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Smartphone‑based device 
for point‑of‑care diagnostics 
of pulmonary inflammation using 
convolutional neural networks 
(CNNs)
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In pulmonary inflammation diseases, like COVID‑19, lung involvement and inflammation determine 
the treatment regime. Respiratory inflammation is typically arisen due to the cytokine storm and the 
leakage of the vessels for immune cells recruitment. Currently, such a situation is detected by the 
clinical judgment of a specialist or precisely by a chest CT scan. However, the lack of accessibility to the 
CT machines in many poor medical centers as well as its expensive service, demands more accessible 
methods for fast and cheap detection of lung inflammation. Here, we have introduced a novel method 
for tracing the inflammation and lung involvement in patients with pulmonary inflammation, such as 
COVID‑19, by a simple electrolyte detection in their sputum samples. The presence of the electrolyte 
in the sputum sample results in the fern‑like structures after air‑drying. These fern patterns are 
different in the CT positive and negative cases that are detected by an AI application on a smartphone 
and using a low‑cost and portable mini‑microscope. Evaluating 160 patient‑derived sputum sample 
images, this method demonstrated an interesting accuracy of 95%, as confirmed by CT‑scan results. 
This finding suggests that the method has the potential to serve as a promising and reliable approach 
for recognizing lung inflammatory diseases, such as COVID‑19.

The emergence of the SARS-CoV-2 virus and the subsequent outbreak of one of the most lethal pandemics of 
the current  century1, led to the development of advanced technologies for the early diagnosis of COVID-192–6. 
Various state-of-the-art solutions, including but not limited to ID  NOW7,  RDSS8, and  others9–11, have been 
introduced to address the urgent need for accurate and rapid point-of-care (POC) diagnostics due to the multiple 
mutations in the  virus12. Such developments aim to alleviate the strain on medical centers and enable individuals 
to conduct COVID-19 tests conveniently at home using rapid, reliable, and smartphone-based  approaches13,14. 
However, there remains a need for rapid point-of-care diagnostic approaches that can be conveniently used 
outside laboratory settings to keep pace with the ongoing  pandemic15.

While smartphone-based diagnostic devices have been a subject of research for  years16,17, the convergence 
of artificial intelligence (AI) and portable systems, particularly smartphones, presents a compelling avenue for 
rapid POC diagnostics.
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AI, as an accepted and popular method, has been recently employed for big data analysis not only for tackling 
COVID-19  pandemic18 and its  management19,20 but also in different medical fields such as cancer  pathology21,22, 
ovulation  prediction23, X-ray image  analysis24–26, and  etc27,28. Compared to a human, AI-based devices are able 
to analyze the data with superior precision and accuracy. In particular, the use of convolutional neural networks 
(CNNs) in these devices has shown great promise for detecting various diseases. CNNs are a type of deep learning 
algorithm capable of recognizing patterns in images and other complex data  types29. Researchers have recently 
explored the potential of smartphone-based devices and CNNs for point-of-care diagnostics of pulmonary 
 inflammation30,31.

Using AI, lung-related diseases have been classified and detected in several  studies28. With the use of an 
electronic stethoscope, Aykanat et al. devised a non-invasive method to classify respiratory  sounds32. In their 
study, they found that CNNs and support vector machines (SVMs) accurately classified respiratory sounds. 
Through the use of high-resolution CT images and deep learning, Chen et al. developed an engine for detecting 
COVID-19  disease33. Deep learning model performance was comparable with that of expert radiologists, thereby 
improving radiologists’ clinical efficiency. A transfer learning approach with deep CNNs was used by Eman et al. 
to determine which cases were tuberculosis and which were normal from chest  radiographs34. According to David 
et al., lateral flow rapid diagnostic tests (RDTs) for SARS-CoV-2 can be read and interpreted with the help of a 
smartphone application. Especially for prospective validation of real-life scenarios, as well as for antibody, antigen 
and peptide detection tests, their AI algorithm has demonstrated excellent  performance35. A smartphone-based 
breathing sound indicator may be a promising marker for COVID-19 cases, according to Mohanad et al. Based 
on their study, deep learning can be used as a pre-screening tool before RT-PCR, which is considered the gold 
standard in such  cases36. However, smartphone-assisted AI diagnostics have not been explored in the context of 
detecting COVID-19 lung inflammation from sputum samples.

