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1  |  INTRODUC TION

Ovarian cancer (OC) is a significant health concern, with a high mor-
tality rate and limited treatment options.1 Currently, various strat-
egies have been developed for the prevention and treatment of 
OC. For individuals at high- risk, such as those with a family history 

of OC or carriers of BRCA1/BRCA2 gene mutations, prophylactic 
oophorectomy is recommended. Early- stage patients may undergo 
comprehensive staging surgery, while late- stage patients may un-
dergo cytoreductive surgery. Following surgery, patients typically 
receive combination chemotherapy based on platinum agents, such 
as cisplatin/carboplatin plus paclitaxel, cisplatin/carboplatin plus 
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Abstract
Ovarian cancer (OC) is a deadly disease with limited treatment options and poor over-
all survival rates. This study aimed to investigate the role of histone modification- 
related genes in predicting the prognosis of OC patients. Transcriptome data from 
multiple	cohorts,	including	bulk	RNA-	Seq	data	and	single-	cell	scRNA-	Seq	data,	were	
collected. Gene set enrichment analysis was used to identify enriched gene sets in the 
histone modification pathway. Differentially expressed genes (DEGs) between histone 
modification- high and histone modification- low groups were identified using Lasso 
regression. A prognostic model was constructed using five selected prognostic genes 
from the DEGs in the TCGA- OV cohort. The study found enrichment of gene sets 
in the histone modification pathway and identified five prognostic genes associated 
with OC prognosis. The constructed risk score model based on histone modification- 
related	genes	was	correlated	with	immune	infiltration	of	T	cells	and	M1	macrophages.	
Mutations	are	more	prevalent	in	the	high-	risk	group	compared	to	the	low-	risk	group.	
Several	drugs	were	screened	against	the	model	genes.	Through	in	vitro	experiments,	
we confirmed the expression patterns of the model genes. LBX2 facilitates the pro-
liferation of OC. Histone modification- related genes have the potential to serve as 
biomarkers for predicting OC prognosis. Targeting these genes may lead to the devel-
opment of more effective therapies for OC. Additionally, LBX2 represents a novel cell 
proliferation promoter in OC carcinogenesis.
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doxorubicin, or other specific chemotherapeutic agents, to eradicate 
tumour cells. For recurrent or refractory OC, radiotherapy may be 
considered, although its efficacy remains uncertain.2 However, the 
majority of patients experience recurrence, leading to poor overall 
survival	 (OS)	 rates.3	New	approaches	 are	 needed	 to	 improve	out-
comes for OC patients. One potential strategy is early detection. 
Most	OC	are	diagnosed	at	advanced	stages,	resulting	in	lower	long-	
term survival rates.4 Detecting OC at an early stage could lead to 
improved outcomes and increased survival rates. In addition to early 
detection, advancements in front- line maintenance therapy have 
aimed to extend the interval between primary treatment and dis-
ease recurrence. For instance, maintenance therapy involving beva-
cizumab or PARP inhibitors has demonstrated efficacy in prolonging 
progression-	free	 survival	 (PFS);	 however,	 it	 has	 not	 yet	 translated	
into	 improved	 OS.5,6 Despite the promising prospects of biologic 
immunotherapy, further research is needed to support its clinical 
application. Therefore, there is an unmet need for more effective 
maintenance therapy options for OC patients.

Histone	 post-	translational	 modifications	 (PTMs)	 play	 a	 critical	
role in cellular processes and the maintenance of chromatin struc-
ture.	Dysregulation	of	histone	PTMs	has	been	extensively	linked	to	
cancer, both globally across the genome and at specific gene loci.7 
In recent years, immunotherapy has emerged as a promising treat-
ment for certain cancers. However, not all patients respond to im-
munotherapy, and identifying biomarkers to predict responsiveness 
is crucial for optimizing treatment strategies. Epigenetic modifica-
tions,	 including	histone	PTMs,	have	been	 implicated	 in	cancer	and	
immune cell dysregulation and can serve as potential biomarkers.8 
Histones are abundant cellular proteins that can be easily assayed 
using high- throughput technologies, making them attractive targets 
for biomarker discovery. Histone deacetylase inhibitors (HDACIs) 
have emerged as potential anti- cancer drugs, with preclinical studies 
demonstrating promising outcomes in OC. However, clinical trials 
utilizing HDACIs as monotherapy have yielded mixed results and 
limited success.9 Thus, we suspected histone modification related 
genes might play certain role in predicting prognosis of OC patients.

