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1  |  INTRODUC TION

Ovarian cancer (OC) is a significant health concern, with a high mor-
tality rate and limited treatment options.1 Currently, various strat-
egies have been developed for the prevention and treatment of 
OC. For individuals at high-risk, such as those with a family history 

of OC or carriers of BRCA1/BRCA2 gene mutations, prophylactic 
oophorectomy is recommended. Early-stage patients may undergo 
comprehensive staging surgery, while late-stage patients may un-
dergo cytoreductive surgery. Following surgery, patients typically 
receive combination chemotherapy based on platinum agents, such 
as cisplatin/carboplatin plus paclitaxel, cisplatin/carboplatin plus 
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Abstract
Ovarian cancer (OC) is a deadly disease with limited treatment options and poor over-
all survival rates. This study aimed to investigate the role of histone modification-
related genes in predicting the prognosis of OC patients. Transcriptome data from 
multiple cohorts, including bulk RNA-Seq data and single-cell scRNA-Seq data, were 
collected. Gene set enrichment analysis was used to identify enriched gene sets in the 
histone modification pathway. Differentially expressed genes (DEGs) between histone 
modification-high and histone modification-low groups were identified using Lasso 
regression. A prognostic model was constructed using five selected prognostic genes 
from the DEGs in the TCGA-OV cohort. The study found enrichment of gene sets 
in the histone modification pathway and identified five prognostic genes associated 
with OC prognosis. The constructed risk score model based on histone modification-
related genes was correlated with immune infiltration of T cells and M1 macrophages. 
Mutations are more prevalent in the high-risk group compared to the low-risk group. 
Several drugs were screened against the model genes. Through in vitro experiments, 
we confirmed the expression patterns of the model genes. LBX2 facilitates the pro-
liferation of OC. Histone modification-related genes have the potential to serve as 
biomarkers for predicting OC prognosis. Targeting these genes may lead to the devel-
opment of more effective therapies for OC. Additionally, LBX2 represents a novel cell 
proliferation promoter in OC carcinogenesis.

K E Y W O R D S
immune infiltration, LBX2, ovarian cancer, prognosis, proliferation

https://doi.org/10.1111/jcmm.18260
www.wileyonlinelibrary.com/journal/jcmm
mailto:
https://orcid.org/0000-0002-2119-8533
mailto:
mailto:
http://creativecommons.org/licenses/by/4.0/
mailto:2022760187@gzhmu.edu.cn
mailto:sunxiang624@gwcmc.org
mailto:gaokefei_fezx@yeah.net
mailto:gaokefei_fezx@yeah.net


2 of 17  |     XIONG et al.

doxorubicin, or other specific chemotherapeutic agents, to eradicate 
tumour cells. For recurrent or refractory OC, radiotherapy may be 
considered, although its efficacy remains uncertain.2 However, the 
majority of patients experience recurrence, leading to poor overall 
survival (OS) rates.3 New approaches are needed to improve out-
comes for OC patients. One potential strategy is early detection. 
Most OC are diagnosed at advanced stages, resulting in lower long-
term survival rates.4 Detecting OC at an early stage could lead to 
improved outcomes and increased survival rates. In addition to early 
detection, advancements in front-line maintenance therapy have 
aimed to extend the interval between primary treatment and dis-
ease recurrence. For instance, maintenance therapy involving beva-
cizumab or PARP inhibitors has demonstrated efficacy in prolonging 
progression-free survival (PFS); however, it has not yet translated 
into improved OS.5,6 Despite the promising prospects of biologic 
immunotherapy, further research is needed to support its clinical 
application. Therefore, there is an unmet need for more effective 
maintenance therapy options for OC patients.

Histone post-translational modifications (PTMs) play a critical 
role in cellular processes and the maintenance of chromatin struc-
ture. Dysregulation of histone PTMs has been extensively linked to 
cancer, both globally across the genome and at specific gene loci.7 
In recent years, immunotherapy has emerged as a promising treat-
ment for certain cancers. However, not all patients respond to im-
munotherapy, and identifying biomarkers to predict responsiveness 
is crucial for optimizing treatment strategies. Epigenetic modifica-
tions, including histone PTMs, have been implicated in cancer and 
immune cell dysregulation and can serve as potential biomarkers.8 
Histones are abundant cellular proteins that can be easily assayed 
using high-throughput technologies, making them attractive targets 
for biomarker discovery. Histone deacetylase inhibitors (HDACIs) 
have emerged as potential anti-cancer drugs, with preclinical studies 
demonstrating promising outcomes in OC. However, clinical trials 
utilizing HDACIs as monotherapy have yielded mixed results and 
limited success.9 Thus, we suspected histone modification related 
genes might play certain role in predicting prognosis of OC patients.