Here, we aim to bridge this technology gap by introducing a smartphone-based AI framework to trace 
pulmonary inflammation in COVID-19 cases by ferning pattern analysis of air-dried sputum samples using a 
low-cost, smartphone-compatible microscopy device. This paper presents the demonstration of an accessible deep 
learning-powered mobile platform for diagnosing respiratory inflammation without requiring CT infrastructure 
or extensive sample analysis. Our approach could allow rapid screening of COVID-19 positive patients to 
determine disease severity and need for intervention.

During the immunological phase of COVID-19, the lungs become inflamed as immune cells battle the 
 virus37. This recruits additional immune cells, often disrupting blood vessels and increasing vascular permeability 
that allows fluid to fill the  alveoli38,39. Currently, a chest CT scan diagnoses such inflammation. The inflamed 
state allows blood components like electrolytes to emerge in patient sputum. Thus, increased blood markers 
in respiratory secretions may indicate lung inflammation. Body fluids, especially blood, have long provided 
diagnostic  indicators40–42, aside from its use of treatment  purposes40,43,44. Various blood-related molecules 
found in sputum now serve as disease biomarkers, such as glucose in  pneumonia45,46, salivary components for 
autoimmune  diseases47, etc. Sputum electrolyte levels have also been  exploited48,49, as salt crystals such as sodium 
chloride (NaCl) can create fern-like sputum patterns that associate with ovulation  timing23 and conditions like 
 cancer49 and Sjogren  syndrome50. Despite using saliva/sputum to detect COVID-19, no smartphone-assisted 
deep learning approach has leveraged rising sputum electrolytes and fern-like patterns to trace COVID-19 
inflammation. This capability could improve screening for severe lung involvement.

A patient’s risk of severe COVID-19 rises with greater immune response, increasing chances of death 
from lung inflammation. Thus, rapidly diagnosing inflammation could improve outcomes by enabling earlier 
intervention. In this study, we utilized sputum samples from patients with positive lung CT scans as an indicator 
of pulmonary inflammation. We examined the fern patterns in their sputum using an affordable, simple, and 
portable smartphone-based device. In 10 μL sputum samples from CT-positive patients, these patterns were 
considered as biomarkers of inflammation. First, elevated sputum electrolytes (sodium, potassium) were 
confirmed in COVID-19 patients using standard analysis, agreeing with our vascular permeability hypothesis. 
Next, AI-based evaluation of smartphone-captured images showed this approach accurately diagnosed 160 
patient-derived sputum sample images with 95% accuracy compared to CT-scan inflammation signs. This 
compact, low-cost methodology could aid the screening of any lung inflammatory diseases like COVID-19 and 
facilitate treatment decisions through point-of-care assessment of lung involvement.

Materials and methods
Experimental setup and sputum collection
COVID-19 patients suspected of pulmonary involvement, referred by their doctors for lung CT imaging, were 
selected and divided into two cohorts based on positive and negative CT results. A positive CT scan indicated 
the presence of common patterns such as ground glass opacification (GGO), consolidation, hazy patches,  etc51. 
Sputum samples were collected from both groups, comprising a total of 70 participants, all of whom were duly 
informed and provided consent for the research. The sputum collection took place early in the morning, with 
volunteers fasting, and individuals with a history of tobacco and alcohol consumption were excluded from 
the cohort to prevent fern-like patterns unrelated to inflammation. Following collection, the sputum was left 
undisturbed for 30 min to allow for the precipitation of cells and other residues.

