaction

Total RNAs were isolated from cells using TRIzol 
(cat#15596026), followed by reverse transcription using 
oligo (dT) priming and Superscript III reverse transcriptase 
as per the manufacturer’s instructions (TaKaRa, Tokyo, 
Japan). Real-time PCR was performed using a SYBR Pre-
mix kit (TaKaRa, Tokyo, Japan), with β-actin serving as the 
loading control. The reactions were carried out on a 7300 
Real-Time PCR System (Applied Biosystems, Waltham, 
MA, USA). Primer pairs for the target genes were obtained 
from Sangon Biotech (Shanghai, China) as follows:

FOXC1 forward, 5’-TCA​CAG​AGG​ATC​GGC​TTG​
AAC-3’,

FOXC1 reverse, 5’-TCC​TGC​TTT​GGG​GTT​CGA​TT-3’,
L1CAM forward, 5’-CCC​CGA​GGA​ATT​GAT​GGA​

GC-3’,
L1CAM reverse, 5’-GGT​TCT​GGT​AGG​TGA​CAC​GG-3’,
β-actin forward, 5’-CAT​GTA​CGT​TGC​TAT​CCA​GGC-3′,
β-actin reverse, 5’-CTC​CTT​AAT​GTC​ACG​CAC​GAT-3’.

Western blot analyses

Cells were lysed using a cell lysis buffer containing phe-
nylmethylsulfonyl fluoride (Beyotime, Shanghai, China). 
Proteins (30 μg) from each cell lysate were separated by 
SDS-PAGE and transferred onto a polyvinylidene difluoride 
(PVDF) membrane (Millipore, Bedford, MA, USA). The 
membrane was blocked with bovine serum albumin and 
incubated overnight at 4 °C with primary antibodies against 
FOXC1 (1:500, ab223850; Abcam, Cambridge, UK), 
L1CAM (1:1000, ab270455; Abcam, Cambridge, UK), 
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GAPDH (1:2000, sc-47724; Santa Cruz Biotechnology, 
Dallas, TX, USA), and β-tubulin (1:3000, sc-5274; Santa 
Cruz Biotechnology, Dallas, TX, USA) in blocking buffer. 
After washing with TBST (Tris-buffered saline with 0.2% 
Tween 20), the blots were incubated with horseradish per-
oxidase-labeled anti-rabbit (1:10000, ab205718; Abcam, 
Cambridge, UK) or anti-mouse (1:5000, ab6728; Abcam, 
Cambridge, UK) secondary antibodies at room temperature 
for two hours. Following another round of washing with 
TBST, the signal was detected using chemiluminescence. 
Protein bands were visualized using an ECL western blotting 
substrate (cat#32109, Thermo Fisher, USA).

Patients and tumor specimens

Paraffin-embedded archival pathological specimens from 
40 patients diagnosed with TNBC, along with comprehen-
sive clinicopathological data, were obtained. The patients 
underwent biopsy without preoperative therapy at the Can-
cer Hospital of Shantou University Medical College between 
January 2013 and December 2019. Among the cohort, the 
majority of patients (n = 34) were diagnosed with early 
stages (I/II), while the remaining cases were at advanced 
stages (III/IV), except for one case with an unknown stage. 
The clinical tumor stage (TNM stage) was classified accord-
ing to the American Joint Committee on Cancer, 6th Edi-
tion Cancer Staging Manual (2002). Informed consent 
was obtained from all participants after providing detailed 
information and potential consequences. The study involving 
tumor samples was approved by the medical ethics commit-
tee of the Cancer Hospital of Shantou University Medical 
College (approval number: 2019024).

Immunohistochemistry

Immunohistochemistry (IHC) was performed to detect 
FOXC1 and L1CAM in TNBC. Briefly, 4-μm thick tissue 
sections were fixed in 10% buffered formalin and embedded 
in paraffin. After deparaffinization and rehydration, endog-
enous peroxidase activity was blocked with 0.3% hydrogen 
peroxide. The sections were then autoclaved in citrate buffer 
(pH 6.0) and incubated with rabbit anti-FOXC1 monoclo-
nal antibody (1:50, ab223850; Abcam, Cambridge, UK) or 
L1CAM antibody (1:100, ab270455; Abcam, Cambridge, 
UK). IHC staining was performed using the EnVision anti-
body complex (anti-mouse/rabbit) method with an Elivision 
plus Polymer HP (Mouse/Rabbit) IHC Kit (MXB Biotech-
nologies, Fujian, China) and 3,3’-diaminobenzidine as the 
chromogen substrate. Scoring for FOXC1 and L1CAM 
IHC staining was based on a combination of intensity (0, no 
staining; 1, weak staining; 2, moderate staining; 3, strong 
staining) and proportion (0, < 5% of tumor cells stained; 1, 
5–25% positive cells; 2, 26–50% positive cells; 3, 51–75% 