In this study, we aimed to investigate the expression patterns 
of histone modification-related genes in OC, construct a prognostic 
model, analyse their relationship with the immune microenviron-
ment, and screen drugs. This study provides a theoretical basis for 
clinical practice and therapy development. We investigated the cell 
types present in the OC tissue microenvironment and their func-
tional differences. We found that MIF signalling plays a crucial role in 
mediating fibroblast signal transduction. Additionally, we developed 
a histone modification-based risk score model by identifying five key 
genes (CGN, LBX2, CCL18, CDC7 and ELF3) that were strongly asso-
ciated with the prognosis of OC patients. This risk score was found 
to be correlated with immune infiltration, specifically with different 
types of T cells and M1 macrophages. Furthermore, we discovered 
that LBX2 promoted OC cell proliferation in  vitro. These findings 
suggest that histone modification-related genes could serve as po-
tential biomarkers for predicting OC prognosis and may represent 
therapeutic targets for the development of more effective therapies.

2  |  METHODS

2.1  |  Acquisition and processing of transcriptome 
data

We included bulk RNA-Seq data from 378 OC patients in the 
TCGA-OV cohort (https://​portal.​gdc.​cancer.​gov/​), 379 OC patients 
in the GSE140082 cohort (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
query/​​acc.​cgi?​acc=​GSE14​0082), 173 OC patients in the GSE53963 
cohort (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​​acc.​cgi?​acc=​GSE​
53963), and single-cell scRNA-Seq data from four advanced OC 
patients in the GSE154600 cohort (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/​query/​​acc.​cgi?​acc=​GSE15​4600) for further analysis.

2.2  |  Processing of scRNA-Seq data and cell 
annotation analysis

First, we performed single-cell analysis on four advanced OC 
samples from the GSE154600 scRNA-Seq data. Based on the 
‘Rtsne’ and ‘ggplot2’ packages, we employed the t-distributed 
Stochastic Neighbour Embedding (t-SNE) algorithm to perform two-
dimensional dimensionality reduction clustering and visualization of 
single-cell sequencing data. The parameters used were as follows: 
ncomponents = 2, perplexity = 30, earlyexaggeration = 4.0, learn-
ingrate = 1000, niter = 1000 and niterwithout_progress = 30. Cells 
were categorized into six subgroups, and we also illustrated the 
distribution of cells from four patient samples. We used GSEA to 
score the enrichment of gene sets in the histone modification path-
way from the GSEA database (https://​www.​gsea-​msigdb.​org/​gsea/​
index.​jsp), dividing samples into histone modification-high and his-
tone modification-low groups. We used the limma package and the 
eBayes function to identify DEGs between the two groups. Further 
analysis was then conducted on the bulk transcriptome data.

2.3  |  Functional enrichment analysis

GO analysis, KEGG analysis, and GSEA-GO were performed using 
the R package ‘clusterProfiler’ (version 4.0.5), with a false discovery 
rate (FDR) < 0.05 considered significant enrichment. COX survival 
analysis was performed on DEGs using the tinyarray package, select-
ing genes with p < 0.05, which screened out a total of 299 qualified 
DEGs.

2.4  |  Establishment of histone modification risk 
score model

From the TCGA-OV cohort, Lasso regression was used to select five 
prognostic genes, namely CGN, LBX2, CCL18, CDC7 and ELF3, from 
the 299 DEGs and construct a prognostic model. The median risk 
score was used to differentiate the low-risk and high-risk groups, 
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and a risk score was developed. To analyse the survival difference 
between two risk groups, we utilized the ‘survminer’ and ‘survival’ 
packages to generate Kaplan–Meier survival curves for the two 
groups, observing the OS discrepancy. The parameter settings were 
as follows: surv.median.line = ‘hv’, pval = TRUE and break.x.​by = 20. 
Independent external validation was performed using 379 OC pa-
tients from the GSE140082 cohort and 173 OC patients from the 
GSE53963 cohort. The value of risk score = Gene1* Coef1 + Gene2* 
Coef2 + … + Genen* Coefn.

2.5  |  Immune-related analysis and drug analysis

Immune infiltration scores were calculated using three methods: 
MCPcounter, ssGSEA and xCell algorithms. Visualization was per-
formed using box plots, heat maps and scatter plots. Drug sensitivity 
was calculated using the ‘oncoPredict’ package in R to assess drug 
sensitivity in the Genomics of Drug Sensitivity in Cancer (GDSC, 
https://​www.​cance​rrxge​ne.​org/​) database. We conducted a nor-
malization check on the downloaded expression matrix, utilizing the 
Robust Multi-array Average (RMA) normalization method and log 
transformation, resulting in values ranging from 0 to 15. Subsequently, 
we employed the calcPhenotype function for drug prediction, with 
the following parameter settings: trainingExprData = GDSC2_Expr, 
trainingPtype = GDSC2_Res, batchCorrect = ‘eb’, powerTrans-
formPhenotype = TRUE, removeLowVaryingGenes = 0.2, and 
minNumSamples = 10. Our primary focus was to showcase the cor-
relation between the top 37 drugs and the model genes, utilizing the 
Spearman correlation method. Additionally, we analysed the differ-
ences in scores for select drugs among different risk groups.