A portion of the collected sputum was used for electrolyte measurement, and a small volume (10 µl) was 
deposited on the surface of a sample slide, left at room temperature for air drying. Subsequently, the dried sample 
was inserted into the mini-microscope to capture fern patterns, which were then analyzed using an AI system.
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Mini‑microscope system
To capture fern patterns with the desired resolution using a smartphone camera, we employed a smartphone-
based microscopy tool measuring 60 × 60 × 60 mm. The microscope structure was meticulously designed using 
SOLIDWORKS (Dassault Systèmes) and 3D printed from polylactic acid (PLA) using Ultimaker 2+. The imaging 
system comprises a plano-convex lens with a 5 mm diameter and a 6 mm focal length serving as an objective 
lens. Additionally, a commercial acrylic condenser lens compatible with the chosen light-emitting diode was 
incorporated. Illumination was provided by a 3 V and 5 W white LED, powered by a CR2032 battery (Camelion) 
series with a 1.2 kΩ resistor to achieve optimal light intensity. The entire electronic circuit is integrated into a 
Printed Circuit Board, with all lenses, including the smartphone lens and the LED, sharing a common optical axis.

The optical system’s spacings were meticulously designed to achieve a 40× magnification within a 5 × 5 mm 
field of view. This design allows the visualization and processing of the entire fern-containing droplet within the 
field of view. To activate the illumination system and position the fern sample within the field of view zone, the 
glass slide containing the fern pattern is inserted into the imaging system. The fern sample is optimally focused 
within the working distance of the optical system, mitigating the need for manual focusing and minimizing 
perturbations caused by the user. It’s worth noting that the auto-focus feature of the smartphone camera 
compensates for variations in the optical properties of different smartphones.

AI algorithm development
To detect ferning patterns in saliva on a smartphone, we used EfficentNet-B0 architecture. This model showed 
a top-1 accuracy of 77.3% and a top-5 accuracy of 93.5%, performing across 1000 classes of the ImageNet 
 database52. To achieve this efficiency, EfficientNet B0 employs a compound scaling method to simultaneously 
adjust its depth, width, and resolution. By using this method, images can be classified more accurately with 
fewer parameters, resulting in more complex representations. EfficientNet-B0 is a mobile-sized architecture 
having 5.3 million trainable parameters. Such a complex neural network needs a significant number of images 
to optimize its parameters while training. Due to our insufficient dataset of 650 images, we utilized "transfer 
learning" to develop the algorithm. In this regard, EfficientNet-B0 was first pre-trained with 14 million images of 
ImageNet. ImageNet is an open-source data set containing 14 million classified images from various  categories53. 
Then, we retrained and validated the pre-trained model using our dataset of 650 salivary images derived from 
70 participants, categorized into ferning and non-ferning groups. The labeled image dataset was split into 80% 
(520) for training and 20% (130) for validation. Using an 80:20 convention balances providing adequate new 
sputum images to fine-tune the model for the desired classification task, while retaining sufficient previously 
“unseen” images to evaluate model performance on distinguishing ferning versus non-ferning patterns and 
check for overfitting. Other partition ratios (90:10 and 70:30) were tested during development to validate that 
this 80:20 allocation provided optimal performance. All the input images were resized to 224 × 224 pixels, and 
the retraining process was done for 80 training steps (epochs) with a learning rate of 0.001. Cross-entropy as a 
loss function and accuracy was measured to evaluate the learning process of the model. Training and validation 
accuracy are the percentages of correctly detected images by the model in the training and validation datasets. 
The variance between training and validation accuracies was calculated to know if the model was overfitting. At 
the 80th training step (epoch), the validation cross-entropy/loss and accuracy were 0.102and 98.23%, respectively. 
The weights corresponding to the best performance were saved and used for the model.

The image processing component outside the Convolutional Neural Network (CNN) encompasses a singular 
step, entailing the resizing of images to dimensions of 224 * 224 pixels. The neural network comprises two 
principal segments: the first being feature extraction, employing a pretrained EfficientNet, and the second 
involving the classification aspect, consisting of four dense layers. Within the initial three layers, Rectified Linear 
Unit (ReLU) activation is applied to mitigate the issue of gradient vanishing, while the output layer employs 
the softmax activation function to denote the probability of an image belonging to each respective class. For 
the training procedure, the cross-entropy loss function is selected, assessing the performance of a classification 
model outputting probability values within the range of 0 to 1, in alignment with the softmax function output.