positive cells; 4, more than 76% positive cells). Expression 
was considered positive if the product of multiplication 
between staining intensity and the proportion of positive 
cells was > 4. Two pathologists independently assessed the 
cellular location and intensity of immunostaining in each 
section.

Statistical analyses

Statistical analyses were performed using GraphPad Prism 
8.0 software (San Diego, CA). Data are expressed as 
mean ± standard deviation (SD). Comparisons of transcrip-
tional levels, cell viability and cell mobility between con-
structed cells and their controls were conducted using t-tests. 
For all tests, a value of P < 0.05 was considered significant.

Results

L1CAM is down‑regulated at the transcriptional 
and protein level after FOXC1 knockdown

A correlation analysis was performed using publicly avail-
able mRNA profiles from two cohorts of breast cancer 
patients to investigate the relationship between L1CAM and 
FOXC1. Figure 1a shows that patients with high FOXC1 lev-
els exhibited higher L1CAM expression compared to those 
with low FOXC1 levels (P < 0.001). Furthermore, L1CAM 
demonstrated a significant positive correlation with FOXC1 
(r = 0.37, P < 0.001, Fig. 1b; r = 0.244, P = 0.002, Fig. 1c). 
Subsequently, both L1CAM and FOXC1 proteins were 
examined in four TNBC cell lines (Fig. 1d). BT549, which 
exhibited detectable expression of both genes, was primarily 
used for subsequent experiments. Knockdown of FOXC1 
resulted in a considerable decrease in FOXC1 mRNA and 
protein expression in two BT549-shFOXC1 cell clones 
(BT549-shFOXC1-A1 and BT549-shFOXC1-A3, Fig. 1e–f). 
Concurrently, a reduction in L1CAM mRNA and protein 
levels was also observed (Fig. 1e–f), suggesting that FOXC1 
might, to some extent, regulate L1CAM expression at the 
transcriptional level.

Down‑regulation of L1CAM reduces proliferation, 
invasion and migration of TNBC cells 
along with reducing FOXC1 protein levels

To investigate the role of L1CAM in TNBC cells and its 
impact on FOXC1, BT549-siL1CAM cells with reduced 
L1CAM mRNA and protein were generated (Fig. 2a–b). 
Interestingly, we observed that the knockdown of L1CAM 
simultaneously decreased FOXC1 protein levels (Fig. 2a). 
However, only a slight decrease in FOXC1 mRNA levels 
(0.11-fold decrease, Fig. 2b) was observed compared to 
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controls, suggesting that L1CAM may reciprocally regulate 
FOXC1 expression through a mechanism independent of 
transcription.

CCK-8 assays demonstrated that the viability of BT549-
siL1CAM cells decreased after 48 (OD values: 0.523 vs. 
0.644, P < 0.001, Fig. 2c), 72 (0.676 vs. 0.851, P < 0.001), 
and 96 h (0.811 vs. 1.205, P < 0.001) compared to parental 
cells. Transwell assays revealed impaired metastatic capacity 
in BT549-siL1CAM cells (number of migrated cells: 54 ± 7 
vs. 128 ± 13, P < 0.001; number of invaded cells: 14 ± 5 
vs. 62 ± 3, P < 0.001, Fig. 2d). Similarly, wound healing 
assays confirmed reduced migration of BT549-siL1CAM 
cells (migration area: 38.5% vs. 88.0%, P < 0.001, Fig. 2e). 
These findings indicate that BT549-siL1CAM cells exhibit 
decreased cell viability and impaired metastatic ability, 
potentially associated with the reduction of FOXC1 proteins.