In this study, we aimed to investigate the expression patterns 
of histone modification- related genes in OC, construct a prognostic 
model, analyse their relationship with the immune microenviron-
ment, and screen drugs. This study provides a theoretical basis for 
clinical	practice	and	therapy	development.	We	investigated	the	cell	
types present in the OC tissue microenvironment and their func-
tional	differences.	We	found	that	MIF	signalling	plays	a	crucial	role	in	
mediating fibroblast signal transduction. Additionally, we developed 
a histone modification- based risk score model by identifying five key 
genes	(CGN,	LBX2,	CCL18,	CDC7	and	ELF3)	that	were	strongly	asso-
ciated with the prognosis of OC patients. This risk score was found 
to be correlated with immune infiltration, specifically with different 
types	of	T	cells	and	M1	macrophages.	Furthermore,	we	discovered	
that LBX2 promoted OC cell proliferation in vitro. These findings 
suggest that histone modification- related genes could serve as po-
tential biomarkers for predicting OC prognosis and may represent 
therapeutic targets for the development of more effective therapies.

2  |  METHODS

2.1  |  Acquisition and processing of transcriptome 
data

We	 included	 bulk	 RNA-	Seq	 data	 from	 378	 OC	 patients	 in	 the	
TCGA- OV cohort (https:// portal. gdc. cancer. gov/ ),	379	OC	patients	
in	 the	 GSE140082	 cohort	 (https:// www. ncbi. nlm. nih. gov/ geo/ 
query/  acc. cgi? acc=	GSE14	0082),	173	OC	patients	in	the	GSE53963	
cohort (https:// www. ncbi. nlm. nih. gov/ geo/ query/  acc. cgi? acc=	GSE	
53963),	 and	 single-	cell	 scRNA-	Seq	 data	 from	 four	 advanced	 OC	
patients	 in	 the	GSE154600	cohort	 (https:// www. ncbi. nlm. nih. gov/ 
geo/ query/  acc. cgi? acc=	GSE15	4600) for further analysis.

2.2  |  Processing of scRNA- Seq data and cell 
annotation analysis

First, we performed single- cell analysis on four advanced OC 
samples	 from	 the	 GSE154600	 scRNA-	Seq	 data.	 Based	 on	 the	
‘Rtsne’ and ‘ggplot2’ packages, we employed the t- distributed 
Stochastic	Neighbour	Embedding	(t-	SNE)	algorithm	to	perform	two-	
dimensional dimensionality reduction clustering and visualization of 
single- cell sequencing data. The parameters used were as follows: 
ncomponents = 2,	 perplexity = 30,	 earlyexaggeration = 4.0,	 learn-
ingrate = 1000,	 niter = 1000	 and	 niterwithout_progress = 30.	 Cells	
were categorized into six subgroups, and we also illustrated the 
distribution	 of	 cells	 from	 four	 patient	 samples.	We	used	GSEA	 to	
score the enrichment of gene sets in the histone modification path-
way	from	the	GSEA	database	(https:// www. gsea-  msigdb. org/ gsea/ 
index. jsp), dividing samples into histone modification- high and his-
tone	modification-	low	groups.	We	used	the	limma	package	and	the	
eBayes function to identify DEGs between the two groups. Further 
analysis was then conducted on the bulk transcriptome data.

2.3  |  Functional enrichment analysis

GO	analysis,	KEGG	analysis,	 and	GSEA-	GO	were	performed	using	
the R package ‘clusterProfiler’ (version 4.0.5), with a false discovery 
rate	 (FDR) < 0.05	 considered	 significant	 enrichment.	 COX	 survival	
analysis was performed on DEGs using the tinyarray package, select-
ing genes with p < 0.05,	which	screened	out	a	total	of	299	qualified	
DEGs.