The optimization algorithm opted for is RMSProp, utilized to minimize the cross-entropy function. The 
formulation of this optimization process is expounded upon in the subsequent discourse:

1. Rectified Linear Unit (ReLU) Activation Function Formulation:

2. Softmax Activation Function Formulation:

where zi is the input to the ith unit, and K is the total number of units in the layer.
3. Cross-Entropy Loss Function Formulation:

where N is the number of classes, yi is the true probability of class i, and ŷi is the predicted probability of 
class i.

f (x) = max(0, x)
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4. Root Mean Square Propagation (RMSProp) Optimization Algorithm Formulation:

where θ is the parameter at time t, η is the learning rate, gt is the gradient at time t, E
[
g2
]
t
 is the exponentially 

weighted moving average of squared gradients up to time t, and ǫ is a small constant added for numerical 
stability.

Here is the neat sketch of the whole algorithm:
Algorithm: Proposed method for detecting COVID-19 lung inflammation using sputum ferning patterns
Input: Sputum images from COVID-19 patients
Output: Classification as lung inflammation positive or negative

1. Collect sputum samples from patients sent for CT scans
2. Preprocess Images

• Resize to 224 × 224 resolution
• Convert to grayscale
• Normalize pixel intensities to [0,1]
• Augment data via horizontal flips, rotations

3. Construct CNN Architecture

• Use pre-trained EfficientNet-B0 as base model
• Append classification layers

4. Prepare Training Data

• Label images as ferning/non-ferning
• Split images 80/20 into training/validation

5. Train CNN

• Train for 80 epochs
• Use cross entropy loss, RMSprop optimization
• Learning rate = 0.001

6. Assess Performance

• Evaluate accuracy on validation set
• Check for over/under-fitting

7. Classify Sputum Images

• Capture microscope images
• Predict ferning presence
• Relate to lung inflammation

Algorithm evaluation
To evaluate the algorithm, receiving operative characteristic (ROC) curve was plotted. The output of the trained 
convolutional neural network is a continuous number between 0 and 1, representing the probability of the image 
belonging to a specific group. The ROC curve is plotted based on different threshold values to find the best 
operating point based on the purpose. The area under the ROC curve (AUC) indicates the proposed method’s 
ability to distinguish between different classes. Additionally, to assess the ability of the retrained model to predict 
accurately, 160 patient-derived sputum sample images, consisting of both ferning and non-ferning cohorts, were 
utilized.

Web application development
A web application was developed to analyze the presence of ferning patterns in salivary images. Initially, a 
drop of the sputum sample is placed at the center of the sample slide. After air-drying, the slide is inserted into 
the mini-microscope system. Then, the lens provides enough magnification (40X) to observe ferning patterns 
through any smartphone camera. Subsequently, images are captured and sent to the developed web application, 
where AI determines the presence of ferning patterns. Also, the designed web application, featuring a convenient 
and straightforward graphical user interface, enables users to access previous test records to track their disease 
progression.

Statistical analysis
A 2 × 2 confusion matrix was plotted to determine specificity sensitivity, positive predictive value (PPV), and 
negative predictive value (NPV) in comparison to the CT-scan results as the golden standard for validating 
pulmonary inflammation.

θt+1 = θt −
η√

E
[
g2
]
t
+ ǫ

.gt
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The obtained data in this study was gathered from at least three independent experiments and analyzed using 
the statistic software GraphPad Prism 8 and expressed as mean ± standard deviation (SD). Statically significant 
results were reported when the P values were less than 0.05 for a specific experiment.

Ethics and consent to participate
All methods employed in our study were conducted in strict accordance with relevant guidelines and regulations 
imposed by the University of Tehran. Informed consents were obtained for all participants who were made aware 
of the planned publication through consent forms, and all the experiments were conducted following pertinent 
guidelines approved by the University of Tehran.