Overexpression of L1CAM promotes cell invasion 
and migration through FOXC1

To further investigate the role of L1CAM in TNBC cells and 
its impact on FOXC1, BT549-shFOXC1 cells were engi-
neered to overexpress L1CAM in two BT549-shFOXC1 cell 
clones (i.e., BT549-shFOXC1-L1CAM-OA1 and BT549-
shFOXC1-L1CAM-OA3), and the corresponding controls 
were represented as BT549-shFOXC1-NA1 and BT549-
shFOXC1-NA3 (Fig. 3a–c). Interestingly, in these cells, 
FOXC1 protein levels were increased (Fig. 3a), while there 
was only a negligible change at the mRNA level. CCK-8 
assays showed an increase in cell proliferation for BT549-
shFOXC1-L1CAM cells compared to controls (e.g., BT549-
shFOXC1-L1CAM-OA1 vs. BT549-shFOXC1-NA1: 24 h: 
0.414 vs. 0.319, P < 0.001; 48 h: 0.707 vs. 0.501, P < 0.001; 

Fig. 1   FOXC1 is correlated with L1CAM, and its depletion leads to 
decreased L1CAM in TNBC cells. a Differences in L1CAM mRNA 
expression were examined between patients with a high (n = 375) 
and low level (n = 585) of FOXC1 mRNA. The mean was used for 
the cutoff value. b–c Two scatter plots were created to indicate the 
relation between FOXC1 and L1CAM mRNA expression in two 
public cohorts: TCGA and the Metastatic Breast Cancer Project, 
respectively (Pearson’s correlation coefficient r = 0.370, P < 0.001; 
r = 0.244, P = 0.002). d FOXC1 and L1CAM proteins were examined 
in four TNBC cell lines, with GAPDH serving as the loading control. 

e FOXC1 and L1CAM proteins were both down-regulated in BT549-
shFOXC1 cells (by two different shFOXC1 sequences: A1 and A3) 
compared to BT549-shNC. β-Actin served as the loading control. f 
Real-time PCR detected decreased transcriptional levels of FOXC1 
and L1CAM in two BT549-shFOXC1 cell clones: BT549-shFOXC1-
A1 and BT549-shFOXC1-A3, compared to BT549-shNC. NC: 
BT549-shFOXC1-NC. A1 and A3: knockdown of FOXC1 with two 
shRNA sequences: RNA1 and RNA3 in BT549 cells, respectively. 
*P < 0.05, **P < 0.01, ***P < 0.001
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72 h: 1.225 vs. 0.848, P < 0.001, Fig. 3d–e). Transwell assays 
indicated enhanced migration and invasion capacities (e.g., 
BT549-shFOXC1-L1CAM-OA1 vs. BT549-shFOXC1-NA1: 
number of migrated cells: 96 ± 18 vs. 50 ± 15, P < 0.001; 
number of invaded cells: 123 ± 32 vs. 41 ± 29, P < 0.001, 
Fig. 3f–g). Wound healing assays confirmed an increased 
migratory capacity of BT549-shFOXC1-L1CAM cells com-
pared to controls (Fig. 3h–i). These findings suggest that 
the restoration of proliferation, invasion, and migration in 
BT549-shFOXC1-L1CAM cells could be attributed to the 
upregulation of FOXC1.

Similar results were observed in two other TNBC cell 
lines, MDA-MB-231-L1CAM and HCC1937-L1CAM, 
which also overexpressed L1CAM. These cell lines exhib-
ited increased levels of FOXC1 protein but only a moderate 
increase in FOXC1 mRNA (Online Resource Fig s1,a–b and 

Fig. S2a–b). CCK-8 assays and wound healing assays dem-
onstrated that L1CAM overexpression in MDA-MB-231 and 
HCC1937 cells enhanced cell proliferation and migration 
(Online Resource Fig s1c, S1e, Fig. S2c, S2e), while tran-
swell assays did not show an increased capacity for invasion 
in MDA-MB-231-L1CAM (Online Resource Fig s1d).