2.6  |  Cell communication analysis and tumour 
pathway analysis

Cell communication between classified cell types was analysed using 
the liana software. Various algorithms, including ‘natmi,’ ‘connec-
tome,’ ‘logfc,’ ‘sca’ and ‘cellphonedb,’ were employed to perform this 
analysis. Additionally, the PROGENy model was utilized to predict 
the activity of tumour-related pathways.

2.7  |  Cell culture and transfection

This study employed human normal ovarian epithelial cell line IOSE-
80, and human ovarian cancer cell lines SKOV3 and OVCAR-3. All 
cells were maintained in a humidified cell culture incubator at 37°C 
with 5% CO2, and passaged every 24–36 h to sustain logarithmic 
growth.

For knockdown experiments targeting LBX2 in the OVCAR-3 cell 
line, we employed siRNA designed and synthesized by a biotechnol-
ogy company (Sangon Corporation, China). Initially, cells were disso-
ciated from culture flasks and uniformly seeded at a concentration of 

4 × 105 cells per well in a 6-well plate, with each well supplemented 
with complete growth medium to a final volume of 1.8 mL. Upon 
cell adhesion, siRNA and transfection reagent Lipofectamine 2000 
(Thermo, USA) were pre-mixed in Opti-MEM (Thermo, USA) accord-
ing to the manufacturer's instructions. After a 20 min incubation at 
room temperature, the mixture was evenly added to the respective 
wells. The medium was replaced after 4 h, and subsequent experi-
ments were conducted 48 h post-transfection.

2.8  |  RNA procurement and RT-qPCR analysis

Total RNA was extracted from the samples as previously de-
scribed.10,11 The cells were dissociated from the six-well plate using 
trypsin (KeyGen, China). After centrifugation for 10 min, the cell pel-
let was washed three times with phosphate-buffered saline (PBS). 
Subsequently, 800 μL of Trizol (Takara, Japan) was added to the cell 
pellet for cell lysis. After a 5-min incubation on ice, 180 μL of chlo-
roform (SINOPHARM, China) was added to the Eppendorf tube. 
The mixture was vigorously shaken and then centrifuged at 4°C for 
10 min. Approximately 400 μL of the supernatant was transferred to 
a new Eppendorf tube. An equal volume of isopropanol (Sinopharm, 
China) was added to the new tube, followed by a 5-min incubation on 
ice and low-temperature centrifugation. After discarding the isopro-
panol, an appropriate amount of anhydrous ethanol (SINOPHARM, 
China) was added to wash the residual isopropanol. After aspirating 
all liquids and drying for 20 min, an appropriate amount of diethyl 
pyrocarbonate (DEPC)-treated water was added to fully dissolve the 
precipitate. The concentration and quality of the RNA were deter-
mined using a NanoDrop 2000 spectrophotometer. cDNA synthe-
sis was carried out using a reverse transcription kit (MR05201M; 
Monad). For the subsequent PCR reaction, ChemoHS qPCR Mix 
(MQ00401S; Single-celled organism) was used along with ACTIN as 
a reference gene and the specific primers listed below. The relative 
expression of transcripts was calculated using the 2−ΔΔCt method. 
The primers used in this study are as follows (5′→3′):

GAPDH forward: ACCTGACCTGCCGTCTAGAA,
GAPDH reverse: GTCAAAGGTGGAGGAGTGGG;
LBX2 forward: CGTTTAGTGTTGCGTTAAGGGTTT,
LBX2 reverse: AAAATCGAATCTTTCCGAATAACCAAA;
ELF3, forward: CATGACCTACGAGAAGCTGAGC,
ELF3, reverse: GACTCTGGAGAACCTCTTCCTC;
CGN, forward: GACAGTTCTGCAGTCCACCA,
CGN, reverse: TAGCTGGTCCTTCTGGTCGT.

2.9  |  CCK-8 and colone formation assay 
(CFA) analysis

Cell viability was assessed using the CCK8, following the manufac-
turer's instructions. Cells were seeded and cultured in 96-well micro-
plates (Corning, USA) at a density of 4 × 103 cells per well in 100 μL of 
medium. The cells were subsequently transfected with the indicated 
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si-RNA, and following 48 h of treatment, 10 μL of CCK8 reagent was 
added to each well. This was incubated for 1 h before absorbance 
was analysed at 450 nm using a microplate reader (Thermo Fisher, 
USA), with wells without cells used as blanks. Cells were inoculated 
in six-well plates at the temperature of 37°C for 9 days. Then, the cell 
colonies were fixed with 4% paraformaldehyde. We used the crystal 
violet to dye the colonies for subsequent counting.