Results and discussion
The background biology and microscopic translation of the sputum electrolyte
During the COVID-19 disease, the immune system signals many white blood cells (WBCs) to travel to the lung 
environment and combat the viruses. To facilitate this process, the tiny micro-vessels around the respiratory 
alveolus dilate and become permeable, allowing the immune cells to traverse. The increased permeability of the 
vessels leads to the filling of air sacs with blood fluid, resulting in acute respiratory distress syndrome (ARDS) 
and subsequent lung failure in certain areas. Our hypothesis posits that blood serum infiltration into the lung 
environment will alter the composition and concentration of sputum components, particularly electrolyte salts 
such as Na and K (Fig. 1). Currently, chest CT scans are conducted to monitor inflammation and respiratory 
involvement in patients. The images with signs of glass-ground opacification (GGO), patchy consolidation, etc., 
are fallen into this category (Fig. 2A).

Following the CT results, patients were categorized into CT positive and CT negative groups (Fig. 2A). 
Subsequently, fasting sputum samples were collected from the patients, and an electrolyte analyzer measured their 
sodium and potassium ions. Sodium and potassium are primary electrolytes in blood serum. Conditions such 
as hypernatremia and hyperkalemia can contribute to variations in these electrolytes in the blood, potentially 
leading to various dangerous diseases.

The concentration of the Na and K ions can be observed in Fig. 2B–D. Notably, a significant increase in the 
concentration of both sodium and potassium is observable in the sputum samples from CT-positive patients. 
While the average concentration of Na and K in the CT-negative samples is approximately 29 mmol/L and 
26 mmol/L, respectively, these values rise to about 53 mmol/L and 46 mmol/L in CT-positive cases, reflecting an 
increase of approximately 82% and 77%, respectively. These findings support the hypothesis that the electrolytes 
released into the respiratory system due to inflammation and subsequent vasodilation can be detected in the 
sputum samples.

Figure 1.  During the inflammation phase of COVID-19, numerous immune cells are mobilized into the 
lung environment through the vasodilation process. The vessels surrounding the alveoli undergo increased 
permeability, allowing the entry of blood contents into the lung environment. This phenomenon has the 
potential to alter the concentration of sputum components, including electrolyte salts.
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As the next step, the increased salt concentration in the sputum was translated into a graphical picture 
(Fig. 2E). In this regard, a drop of the sputum sample was air-dried on a glass slide and then imaged by a mini-
microscope. As shown in Fig. 2F, the branchy and fern-like patterns due to the crystallization of the Na and K 
salts could be seen in the dried samples. Moreover, in the sputum samples of the CT-positive patients, the fern 
patterns occupy more area of the whole drop, which confirms the previously obtained results. This number for 
the patients with negative CT is ~ 23% and ~ 61% for the positive cases (Fig. 2G).

Design of the mini‑microscope
After dropping the sputum sample at the center of the sample slide (Fig. 3A) and allowing it to air-dry, the 
slide is inserted into the mini-microscope system (Fig. 3B and C) for visualizing the fern patterns. The portable 
mini-microscope system consists of two main components: a magnifier lens and the lightning board (Fig. 3D). 
The lens provides a 40× magnification, sufficient to see an air-dried sputum sample with a diameter of 5 mm. 
The lighting system also consists of an LED attached to an electronic board with a condenser lens for uniform 
sample illumination. The sample slide is placed between the two lenses in an optimized working distance for 
having the best focus on the fern structures. A microswitch is also placed for automatic on and off of the system 
as well as fixing the slide at the location. The cap of the system is designed in a way that could be utilized as 
the stand for holding the smartphone on top of the mini-microscope (Fig. 3E) and giving the possibility for 

Figure 2.  (A) CT scan from the two patients with COVID-19 disease and with and without lung inflammation. 
Signs such as glass ground opacification (GGO) in the CT images imply lung involvement. (B–D) Display the 
results of the Na, K, and NA + K concentrations in the negative and positive CT cases, respectively. (E) Workflow 
of the designed method for analyzing the fern structures in the dried sputum samples of the patients with 
different CT scan results. (F) Different ferning patterns in the air-dried samples of the CT positive and negative 
cases. (G) The percentage of the fern area in the sputum images of the CT positive and negative cases.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6912  | https://doi.org/10.1038/s41598-024-54939-4

www.nature.com/scientificreports/

adjusting the mobile camera with the lens. In the end, the taken image is processed by an AI-based application 
on the smartphone (Fig. 3F).