L1CAM and FOXC1 are correlated at the protein level 
in human breast cancer

The relationship between FOXC1 and L1CAM in TNBC 
was examined by investigating their protein expression levels 
using IHC in tumor samples from 40 TNBC patients. Repre-
sentative images of FOXC1 and L1CAM staining are shown 
in Fig. 4a–c. There was a significant correlation between 
FOXC1 and L1CAM expression (r = 0.451, P = 0.004, 

Fig. 2   Inhibition of L1CAM 
suppresses expression of 
FOXC1 proteins, cell prolifera-
tion, invasion and migration. 
a Down regulation of both 
L1CAM and FOXC1 proteins 
was detected in BT549-siL-
1CAM cells. GAPDH served as 
the loading control. b Real-time 
PCR detected a considerable 
decrease of L1CAM mRNA, 
but only a slight decrease of 
FOXC1 mRNA in BT549-
siL1CAM cells. c CCK-8 assay 
showed L1CAM knockdown 
decreased the capacity of cell 
proliferation. d Cell migration 
and invasion were impaired 
after L1CAM knockdown in 
BT549 cells. e L1CAM knock-
down suppressed BT549 cell 
migration in a wound healing 
assay. NC: negative control, 
siL1CAM: a small interfer-
ing RNA used to knockdown 
L1CAM mRNA in BT549 
cells. *P < 0.05, **P < 0.01, 
***P < 0.001
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Fig. 4d). Clinicopathological information of these samples 
is presented in Fig. 4e. These findings indicate a positive 
correlation between L1CAM expression and FOXC1 in 
TNBC tissues.

Discussion

This study initially observed a decrease in L1CAM expres-
sion, both at the protein and transcriptional levels follow-
ing FOXC1 knockdown. Notably, down- or up-regulating 
L1CAM levels in turn resulted in decreased or increased 
expression of FOXC1, primarily at the protein level. These 
changes were accompanied by impaired or enhanced capaci-
ties of proliferation, migration, and invasion of TNBC cells. 
Collectively, these findings suggest a reciprocal regulation 
between FOXC1 and L1CAM, which is related to the prolif-
eration, migration, and invasion of TNBC cells.

FOXC1 and L1CAM are known to be present in various 
types of cancer and have been implicated in cancer develop-
ment based on in vitro experiments. They are consistently 

associated with poor prognosis in cancer patients [14, 
21], and in the context of breast cancer, both FOXC1 and 
L1CAM exhibit a preference for triple-negative breast can-
cer (TNBC) over other subtypes. FOXC1 has been shown 
to promote distant metastasis to the lung and brain in TNBC 
[12, 13, 22], while L1CAM is implicated in vascular co-
option during brain metastasis [17, 23]. However, a recent 
immunohistochemistry (IHC) study failed to detect L1CAM 
expression in a series of thirty resected breast cancer brain 
metastases [24]. The authors proposed the possibility that 
L1CAM may no longer be necessary and thus downregu-
lated after the formation of macro-metastases in the brain. 
Here, we present the hypothesis that the downregulation 
of L1CAM in brain metastases could be attributed to the 
silencing of FOXC1. Although FOXC1 was not specifically 
examined in that study, it is noteworthy that most brain 
metastases collected in that paper were either ER-positive 
or HER2-positive tumors, which are less likely to express 
FOXC1 [24].

FOXC1 and L1CAM may share common mechanisms 
in breast cancer progression. Despite extensive studies on 

Fig. 3   Overexpression of L1CAM induces expression of FOXC1 
proteins, cell proliferation, cell invasion and migration. a Western 
blotting showed L1CAM and FOXC1 proteins after overexpression 
of L1CAM in BT549-shFOXC1-A1 and BT549-shFOXC1-A3, i.e., 
BT549-shFOXC1-L1CAM-OA1 and BT549-shFOXC1-L1CAM-
OA3. Their controls were represented as BT549-shFOXC1-NA1 and 
BT549-shFOXC1-NA3. β-Actin served as the loading control. b–c 
Real-time PCR showed the relative mRNA expression of L1CAM 
and FOXC1 after overexpressing L1CAM in BT549-shFOXC1 cells. 
d–e CCK-8 assays showed the effect of L1CAM overexpression on 

