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Large language models and multimodal
foundation models for precision oncology

Check for updates
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The technological progress in artificial intelligence (AI) hasmassively accelerated since 2022, with far-
reaching implications for oncology and cancer research. Large language models (LLMs) now perform
at human-level competency in text processing. Notably, both text and image processing networks are
increasingly based on transformer neural networks. This convergence enables the development of
multimodal AI models that take diverse types of data as an input simultaneously, marking a qualitative
shift fromspecialized nichemodelswhichwereprevalent in the 2010s. This editorial summarizes these
developments, which are expected to impact precision oncology in the coming years.

The volumeof patient-specific data in oncology is rapidly expanding. This is
due to the widespread introduction of electronic health records (EHRs),
advances in medical imaging, and the integration of large-scale genomic
analyses into clinical routine. Effective use of this large amount of data is
important for ensuring the optimal treatment for cancer patients. Artificial
intelligence (AI) andmachine learning (ML)have shownpromise inhelping
healthcare professionals to process such data.

AI’s application in domains like oncology has experienced peri-
odic surges of activity. Prior to 2012, AI technologies played amarginal
role in oncology research. Computer-based data analysis studies
mostly relied on classical ML algorithms with a modest model com-
plexity. 2012 marked a turning point in computer-based data analysis:
image processing, a notoriously difficult task, was suddenly made
much easier with the advent of convolutional neural networks (CNNs).
This technological shift was subsequently integrated into medical
research1, most notably evidenced by a 2017 publication demonstrat-
ing neural network performance on par with human experts across
large image datasets2. In parallel, hardware improvements have gra-
dually lowered the computational barriers for training and deploying
resource-intensive models, thus broadening the user base capable of
developing and refining AI algorithms3.

Between 2012 and 2022, neural networks were applied in
numerous studies that primarily focused on the analysis of oncological
imaging or text1. Regulatory bodies in the United States and the Eur-
opean Union approved a number of specialized AI-based tools for
cancer, particularly in radiological and pathological image analysis.
However, high-profile and ambitious initiatives, such as IBMWatson,

did not achieve their projected outcomes4. This decade can be viewed as
a stabilization phase for AI applications in oncology, marked by
incremental improvements and specialized uses, predominantly in
image analysis5. This landscape changed in 2022 and 2023 with the
advent of two key innovations: large language models (LLMs) and
multimodal AI models.

LLMs are deep learning models that serve the purpose of both
processing and generating primarily text-based data6. The training
data for these models is a large and diverse amount of text, usually
sourced from the internet and commercial data providers, and can
include diverse types of medical data7. While potentially this purpose
can also be fulfilled by various model architectures, the most successful
models have recently relied on transformer-based architectures per-
taining to their attention mechanisms8. Their training process is
autoregressive, which means that the model is trained to predict sub-
sequent tokens in a sequence (similar to words in a sentence). Notably,
model performance scales with size, i.e. number of parameters, and
larger models show emergent behavior9: They acquire an under-
standing of concepts underlying the training data without having been
explicitly trained on this.When LLMs are applied on new tasks without
explicit training, this is referred to as a “zero-shot” application. The
LLM Generative Pre-trained Transformer (GPT) 3.5 by OpenAI
gained widespread attention in 2022 because it was made available as a
chatbot in the “chatGPT” user interface and demonstrated impressive
conversational skills. It was later succeeded by GPT-4, which displayed
much-improved knowledge retrieval and logical reasoning capacities
with far fewer hallucinations7.
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A common application area under exploration for these LLMs is
healthcare7. LLMs can be applied to medical problems through different
approaches. One approach is to train these models specifically on
medical data (Fig. 1A). One of the first language models to be success-
fully transferred to the medical domain was Bio-BERT, which showed
robust capabilities for biomedical text mining10. Also, Google’s LLM
“PALM” was fine-tuned on medical training data, resulting in Med-
PaLM, which outperformed its previous version in medical use cases11.
Recently, Google has introduced the next iteration, Med-PaLM 2, which
scored a high 86.5% in the US Medical Licensing Exam (USMLE)12.
Solving USMLE questions is a common benchmark test for LLMs, yet it
is of limited use for real-world applications. However, fine-tuned LLMs
have been shown to solve real-world problems such as predicting clinical
outcomes just based on unstructured text data in EHRs13. Other ways to
apply LLMs on medical problems do not require fine-tuning: Generalist
LLMs can often be applied to medical tasks by just using a detailed input
prompt. Another alternative is the use of “Retrieval Augmented Gen-
eration” (RAG) by which domain knowledge can be provided to a
trained LLM in machine-readable format (Fig. 1B).