CNN for intelligent detection of the ferning patterns
In this study, we employed artificial intelligence (AI), more precisely Convolutional Neural Networks (CNNs), 
to detect fern patterns in the sputum of an individual on a smartphone. A CNN is a deep learning model 
commonly used for computer vision tasks such as image classification, object detection, and  segmentation29. 
Through a combination of convolutional layers, pooling layers, and fully connected layers, CNNs are designed to 
learn hierarchical representations of visual data automatically. Feature extraction is performed by convolutional 
filters across the input image, while downsampling reduces spatial dimensionality. After the features have been 
extracted, the fully connected layers map them to the output classes. CNNs have achieved state-of-the-art 
performance in various computer vision tasks and have become a cornerstone of deep learning  research54. In 
this work, EfficientNet-B0 was utilized as a mobile-sized architecture pre-trained with the ImageNet dataset. 
This pre-trained model was retrained and validated by 650 labeled salivary images gathered from 70 participants 
(Fig. 4A). Input images are resized to 224 × 224 pixels through the model. The network is uniformly scaled in 
depth, width, and resolution than conventional structures through the EfficientNet. As shown in (Fig. 4B), this 
structure contains 7 main blocks, each containing a varying number of sub-blocks, which is followed with the 
added classifier layers for retraining and decide about the ferning patterns (Fig. 4C).

For transfer learning, the pre-trained EfficientNet was retrained with a learning rate of 0.0001and for 80 
training steps (epochs). After 80 steps of training, the model reached an accuracy of 98.23%, while the cross-
entropy loss function showed a number of 0.102(Fig. 4D and E). The difference between validation and training 
accuracies showed that no overfitting had occurred. The weights corresponding to this performance were saved 
and utilized for the final model. Additionally, the receiving operative characteristic (ROC) curve was plotted for 
different thresholds to evaluate the system’s diagnostic ability. The area under the ROC curve (AUC) showed a 
value of 0.99, which is highly acceptable (Fig. 4F).

System performance on patient‑derived salivary samples
To evaluate the system’s performance in detecting respiratory inflammation through salivary ferning patterns, 
we gathered 160 saliva sample images out of 70 participants including healthy people. The samples were 
divided into two cohorts: inflammatory and non-inflammatory. All the samples were tested using our point-
of-care smartphone-based AI method, and CT-scan results validated the presence of pulmonary inflammation. 
Consequently, the 2 × 2 confusion matrix (Fig. 4G) showed an accuracy of 95%. Meanwhile, the specificity and 
sensitivity were 95.89% and 94.25%, respectively. Further, for this dataset, the proposed method showed a positive 
predictive value (PPV) of 96.47% and a negative predictive value (NPV) of 93.33% (Table 1).

Discussion
The 95% accuracy of this smartphone-assisted AI approach for diagnosing lung inflammatory diseases via sputum 
analysis shows strong potential as an accessible point-of-care screening tool. Specifically, the ability to rapidly 
stratify COVID 19 patients based on presence of respiratory involvement could empower quicker treatment 
decisions and monitoring of disease progression. While CT imaging is the current gold standard, requirements 

Figure 3.  (A) Sample slide for dropping the sputum sample (B) Mini-microscope system for visualization and 
imaging of the air-dried sputum sample. (C) The main device and closed view (C-1) of the mini-microscope. 
(D) Exploded view of the designed mini-microscope for sputum analysis. (E) Placing the smartphone on the 
mini-microscope and imaging the sputum sample as well as its analysis by the (F) AI-based application.
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for expensive infrastructure and radiologist availability greatly limit access, whereas this prototype system relies 
only a miniature microscope and mobile phone.