2.10  |  Statistical analyses

All statistical analyses in this study were conducted using the R 
programming language. Cox regression analyses were performed 
using the ‘survival’ and ‘survminer’ R packages. Survival curves were 
generated using the ‘survminer’ package. To address the issue of 
multiple testing, the Benjamini-Hochberg procedure was applied to 
control the FDR. We ensured the robustness of our experiments by 
conducting a minimum of three technical replicates for each experi-
ment, and all results demonstrated reproducibility. A statistical sig-
nificance threshold of p < 0.05 was adopted to determine statistical 
significance in our analyses.

3  |  RESULTS

3.1  |  Functional characterization of different cell 
types in the OC

Single-cell RNA-Seq data from four advanced OC patients in the 
GSE154600 cohort was enrolled in our study for detailed annota-
tion analysis. We successfully annotated six main cell types in the 
advanced OC patients, namely myeloid cell, T cells, B cells, fibro-
blasts, epithelial cells and endothelial cells (Figure  1A,B). We found 
a universal composition of T cells and myeloid cells across the four 
OC samples. Moreover, the composition of fibroblasts proved to be 
highly fluid between different samples (Figure 1C). We took a deeper 
insight into the functional difference between different cell types in 
the TME of OC by resorting to the PROGENy algorithm. A distinct 
enrichment of TGFb activity was observed in the fibroblasts. The P53 
was significantly negatively enriched in the epithelial cluster of the OC 
cancer, suggesting a highly proliferative phenotype possessed by the 
annotated OC cells (Figure 1D). We used GSEA to score the enrich-
ment of gene sets of the histone modification pathway from the GSEA 
database, dividing clustered cells into histone modification-high and 
histone modification-low groups (Figure 1E). To further determine the 
interaction between different main cell types in OC samples, we ap-
plied the cell chat analysis. We observed a heated interaction between 

the myeloid cells, T cells, B cells and endothelial cells, which were con-
sistent with role of endothelial cells as porter of infiltrating immune 
cells in the TME. B cells were identified as an independent cell type, 
sharing little to no cell-to-cell communication with the other cell types 
in the TME (Figure 1F). Fibroblasts were shown as the main regulating 
cell types in the OC TME by communicating with mainly endothelial 
cells, myeloid cells and T cells. The interaction between epithelial cells 
and fibroblasts were rather low, suggesting an indirect regulatory role 
of fibroblasts in the OC TME. MIF pathway was shown to be the main 
signalling pathway of the cell-to-cell communication originating from 
fibroblasts, along with COL1A1 to CD44 pathway and CD99 to CD99 
pathway (Figure 2A,B). We used the limma package and the eBayes 
function to identify DEGs between the cells of different histone modi-
fication scores, which were further analysed by KEGG and GO analysis 
(Figure 2C). We found cell cycle, PI3K-AKT pathway P53 activity and 
transcriptional misregulation processes were highly enriched, sug-
gesting different extent of histone modification might be associated 
with regulation of these processes. In addition, most DEGs was associ-
ated with histone acetylation and condensed chromosome, which was 
consistent with our expectation.

3.2  |  The establishment of risk model in the 
OC patients

First, we applied the LASSO regression model to determine the key 
genes with prognostic significance in the OC patients (Figure  3A). 
A total of five genes, namely CGN, LBX2, CCL18, CDC7 and ELF3, 
were selected from 299 DEGs to construct a prognostic model in the 
TCGA-OV cohort. The value of risk score = CGN*0.0277 + LBX2*0.071
0 + CCL18*-0.0483 + CDC7*-0.154 + ELF3*0.0572. The distribution of 
the five key genes was shown in the Figure 3B. We observed a distinct 
OS difference between OC patients of different risk score value in the 
TCGA-OV as training set (Figure 3C), which generated similar outcomes 
in the independent external validation conducted in the GSE53963 
cohort (Figure 3D). We found no single key gene could be used as in-
dependent risk factor predicting OC incidence. However, CDC7 was 
identified as a protective factor for OC incidence (Figure 3E). A strong 
positive correlation was found between ELF3, LBX2 and CGN as re-
gard to the mRNA expression of these key genes (Figure 3F).