2.4  |  Establishment of histone modification risk 
score model

From the TCGA- OV cohort, Lasso regression was used to select five 
prognostic	genes,	namely	CGN,	LBX2,	CCL18,	CDC7	and	ELF3,	from	
the	299	DEGs	and	construct	a	prognostic	model.	The	median	 risk	
score was used to differentiate the low- risk and high- risk groups, 
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and a risk score was developed. To analyse the survival difference 
between two risk groups, we utilized the ‘survminer’ and ‘survival’ 
packages	 to	 generate	 Kaplan–Meier	 survival	 curves	 for	 the	 two	
groups,	observing	the	OS	discrepancy.	The	parameter	settings	were	
as	 follows:	 surv.median.line = ‘hv’,	 pval = TRUE	and	break.x. by = 20.	
Independent	external	validation	was	performed	using	379	OC	pa-
tients	 from	the	GSE140082	cohort	and	173	OC	patients	 from	the	
GSE53963	cohort.	The	value	of	risk	score = Gene1* Coef1 + Gene2* 
Coef2 + … + Genen* Coefn.

2.5  |  Immune- related analysis and drug analysis

Immune infiltration scores were calculated using three methods: 
MCPcounter,	 ssGSEA	 and	 xCell	 algorithms.	 Visualization	was	 per-
formed using box plots, heat maps and scatter plots. Drug sensitivity 
was calculated using the ‘oncoPredict’ package in R to assess drug 
sensitivity	 in	 the	 Genomics	 of	 Drug	 Sensitivity	 in	 Cancer	 (GDSC,	
https:// www. cance rrxge ne. org/ )	 database.	 We	 conducted	 a	 nor-
malization check on the downloaded expression matrix, utilizing the 
Robust	Multi-	array	 Average	 (RMA)	 normalization	method	 and	 log	
transformation,	resulting	in	values	ranging	from	0	to	15.	Subsequently,	
we employed the calcPhenotype function for drug prediction, with 
the	 following	parameter	 settings:	 trainingExprData = GDSC2_Expr,	
trainingPtype = GDSC2_Res,	 batchCorrect = ‘eb’,	 powerTrans-
formPhenotype = TRUE,	 removeLowVaryingGenes = 0.2,	 and	
minNumSamples = 10.	Our	primary	focus	was	to	showcase	the	cor-
relation	between	the	top	37	drugs	and	the	model	genes,	utilizing	the	
Spearman	correlation	method.	Additionally,	we	analysed	the	differ-
ences in scores for select drugs among different risk groups.

2.6  |  Cell communication analysis and tumour 
pathway analysis

Cell communication between classified cell types was analysed using 
the liana software. Various algorithms, including ‘natmi,’ ‘connec-
tome,’ ‘logfc,’ ‘sca’ and ‘cellphonedb,’ were employed to perform this 
analysis.	Additionally,	 the	PROGENy	model	was	utilized	 to	predict	
the activity of tumour- related pathways.

2.7  |  Cell culture and transfection

This	study	employed	human	normal	ovarian	epithelial	cell	line	IOSE-	
80,	and	human	ovarian	cancer	cell	 lines	SKOV3	and	OVCAR-	3.	All	
cells	were	maintained	in	a	humidified	cell	culture	incubator	at	37°C	
with 5% CO2,	 and	 passaged	 every	 24–36 h	 to	 sustain	 logarithmic	
growth.

For	knockdown	experiments	targeting	LBX2	in	the	OVCAR-	3	cell	
line,	we	employed	siRNA	designed	and	synthesized	by	a	biotechnol-
ogy	company	(Sangon	Corporation,	China).	Initially,	cells	were	disso-
ciated from culture flasks and uniformly seeded at a concentration of 

4 × 105 cells per well in a 6- well plate, with each well supplemented 
with	 complete	 growth	medium	 to	 a	 final	 volume	 of	 1.8 mL.	Upon	
cell	adhesion,	siRNA	and	transfection	reagent	Lipofectamine	2000	
(Thermo,	USA)	were	pre-	mixed	in	Opti-	MEM	(Thermo,	USA)	accord-
ing	to	the	manufacturer's	instructions.	After	a	20 min	incubation	at	
room temperature, the mixture was evenly added to the respective 
wells.	The	medium	was	replaced	after	4 h,	and	subsequent	experi-
ments	were	conducted	48 h	post-	transfection.