However, several limitations in the current methodology need to be considered. The dataset comprised a 
relatively small number of retrospective samples restricted mostly to confirmed COVID-19 cases from a single 
medical center. Expanding this framework to incorporate various respiratory illnesses and patient demographics 
could strengthen real-world validity and generalizability. Another limitation of the current smartphone-based AI 
system is potential interference in identifying lung inflammation for patients with a history of tobacco or alcohol 
use. The byproducts of smoking and drinking can directly impact sputum composition, including inducing 
fern-like patterns unrelated to inflammation. Thus, for accurate implementation in the clinical setting, adequate 
protocols would need to be developed regarding timing of sputum analysis relative to the patient’s last smoke or 

Figure 4.  System performance. (A) Computational flow of data in the utilized neural network, for transfer 
learning, the pre-trained EfficientNet was retrained by using our dataset of 650 salivary images derived from 
70 participants. (B) EfficientNet-B0 structure; this mobile-sized architecture contains 7 main blocks, each 
containing a varying number of sub-blocks. (C) Classifier layers added for retraining and decide about the 
ferning patterns. (D,E) training and validation curves for accuracy and cross-entropy of the network; after 80 
epochs model achieved a validation accuracy of 98.23% on training set and the validation cross-entropy was 
0.18. (F) To evaluate the diagnostic ability of the system, receiving operative characteristic (ROC) curve was 
plotted for different thresholds. The area under the ROC curve (AUC) showed a value of 0.99. (G) the confusion 
matrices for the test sets when smartphone-based device analyzed the patient-derived samples. True classes are 
determined by CT-scan results.

Table 1.  Diagnostic parameters of the proposed method (%).

Accuracy Specificity Sensitivity Positive predictive value (PPV) Negative predictive value (NPV)

95 95.89 94.25 96.47 93.33
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drink. Analyzing samples only after sufficient clearance time of tobacco/alcohol traces would help prevent false 
positives for pulmonary involvement. Alternatively, collecting data across patient groups with varying smoker/
drinker statuses could allow retraining the AI model to account for these factors in its diagnostic algorithm. 
Implementing such measures to eliminate or adjust for smoking/drinking effects will be important future steps 
for reducing confounders before widespread adoption.

Conclusion
In summary, we have introduced a new technique that can serve as an auxiliary method for the current CT scan 
technique in detecting pulmonary involvement and lung inflammation in patients with conditions like COVID-
19. This method has not been applied to other pulmonary diseases such as asthma, COPD, etc. However, given 
their similar mechanisms to COVID-19, we anticipate that the system will function similarly for them.

The system comprises a portable mini-microscope with 40X optical zoom capability, a glass slide with a 
designated area for dropping and drying the sputum sample, and an AI-based application on a smartphone for 
detecting fern patterns on the sputum sample resulting from the crystallization of electrolytes from the blood 
serum.

To validate our hypothesis regarding the entry of serum electrolytes into the sputum during the inflammation 
phase of the disease, we initially measured electrolyte concentration (sodium and potassium) in sputum samples 
from both CT-positive and CT-negative cases. The results ultimately proved our hypothesis that the electrolyte 
amount is higher in the sputum of CT-positive patients. After that, the fern structures due to the crystallization 
of the sputum salts were assessed by the mini-microscope with the assistance of a smartphone with an AI-based 
application. In this regard, the images are sent to a smartphone application to be analyzed using a CNN to detect 
fern patterns in sputum as a sign of pulmonary inflammation. EfficientNet-B0 was utilized as a mobile-sized 
CNN architecture, pre-trained with the ImageNet dataset. Using transfer learning, this pre-trained model was 
retrained and validated by 650 labeled salivary images gathered from 70 participants. Evaluating on 160 patient-
derived sputum samples, this method showed a noteworthy accuracy of 95% confirmed by CT-scan results.

Consequently, the study proposes a novel method for detecting inflammation and lung involvement in 
COVID-19 patients by identifying fern patterns in their sputum samples. An affordable and portable mini-
microscope can be used to detect fern patterns in sputum samples using this method, which makes it simple 
and cost-effective. Using AI to detect the fern patterns, this smartphone application can differentiate between 
CT positive and negative cases. This method could potentially provide an early indication of lung involvement 
in COVID-19 patients, allowing for earlier intervention and treatment. We believe this portable chip system 
could be reliable assistance for doctors, especially in medical centers where CT scan facilities are not provided.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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