3.3  |  The correlation analysis targeting five key 
genes and immune microenvironment in OC patients

We found significantly higher expression levels of ELF3, LBX2 and 
CGN in the high-risk group of OC patients (Figure 4A), while CDC7 

F I G U R E  1 Functional characterization of different cell types in the OV cancer. (A) The t-SNE plot of the six cell clusters obtained after 
dimensionality reduction and clustering. (B) The t-SNE plot showing the cell proportions in four different patients with OC. (C) The stacked 
bar plot illustrating the proportions of different cell clusters in the four patients with OC. (D) The heatmap diagram showing GSVA score 
normalized value based on PROGENy scoring. (E) The t-SNE plot demonstrating the cell identified in the OC patients with the histone 
modification gene set enrichment score. (F) The dot line plot illustrating the cellchat analysis based on the six cell subgroups.
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F I G U R E  2 Cell communication in the OC patients and functional enrichment analysis of identified DEGs. (A) The cellchat pathway 
signalling plots of the CD99, collagen, MIF and SPP1 signalling pathway networks. (B) The signalling pathway analysis of CD99, collagen, MIF 
and SPP1 signalling pathway, shown in the form of dot line plot. (C) The dot plot displaying the GO analysis and KEGG analysis results of the 
identified DEGs.
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F I G U R E  3 The establishment of risk model in the OC patients. (A) The Lasso regression analysis results determining the optimal key 
genes for prognosis predicting. (B) The distribution of the five key genes on the chromosomes. (C) The OS analysis exhibiting the survival 
differences of the training set of TCGA-OV cohort, shown in the form of the Kaplan–Meier curve. (D) The OS analysis exhibiting the 
survival differences of the validation set of GSE53963 cohort, shown in the form of the Kaplan–Meier curve. (E) The forest plot illustrating 
multivariate COX analysis results of five key genes used for the establishment of prognostic model. (F) The heatmap depicting the 
correlation plot of the five key genes, namely CGN, LBX2, CCL18, CDC7 and ELF3.
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and CCL18 were both higher in the low-risk group. We further inte-
grated the clinical factors, including pathological stage and patient 
age into the consideration of prognostic model, which generated 
the monogram model for more accurate clinical implementation 
(Figure 4B). We delineated the differences in immune microenviron-
ment in OC patients by applying MCPcounter algorithm (Figure 4C). 
T, B cells and monocytic cells were found to be elevated in the low-
risk group, suggesting an overall higher infiltration of immune cells in 
the low-risk group of OC patients. Moreover, cytotoxic lymphocytes 
and CD8+ T cells were both higher in the low-risk group, suggesting 
a more favourable clinical outcome. In addition, the abundance of 
NK cells, endothelial cells and fibroblasts were all shown to be nega-
tively correlated with the value of risk score (Figure 4D). Among the 
five key genes, the expression of ELF3 was highly associated with 
higher neutrophil, NK and monocytic cells infiltration (Figure  4E). 
As a well-established chemokine, CCL18 was identified as positively 
correlated with majority of immune cells in the OC TME. We ap-
plied ssGSEA to further study the detailed profile of the infiltrated 
immune cells (Figure 5A). Consistent with our former observation, 
we found higher levels of activated CD4 and CD8 T cells in the OC 
patients with lower risk score value (Figure 5A). Moreover, we found 
higher infiltration of Treg cells in the low-risk group. Except for eo-
sinophil, we found all the other infiltrated immune cells negatively 
correlated with the risk score value, especially the gamma delta 
T cells (Figure 5B). Among the five key genes, the CCL18 showed 
highest association with the infiltration of the immune cells, es-
pecially the Tregs, NKT cells, and gamma delta T cells (Figure 5C). 
Macrophage and M1 macrophage were shown to be elevated in the 
low-risk group, while M2 macrophage showed no significant differ-
ences, indicating a pro-inflammatory role of M1 macrophage infil-
trated mediating the clearance of the M1 macrophage (Figure 6A). 
Epithelial cells were found higher in the high-risk group, while dif-
ferent types of DCs were all elevated in the low-risk group of OC 
patients. Epithelial cells were shown to be significantly correlated 
with risk score value (Figure  6B). In addition to CCL18, ELF3 was 
identified as a key gene, which might regulate the infiltration of the 
macrophages (Figure 7A).

3.4  |  Detailed mutation and drug sensitivity profile 
in the OC patients of different risk score value

We found the same top three most frequently mutated genes in the 
two risk groups, namely TP53, TTN and CSMD3, with slightly differ-
ent mutation rate (Figure 7B). The FAT3 showed a markedly higher 
rate of mutation in the low-risk group, while no significant mutation 

incidence was found in the high-risk group (Figure 7C). The detailed 
mutation types were found highly similar between two risk groups 
(Figure 7D). We calculated the contribution of different key genes 
in the predicted response to different drugs. CDC7 showed the 
significant negative correlation with MIMI_1996, GDC0810_1925, 
and OTX015_1626 (Figure 8A). CGN showed highest positive cor-
relation with sensitivity to Palbociclib_1054 and Pevonedistat_1529. 
Both the Ibrutinib_1799 and Acetalax_1804 were found with more 
favourable response in the low-risk group of OC patients, while 
MIMI_1996 and UMI_77_1939 might be more sensitive to OC pa-
tients with higher risk value (Figure 8B).