2.8  |  RNA procurement and RT- qPCR analysis

Total	 RNA	 was	 extracted	 from	 the	 samples	 as	 previously	 de-
scribed.10,11 The cells were dissociated from the six- well plate using 
trypsin	(KeyGen,	China).	After	centrifugation	for	10 min,	the	cell	pel-
let	was	washed	 three	 times	with	phosphate-	buffered	saline	 (PBS).	
Subsequently,	800 μL of Trizol (Takara, Japan) was added to the cell 
pellet	for	cell	lysis.	After	a	5-	min	incubation	on	ice,	180 μL of chlo-
roform	 (SINOPHARM,	 China)	 was	 added	 to	 the	 Eppendorf	 tube.	
The	mixture	was	vigorously	shaken	and	then	centrifuged	at	4°C	for	
10 min.	Approximately	400 μL of the supernatant was transferred to 
a	new	Eppendorf	tube.	An	equal	volume	of	isopropanol	(Sinopharm,	
China) was added to the new tube, followed by a 5- min incubation on 
ice and low- temperature centrifugation. After discarding the isopro-
panol,	an	appropriate	amount	of	anhydrous	ethanol	(SINOPHARM,	
China) was added to wash the residual isopropanol. After aspirating 
all	 liquids	and	drying	 for	20 min,	an	appropriate	amount	of	diethyl	
pyrocarbonate (DEPC)- treated water was added to fully dissolve the 
precipitate.	The	concentration	and	quality	of	the	RNA	were	deter-
mined	using	a	NanoDrop	2000	spectrophotometer.	cDNA	synthe-
sis	 was	 carried	 out	 using	 a	 reverse	 transcription	 kit	 (MR05201M;	
Monad).	 For	 the	 subsequent	 PCR	 reaction,	 ChemoHS	 qPCR	 Mix	
(MQ00401S;	Single-	celled	organism)	was	used	along	with	ACTIN	as	
a reference gene and the specific primers listed below. The relative 
expression of transcripts was calculated using the 2−ΔΔCt method. 
The primers used in this study are as follows (5′→3′):

GAPDH forward: ACCTGACCTGCCGTCTAGAA,
GAPDH reverse: GTCAAAGGTGGAGGAGTGGG;
LBX2 forward: CGTTTAGTGTTGCGTTAAGGGTTT,
LBX2 reverse: AAAATCGAATCTTTCCGAATAACCAAA;
ELF3,	forward:	CATGACCTACGAGAAGCTGAGC,
ELF3,	reverse:	GACTCTGGAGAACCTCTTCCTC;
CGN,	forward:	GACAGTTCTGCAGTCCACCA,
CGN,	reverse:	TAGCTGGTCCTTCTGGTCGT.

2.9  |  CCK- 8 and colone formation assay 
(CFA) analysis

Cell	viability	was	assessed	using	the	CCK8,	following	the	manufac-
turer's	instructions.	Cells	were	seeded	and	cultured	in	96-	well	micro-
plates	(Corning,	USA)	at	a	density	of	4 × 103	cells	per	well	in	100 μL of 
medium. The cells were subsequently transfected with the indicated 
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si-	RNA,	and	following	48 h	of	treatment,	10 μL	of	CCK8	reagent	was	
added	 to	each	well.	This	was	 incubated	 for	1 h	before	absorbance	
was	analysed	at	450 nm	using	a	microplate	reader	 (Thermo	Fisher,	
USA),	with	wells	without	cells	used	as	blanks.	Cells	were	inoculated	
in	six-	well	plates	at	the	temperature	of	37°C	for	9 days.	Then,	the	cell	
colonies	were	fixed	with	4%	paraformaldehyde.	We	used	the	crystal	
violet to dye the colonies for subsequent counting.

2.10  |  Statistical analyses

All statistical analyses in this study were conducted using the R 
programming language. Cox regression analyses were performed 
using	the	‘survival’	and	‘survminer’	R	packages.	Survival	curves	were	
generated using the ‘survminer’ package. To address the issue of 
multiple testing, the Benjamini- Hochberg procedure was applied to 
control	the	FDR.	We	ensured	the	robustness	of	our	experiments	by	
conducting a minimum of three technical replicates for each experi-
ment, and all results demonstrated reproducibility. A statistical sig-
nificance threshold of p < 0.05	was	adopted	to	determine	statistical	
significance in our analyses.