cell proliferation in BT549-shFOXC1-L1CAM. f–g Cell migration 
and invasion were evaluated after overexpressing L1CAM in BT549-
shFOXC1 cells. h–i Upregulation of L1CAM in BT549-shFOXC1 
cells enhanced cell migration in  vitro wound healing assays. NA1: 
BT549-shFOXC1-A1 transfected with empty vector control. OA1: 
BT549-shFOXC1-A1 cells overexpressing L1CAM. NA3: BT549-
shFOXC1-A3 transfected with empty vector control. OA3: BT549-
shFOXC1-A3 cells overexpressing L1CAM. *P < 0.05, **P < 0.01, 
***P < 0.001
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tumor progression [5], the regulation of FOXC1 remains 
poorly understood. In this study, we observed a significant 
change in FOXC1 protein levels without corresponding 
changes in transcripts, along with a corresponding change 
in L1CAM expression. Indicated by previous studies, the 
NF-κB and MAPK signaling pathways may serve as poten-
tial mediators between these two genes. NF-κB is particu-
larly prominent in basal-like tumors, in contrast to ER-pos-
itive breast cancer [25]. In vitro studies have demonstrated 
that L1CAM acts as a ligand for integrins in MDA-MB-231 
cells, leading to NF-κB activation [26]. Notably, NF-κB can 
bind to the FOXC1 promoter and initiate transcription [27]. 
Therefore, NF-κB may facilitate the interaction between 
L1CAM and FOXC1. Interestingly, we did not observe sig-
nificant changes in FOXC1 transcripts despite the substantial 
alteration in FOXC1 protein levels. This suggests that tran-
scriptional regulation may not be the primary mechanism by 
which L1CAM regulates FOXC1 expression. A recent study 
highlighted that FOXC1 is regulated by p38 MAPK, with 
Ser241 and Ser272 identified as critical phosphorylation 

sites for FOXC1 protein stability, without affecting mRNA 
levels [28]. Moreover, inhibition of L1CAM expression 
by L1CAM-specific siRNA suppresses the activation of 
MAPKs, such as ERK and p38 [29, 30]. Therefore, it is pos-
sible that p38 or related pathways contribute to the underly-
ing mechanism by which L1CAM influences FOXC1 expres-
sion at the protein level, rather than at the transcriptional 
level. However, these hypotheses have yet to be confirmed 
in breast cancer cells, and further investigation is ongoing 
to explore these possibilities.

In addition to the positive influence of L1CAM on 
FOXC1, we also observed a reduction in FOXC1 expres-
sion leading to decreased L1CAM levels, likely due to 
transcriptional downregulation. The specific underlying 
mechanism for this observation remains unclear. Previous 
studies have indicated that β-catenin is a direct transcrip-
tional target of FOXC1 [31–33], and L1CAM is a target 
gene of the β-catenin signaling pathway [34]. This sug-
gests that β-catenin may play a role in the link between 
FOXC1 and L1CAM. However, further investigation is 

Fig. 4   Expression correlation between L1CAM and FOXC1 was 
detected by IHC. a-c Examples for strong, moderate and week 
IHC staining of FOXC1 (upper left: 100 × ; upper right: 400 ×) and 
L1CAM (lower left: 100 × ; lower right: 400 ×) in TNBC tissue sec-

tions from the same tumor are shown. d A scatter plot of FOXC1 IHC 
scores to L1CAM IHC scores was created (Pearson’s correlation coef-
ficient r = 0.451, P = 0.004). e Some clinical-pathological information 
of these patients was provided



473Breast Cancer Research and Treatment (2024) 204:465–474	

required to determine whether FOXC1 directly or indi-
rectly regulates L1CAM in breast cancer cells.

The upstream regulation of L1CAM and FOXC1 
expression has been extensively reviewed [5, 14]. How-
ever, a more comprehensive understanding of their regula-
tion in TNBC is still needed to fully explore their potential 
as therapeutic targets. In this study, we demonstrate the 
possibility of a reciprocal regulation between FOXC1 and 
L1CAM, which is involved in the proliferation, migration, 
and invasion of TNBC cells. One exception is that the 
cell invasion capacity was not enhanced in MDA-MB-231 
cells after L1CAM upregulation as BT549-shFOXC1 and 
HCC1937 cells did; it could be due to different genetic 
backgrounds and mutation statuses among these cell lines. 
While the individual functions of FOXC1 and L1CAM in 
TNBC have been extensively studied, our focus here is 
on their interrelation in TNBC cells. To the best of our 
knowledge, this is the first study to suggest that L1CAM 
may regulate FOXC1, and vice versa, and that the former 
may not rely on transcriptional regulation. However, the 
specific regulatory mechanisms underlying FOXC1 and 
L1CAM are not yet clear, and we aim to address this in 
future studies.
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