3.5  |  LBX2 promoted OC cell proliferation in vitro

We observed a distinguishable up-regulation in the expression level 
of the LBX2 in high-risk group. We assessed all three key genes using 
RT-qPCR in the normal ovarian epithelial cells and cancerous ovarian 
epithelial cells in vitro. The mRNA expression level of LBX2 in the 
IOSE-80 cell line was significantly lower than the cancerous cell lines 
of SKOV3 and OVCAR-3 cell lines (Figure 9A), while ELF3 and CGN 
showed no significant differences. The knockdown of LBX2 was 
verified by the significantly reduced mRNA level (Figure 9B). We ob-
served a distinguishable reduction in the proliferation of OVCAR-3 
cell line after LBX2 knockdown, especially at the time point of Day 5 
(Figure 9C). The reduced proliferation rate of OVCAR-3 cell line was 
further verified by consistent CFA results, indicating knockdown of 
LBX2 largely inhibited the growth of OVCAR-3 cell line. Collectively, 
we identified LBX2 as a potent promoter of OC cell proliferation 
in vitro.

4  |  DISCUSSION

We identified different cell types in the OC tissue microenvironment 
and characterized their functional differences. We established a his-
tone modification-based risk score model by screening out five key 
genes (CGN, LBX2, CCL18, CDC7 and ELF3) that were associated 
with prognosis of OC patients. We found that the risk score was cor-
related with immune infiltration of different types of T cells and M1 
macrophages. Histone modification-related genes may serve as po-
tential biomarkers for predicting the prognosis of OC patients. They 
also highlight the potential of these genes as therapeutic targets for 
the development of more effective therapies. Moreover, our study 
identifies LBX2 as a novel cell proliferation promoter in the carcino-
genesis of OC. These findings contribute to our understanding of the 

F I G U R E  4 The correlation analysis targeting five key genes and immune microenvironment in OC patients. (A) The box plots showing 
the expression levels of five key genes in the high-risk and low-risk groups. (B) The nomogram integrating multiple clinical factors, including 
stage and age. (C) The box plots depicting the immune cell infiltration based on MCPcounter algorithm in the high-risk and low-risk groups. 
(D) Scatter plots showing the correlation between risk score and immune cell compositions in the immune microenvironment. (E) The 
correlation heat map showing the correlative relationship between the five key genes and immune cell infiltrations based on MCPcounter 
algorithm.
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F I G U R E  5 The immune and immune regulatory cells characterization in the high-risk and low-risk group in the OC patients based on 
ssGSEA. (A) The box plots showing the immune cell infiltration based on ssGSEA algorithm in the high-risk and low-risk groups. (B) The 
correlation scatter plot presenting relationships between the five key genes and immune cell infiltrations based on ssGSEA algorithm. 
(C) The correlation heat map illustrating the correlation between the five key genes and immune cell infiltrations based on ssGSEA algorithm.
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F I G U R E  6 The immune and immune regulatory cells characterization in the high-risk and low-risk group in the OC patients depicted by 
xCell. (A) The box plots showing the immune cell infiltration based on xCell algorithm in the high-risk and low-risk groups. (B) The correlation 
scatter plot presenting the correlative relationship between the risk score value and immune cell infiltrations based on xCell algorithm.



12 of 17  |     XIONG et al.

F I G U R E  7 Immune and mutation landscapes in the high-risk and low-risk groups in the CO patients. (A) The correlation heat map 
illustrating the relationship between the five key genes and immune cell infiltrations based on xCell algorithm. (B, C) The waterfall plots 
displaying the top frequently mutated genes in the high-risk and low-risk groups. (D) The box plot showing the detailed mutation type in the 
OV cancer patients of different risk value.
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molecular mechanisms underlying OC and provide insights for the 
development of targeted therapies.

The ELF3 transcription factor, a member of the epithelium-
specific ETS (ESE) family, plays a crucial role in regulating gene 

expression and maintaining the integrity of epithelial tissues.12 
Mutations in ELF3 have been identified in various types of cancers, 
including bladder, cervical, ovarian and gastrointestinal cancers. 
Inactivating mutations of ELF3 have been particularly observed in 