3  |  RESULTS

3.1  |  Functional characterization of different cell 
types in the OC

Single-	cell	 RNA-	Seq	 data	 from	 four	 advanced	 OC	 patients	 in	 the	
GSE154600	 cohort	 was	 enrolled	 in	 our	 study	 for	 detailed	 annota-
tion	 analysis.	We	 successfully	 annotated	 six	 main	 cell	 types	 in	 the	
advanced OC patients, namely myeloid cell, T cells, B cells, fibro-
blasts, epithelial cells and endothelial cells (Figure 1A,B).	We	 found	
a universal composition of T cells and myeloid cells across the four 
OC	samples.	Moreover,	the	composition	of	fibroblasts	proved	to	be	
highly fluid between different samples (Figure 1C).	We	took	a	deeper	
insight into the functional difference between different cell types in 
the	TME	of	OC	by	 resorting	 to	 the	PROGENy	algorithm.	A	distinct	
enrichment	of	TGFb	activity	was	observed	in	the	fibroblasts.	The	P53	
was significantly negatively enriched in the epithelial cluster of the OC 
cancer, suggesting a highly proliferative phenotype possessed by the 
annotated OC cells (Figure 1D).	We	used	GSEA	to	score	the	enrich-
ment	of	gene	sets	of	the	histone	modification	pathway	from	the	GSEA	
database, dividing clustered cells into histone modification- high and 
histone modification- low groups (Figure 1E). To further determine the 
interaction between different main cell types in OC samples, we ap-
plied	the	cell	chat	analysis.	We	observed	a	heated	interaction	between	

the myeloid cells, T cells, B cells and endothelial cells, which were con-
sistent with role of endothelial cells as porter of infiltrating immune 
cells	in	the	TME.	B	cells	were	identified	as	an	independent	cell	type,	
sharing little to no cell- to- cell communication with the other cell types 
in	the	TME	(Figure 1F). Fibroblasts were shown as the main regulating 
cell	types	in	the	OC	TME	by	communicating	with	mainly	endothelial	
cells, myeloid cells and T cells. The interaction between epithelial cells 
and fibroblasts were rather low, suggesting an indirect regulatory role 
of	fibroblasts	in	the	OC	TME.	MIF	pathway	was	shown	to	be	the	main	
signalling pathway of the cell- to- cell communication originating from 
fibroblasts,	along	with	COL1A1	to	CD44	pathway	and	CD99	to	CD99	
pathway (Figure 2A,B).	We	used	the	limma	package	and	the	eBayes	
function to identify DEGs between the cells of different histone modi-
fication	scores,	which	were	further	analysed	by	KEGG	and	GO	analysis	
(Figure 2C).	We	found	cell	cycle,	PI3K-	AKT	pathway	P53	activity	and	
transcriptional misregulation processes were highly enriched, sug-
gesting different extent of histone modification might be associated 
with regulation of these processes. In addition, most DEGs was associ-
ated with histone acetylation and condensed chromosome, which was 
consistent with our expectation.

3.2  |  The establishment of risk model in the 
OC patients

First,	we	applied	the	LASSO	regression	model	 to	determine	the	key	
genes with prognostic significance in the OC patients (Figure 3A). 
A	 total	 of	 five	 genes,	 namely	CGN,	 LBX2,	CCL18,	CDC7	 and	ELF3,	
were	selected	from	299	DEGs	to	construct	a	prognostic	model	in	the	
TCGA-	OV	cohort.	The	value	of	risk	score = CGN*0.0277 + LBX2*0.071
0 + CCL18*-	0.0483 + CDC7*-	0.154 + ELF3*0.0572.	The	distribution	of	
the five key genes was shown in the Figure 3B.	We	observed	a	distinct	
OS	difference	between	OC	patients	of	different	risk	score	value	in	the	
TCGA- OV as training set (Figure 3C), which generated similar outcomes 
in	 the	 independent	 external	 validation	 conducted	 in	 the	GSE53963	
cohort (Figure 3D).	We	found	no	single	key	gene	could	be	used	as	in-
dependent	risk	factor	predicting	OC	incidence.	However,	CDC7	was	
identified as a protective factor for OC incidence (Figure 3E). A strong 
positive	correlation	was	found	between	ELF3,	LBX2	and	CGN	as	re-
gard	to	the	mRNA	expression	of	these	key	genes	(Figure 3F).