Today’s LLMs are transformer neural networks. This network archi-
tecture is well suited for almost any type of data, and enablesmultimodality.

Multimodal AI systems are capable of interpreting multiple types of data
together, such as textual and image data. Their development and validation
require collaborative efforts between a number of disciplines including but
not limited to medical experts in diagnostic specialties such as radiology or
pathology and specialties such as surgery or medicine as well as technology
experts both in software and hardware. Multimodal AI systems have been
evaluated for various applications in precision oncology, such as outcome
predictions14,15. However, more scientific evidence is required to ensure that
LLMs and multimodal models provide quantifiable benefits in oncology.

Whenever a model is pre-trained on large and diverse tasks, and is
subsequently applied to specialized tasks, it can be referred to as a “foun-
dation model”16. Foundation models reduce the data requirements for
specialized tasks, for example in predicting diseases from retinal
photographs17. For instance, linking images from chest X-rays to corre-
sponding report text data, and foundationmodels can alleviate the need for
time-consuming and laborious manual annotation while preserving
human-level accuracies and outperforming supervised methods18. In clin-
ical practice, suchmodels may be deployed in the form of chatbot assistants
that can aid diagnosis in an interactive manner19. Similar examples exist in
pathology, where large image datasets are linkedwith contextual knowledge
and case-specific information yielding high performance in disease

Fig. 1 | Overview of medical adaptations of LLMs. A Integrating information from
various sources comprising domain knowledge from databases and patient related
documents including different modalities (imaging, text, tabular, numerical data).
B Possible model adaptation strategies include: Combining user prompts with
relevant source documents and examples (few-shot prompting, top). Retrieval
augmented generation (RAG), in which the information from A gets processed by a

separate embedding model and is stored in a database. Relevant information can
then be retrieved based on similarity measures with a user input (middle). Docu-
ments can be used to continue the training process and adapt the model parameters
for specific use cases (bottom). Procedures are sorted by complexity and compu-
tational cost in increasing order. C Selected possible use cases for LLMs in clinical
routine.
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detection as well as biomarker prediction and can also inform further
diagnostic procedures such as additional stains20,21. Furthermore, early
generalist models have been introduced which show consistently high
performance across a variety of medical domains and tasks integrating
knowledge fromdiverse domains22,23. Given the resource-intensive nature of
trainingmodels with parameter sizes in the billions, there is a trend towards
improving model efficiency by reducing model size while retaining model
performance. Recent advances with open-sourced models yield the per-
spective of de novo model training and development at much lower
financial and computational burdens24.

As foundation models diversify their capabilities, they open up
new avenues for their potential application in oncology and cancer
research, such as multimodal diagnostics and drug discovery. How-
ever, to fully unlock the potential of foundation models in oncology
and cancer research, several challenges must be addressed. Firstly, the
underlying data themodel is trained on has to be carefully assessed for
quality, quantity, and diversity25. Secondly, the design of systems
which integrate foundation models should be guided not only by
experts in computer science, but also by medical professionals and
patient advocates as well as the broader scientific community.
Thirdly, the integration of such models in operable clinical software
systems faces legal and regulatory challenges because these models
require approval as medical devices26. Fourthly, ongoing model eva-
luation, validation and improvement are important to maintain
quality, safety, and usefulness in light of the accelerating pace with
which scientific discoveries are translated into novel medicines and
guidelines. Lastly, a prominent concern of AI models based on neural
network architecture is their often criticized lack of interpretability
which earned them the term ‘black boxes’27,28. While substantial
progress has been made in model explainability for image-related
tasks, fewer studies address explainability in text processing or
multimodal tasks in medicine29.

Overall, the advancements in LLMs and multimodal models have the
potential to impact the practice of oncology through many different
applications (Fig. 1C). This “Collection” in “npj Precision Oncology” aims
to collect articles that provide solid empirical evidence for applications of
these models in precision oncology.
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