F I G U R E  8 Drug sensitivity analysis showing the optimal drugs for OC patients of different risk score value. (A) The correlation heat map 
presenting the relationship between the five key genes and sensitivity-related drugs. (B) The box plots displaying the drug sensitivity scores 
in the high-risk and low-risk groups.
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F I G U R E  9 Identification of LBX2 as a proliferation promoter gene in vitro. (A) Screening the mRNA expression levels of all the possible 
risk factor genes in the normal ovarian epithelial cells and cancerous cell lines. (B) The verification of LBX2 knockdown by assessing the 
mRNA level in the OVCAR-3 cell line. (C) The knockdown of LBX2 significantly reduced the proliferation rate of OVCAR-3 and LBX2-
knockdown cell lines. (D) CFA analysis results of normal and LBX2-knockdown OVCAR-3 cell lines. *P<0.05; ***P<0.001.
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approximately 6% of mucinous OC, indicating their potential in-
volvement in OC development.13 Loss of ELF3 mRNA and protein 
expression has been associated with a worse prognosis in OC, sug-
gesting that ELF3 may act as a tumour suppressor in this context.14 
Experimental studies have demonstrated that re-introducing ELF3 
expression in OC cell lines with low endogenous expression inhib-
its cell proliferation both in vitro and in vivo, supporting its tumour-
suppressive role. Additionally, the restoration of ELF3 expression 
promotes a transition from a mesenchymal to an epithelial state, a 
process known as mesenchymal to epithelial transition (MET). On 
the other hand, knocking down ELF3 expression in OC cell lines in-
duces epithelial to mesenchymal transition (EMT), a phenomenon as-
sociated with enhanced tumour progression and metastasis.14 These 
findings indicate that ELF3 plays a critical role in maintaining the 
epithelial state and inhibiting the progression of ovarian tumours. 
Further investigation into the underlying molecular mechanisms by 
which ELF3 exerts its tumour-suppressive effects may provide valu-
able insights into the development of targeted therapies for OC and 
other cancers with aberrant ELF3 expression.

CCL18, a chemokine belonging to the β-chemokine sub-family, is 
characterized by the presence of a -Cys-Cys- motif at the N-terminus.15 
It shares a sequence homology of 59% with a protein and approxi-
mately 50% with the cDNA for CCL3/macrophage inflammatory pro-
tein 1α (MIP-1α), suggesting that the CCL18 gene may have arisen 
from the duplication and fusion of two MIP-1α-like genes.16 Studies 
conducted in vitro and in vivo have shown that CCL18 is produced 
in significant amounts by tumour-associated macrophages (TAMs)17 in 
the tumour microenvironment. It is also produced in smaller amounts 
by cancer-associated fibroblasts (CAF)18 and cancer cells,19 such as 
colon cancer cells. CCL18 has been found to play a role in tumour cell 
proliferation, although its effects seem to vary depending on the type 
of tumour. For instance, in non-small cell lung cancer cells20 and pre-B 
acute lymphocytic leukaemia cells,21 CCL18 has been shown to re-
duce cell proliferation. Conversely, in OC, CCL18 has been found to 
increase cancer cell proliferation.22 One of the receptors for CCL18 
is PITPNM3, which has been extensively studied in the context of 
CCL18-dependent migration induction, invasion, and EMT in tumour 
cells. PITPNM3 is known to play a crucial role in the migration and 
metastasis of OC cells.23 These findings shed light on the complex role 
of CCL18 in cancer and highlight the importance of considering the 
specific tumour context when studying its effects on cell proliferation 
and migration. However, in our study, we failed to identify CCL18 as an 
independent risk factor for the OC incidence, which could be largely 
attributed to the limited size of cohort. Further research is needed to 
fully understand the molecular mechanisms underlying CCL18 signal-
ling and its potential as a therapeutic target in OC.

The LBX2 protein belongs to the homeodomain-containing family 
of transcription factors, known for their significant involvement in var-
ious biological processes. In zebrafish, LBX2 has been implicated in the 
regulation of hypaxial myogenic precursor cell migration and muscle 
cell differentiation.24 Additionally, LBX2 deficiency has been shown 
to disrupt the normal development of the heart by affecting the mi-
gration of neural crest cells and the process of cardiac septation.25 

However, despite these findings, limited information exists regarding 
the oncogenic role of LBX2. The association between LBX2 expres-
sion and colorectal cancer (CRC) carcinogenesis was depicted in the 
study published by Huang et al. Overexpression of LBX2 was found to 
be associated with the development of CRC and might serve as a novel 
prognostic marker and therapeutic target in CRC.26 LBX2 contributed 
to lung adenocarcinoma (LUAD) cell proliferation, migration, and in-
vasion through the induction of EMT progression, indicating an on-
cogene role in the LUAD in vitro.27 We suspected that LBX2 played a 
critical role in OC progression, given that LBX2 was found to be highly 
elevated in the high-risk group of OC patients. Through knockdown 
of LBX2, we found a distinguishable reduction in the cell prolifera-
tion capability by both CCK8 and CFA analysis. These evidences were 
consistent with the role of LBX2 in the LUAD. The exact mechanism 
underlying the LBX2 mediated OC cell proliferation remained to be 
determined. However, our research on LBX2 provides a novel theoret-
ical basis for the development of subsequent targeted drugs.