3.3  |  The correlation analysis targeting five key 
genes and immune microenvironment in OC patients

We	found	significantly	higher	expression	levels	of	ELF3,	LBX2	and	
CGN	in	the	high-	risk	group	of	OC	patients	(Figure 4A),	while	CDC7	

F I G U R E  1 Functional	characterization	of	different	cell	types	in	the	OV	cancer.	(A)	The	t-	SNE	plot	of	the	six	cell	clusters	obtained	after	
dimensionality	reduction	and	clustering.	(B)	The	t-	SNE	plot	showing	the	cell	proportions	in	four	different	patients	with	OC.	(C)	The	stacked	
bar	plot	illustrating	the	proportions	of	different	cell	clusters	in	the	four	patients	with	OC.	(D)	The	heatmap	diagram	showing	GSVA	score	
normalized	value	based	on	PROGENy	scoring.	(E)	The	t-	SNE	plot	demonstrating	the	cell	identified	in	the	OC	patients	with	the	histone	
modification gene set enrichment score. (F) The dot line plot illustrating the cellchat analysis based on the six cell subgroups.
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F I G U R E  2 Cell	communication	in	the	OC	patients	and	functional	enrichment	analysis	of	identified	DEGs.	(A)	The	cellchat	pathway	
signalling	plots	of	the	CD99,	collagen,	MIF	and	SPP1	signalling	pathway	networks.	(B)	The	signalling	pathway	analysis	of	CD99,	collagen,	MIF	
and	SPP1	signalling	pathway,	shown	in	the	form	of	dot	line	plot.	(C)	The	dot	plot	displaying	the	GO	analysis	and	KEGG	analysis	results	of	the	
identified DEGs.
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F I G U R E  3 The	establishment	of	risk	model	in	the	OC	patients.	(A)	The	Lasso	regression	analysis	results	determining	the	optimal	key	
genes	for	prognosis	predicting.	(B)	The	distribution	of	the	five	key	genes	on	the	chromosomes.	(C)	The	OS	analysis	exhibiting	the	survival	
differences	of	the	training	set	of	TCGA-	OV	cohort,	shown	in	the	form	of	the	Kaplan–Meier	curve.	(D)	The	OS	analysis	exhibiting	the	
survival	differences	of	the	validation	set	of	GSE53963	cohort,	shown	in	the	form	of	the	Kaplan–Meier	curve.	(E)	The	forest	plot	illustrating	
multivariate COX analysis results of five key genes used for the establishment of prognostic model. (F) The heatmap depicting the 
correlation	plot	of	the	five	key	genes,	namely	CGN,	LBX2,	CCL18,	CDC7	and	ELF3.
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and	CCL18	were	both	higher	in	the	low-	risk	group.	We	further	inte-
grated the clinical factors, including pathological stage and patient 
age into the consideration of prognostic model, which generated 
the monogram model for more accurate clinical implementation 
(Figure 4B).	We	delineated	the	differences	in	immune	microenviron-
ment	in	OC	patients	by	applying	MCPcounter	algorithm	(Figure 4C). 
T, B cells and monocytic cells were found to be elevated in the low- 
risk group, suggesting an overall higher infiltration of immune cells in 
the	low-	risk	group	of	OC	patients.	Moreover,	cytotoxic	lymphocytes	
and CD8+ T cells were both higher in the low- risk group, suggesting 
a more favourable clinical outcome. In addition, the abundance of 
NK	cells,	endothelial	cells	and	fibroblasts	were	all	shown	to	be	nega-
tively correlated with the value of risk score (Figure 4D). Among the 
five	key	genes,	 the	expression	of	ELF3	was	highly	associated	with	
higher	 neutrophil,	 NK	 and	monocytic	 cells	 infiltration	 (Figure 4E). 
As a well- established chemokine, CCL18 was identified as positively 
correlated	with	majority	 of	 immune	 cells	 in	 the	OC	TME.	We	 ap-
plied	ssGSEA	to	further	study	the	detailed	profile	of	the	infiltrated	
immune cells (Figure 5A). Consistent with our former observation, 
we found higher levels of activated CD4 and CD8 T cells in the OC 
patients with lower risk score value (Figure 5A).	Moreover,	we	found	
higher infiltration of Treg cells in the low- risk group. Except for eo-
sinophil, we found all the other infiltrated immune cells negatively 
correlated with the risk score value, especially the gamma delta 
T cells (Figure 5B). Among the five key genes, the CCL18 showed 
highest association with the infiltration of the immune cells, es-
pecially	 the	Tregs,	NKT	cells,	and	gamma	delta	T	cells	 (Figure 5C). 
Macrophage	and	M1	macrophage	were	shown	to	be	elevated	in	the	
low-	risk	group,	while	M2	macrophage	showed	no	significant	differ-
ences,	 indicating	a	pro-	inflammatory	 role	of	M1	macrophage	 infil-
trated	mediating	the	clearance	of	the	M1	macrophage	(Figure 6A). 
Epithelial cells were found higher in the high- risk group, while dif-
ferent types of DCs were all elevated in the low- risk group of OC 
patients. Epithelial cells were shown to be significantly correlated 
with risk score value (Figure 6B).	 In	 addition	 to	CCL18,	 ELF3	was	
identified as a key gene, which might regulate the infiltration of the 
macrophages (Figure 7A).