Our study identified a crucial role of macrophage migration in-
hibitory factor (MIF) in CAF signalling. We found that MIF mediated 
signalling originating from CAFs. The downstream pathways acti-
vated by MIF include the mitogen-activated protein kinase (MAPK), 
phosphoinositide 3-kinase (PI3K), and nuclear factor kappa B (NF-κB) 
pathways, which are frequently involved in cancer progression and 
are subject to epigenetic regulation.28,29 MIF has been implicated in 
various aspects of cancer, including cell proliferation, tumorigenesis, 
and metastasis. Overexpression of MIF has been observed in differ-
ent types of tumours, such as genitourinary cancer,30 melanomas,30 
and head and neck cancers.31 A recent meta-analysis revealed that 
MIF overexpression is associated with a poor prognosis and lower 
survival rates in cancer patients. Mechanistically, MIF activates the 
MAPK and PI3K pathways, which are crucial for regulating essen-
tial cellular functions, including cell proliferation, differentiation, 
apoptosis, and survival.32 These pathways are also known to play a 
role in cancer development and progression. Our findings highlight 
the importance of MIF in CAF signalling and its potential as a prog-
nostic factor and therapeutic target in cancer. Further research is 
needed to fully elucidate the molecular mechanisms underlying MIF-
mediated signalling and its implications in cancer biology.

TP53, TTN and CSMD3 are consistently among the top three 
genes with the highest mutation frequencies in both risk groups. 
However, there are slight differences in mutation rates between the 
two groups. This consistency suggests that these genes may play 
pivotal roles in the tumorigenesis of both low and high-risk groups. 
FAT3 exhibits a significantly higher mutation rate in the low-risk 
group compared to the high-risk group, while no significant muta-
tion occurrence is observed in the high-risk group. This disparity im-
plies that FAT3 mutations may have a more pronounced impact on 
the tumorigenesis or progression of ovarian cancer in the low-risk 
subgroup. While certain genes may exhibit differential mutation fre-
quencies, the overall mutation spectrum remains consistent across 
both risk groups. The observed mutation patterns may reflect under-
lying differences in the molecular pathways or biological processes 
driving ovarian cancer development and progression in distinct risk 
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groups. Understanding the distinct mutation profiles and their as-
sociation with different risk groups may have implications for risk 
stratification, prognosis, and personalized treatment approaches in 
ovarian cancer patients. Further investigations into the functional 
significance of identified mutations and their impact on tumour bi-
ology are warranted to elucidate underlying mechanisms and guide 
the development of targeted therapeutic strategies.

The implications of drug sensitivity analysis are significant for po-
tential therapeutic interventions in OC. First, identifying drugs that 
effectively target the model genes associated with histone modifica-
tion could lead to the development of more precise and personalized 
treatment strategies. Second, understanding the sensitivity of OC 
cells to these drugs provides insights into potential therapeutic op-
tions for different patient subgroups, particularly high-risk individu-
als who may require more aggressive treatment approaches.

Our study provides a novel perspective on the prognostic assess-
ment of OC patients, revealing the potential role of key genes associ-
ated with histone modification. These genes are implicated in immune 
cell infiltration and signalling transduction within the tumour microen-
vironment, closely correlating with the survival rates of OC patients. 
First, we established a risk score model for histone modification-
related genes that effectively predicts the survival of OC patients. 
Five selected key genes (CGN, LBX2, CCL18, CDC7 and ELF3) demon-
strated significant prognostic value in OC patients. Second, we ob-
served a close association between the expression levels of these 
genes and the infiltration status of various immune cells, emphasizing 
the critical role of the immune system in OC and suggesting potential 
avenues for exploring immunotherapy in the future. Additionally, our 
research unveiled the proliferative role of LBX2 in OC cells, presenting 
a novel potential target for future therapeutic interventions. In sum-
mary, our study provides a fresh perspective and hope for the prog-
nostic assessment and treatment of OC, offering important insights 
for the development of personalized treatment strategies.

Despite the valuable insights gained from our study, several 
limitations should be acknowledged. First, the retrospective nature 
of our analysis using publicly available datasets may introduce bias 
and limit the generalizability of our findings. Furthermore, while 
we identified potential biomarkers and therapeutic targets, further 
functional studies and clinical validations are necessary to confirm 
their roles in ovarian cancer. Moreover, our in  vitro experiments 
were limited to a few cell lines, and the complexity of the tumour 
microenvironment was not fully recapitulated. Future studies incor-
porating larger cohorts, functional assays in relevant animal models, 
and clinical validation are needed to address these limitations and 
translate our findings into clinical practice.

5  |  CONCLUSION

In conclusion, our study sheds light on the potential prognostic 
significance of histone modification-related genes in OC. Through 
comprehensive transcriptome analysis and functional validation, 
we identified five key genes (CGN, LBX2, CCL18, CDC7, and ELF3) 

associated with OC prognosis, providing insights into novel biomark-
ers for patient stratification. We elucidated the oncogenic role of 
LBX2 in promoting OC cell proliferation in vitro, suggesting its po-
tential as a therapeutic target. Furthermore, our findings highlight 
the role of MIF signalling in mediating fibroblast signal transduction 
within the OC microenvironment. Our study contributes to a better 
understanding of OC pathogenesis and offers potential avenues for 
prognostic prediction and therapeutic intervention.
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