3.4  |  Detailed mutation and drug sensitivity profile 
in the OC patients of different risk score value

We	found	the	same	top	three	most	frequently	mutated	genes	in	the	
two	risk	groups,	namely	TP53,	TTN	and	CSMD3,	with	slightly	differ-
ent mutation rate (Figure 7B).	The	FAT3	showed	a	markedly	higher	
rate of mutation in the low- risk group, while no significant mutation 

incidence was found in the high- risk group (Figure 7C). The detailed 
mutation types were found highly similar between two risk groups 
(Figure 7D).	We	calculated	the	contribution	of	different	key	genes	
in	 the	 predicted	 response	 to	 different	 drugs.	 CDC7	 showed	 the	
significant	 negative	 correlation	with	MIMI_1996,	GDC0810_1925,	
and OTX015_1626 (Figure 8A).	CGN	showed	highest	positive	cor-
relation	with	sensitivity	to	Palbociclib_1054	and	Pevonedistat_1529.	
Both	the	Ibrutinib_1799	and	Acetalax_1804	were	found	with	more	
favourable response in the low- risk group of OC patients, while 
MIMI_1996	and	UMI_77_1939	might	be	more	 sensitive	 to	OC	pa-
tients with higher risk value (Figure 8B).

3.5  |  LBX2 promoted OC cell proliferation in vitro

We	observed	a	distinguishable	up-	regulation	in	the	expression	level	
of	the	LBX2	in	high-	risk	group.	We	assessed	all	three	key	genes	using	
RT- qPCR in the normal ovarian epithelial cells and cancerous ovarian 
epithelial	cells	 in	vitro.	The	mRNA	expression	 level	of	LBX2	 in	the	
IOSE-	80	cell	line	was	significantly	lower	than	the	cancerous	cell	lines	
of	SKOV3	and	OVCAR-	3	cell	lines	(Figure 9A),	while	ELF3	and	CGN	
showed no significant differences. The knockdown of LBX2 was 
verified	by	the	significantly	reduced	mRNA	level	(Figure 9B).	We	ob-
served	a	distinguishable	reduction	in	the	proliferation	of	OVCAR-	3	
cell line after LBX2 knockdown, especially at the time point of Day 5 
(Figure 9C).	The	reduced	proliferation	rate	of	OVCAR-	3	cell	line	was	
further verified by consistent CFA results, indicating knockdown of 
LBX2	largely	inhibited	the	growth	of	OVCAR-	3	cell	line.	Collectively,	
we identified LBX2 as a potent promoter of OC cell proliferation 
in vitro.

4  |  DISCUSSION

We	identified	different	cell	types	in	the	OC	tissue	microenvironment	
and	characterized	their	functional	differences.	We	established	a	his-
tone modification- based risk score model by screening out five key 
genes	 (CGN,	LBX2,	CCL18,	CDC7	and	ELF3)	 that	were	associated	
with	prognosis	of	OC	patients.	We	found	that	the	risk	score	was	cor-
related	with	immune	infiltration	of	different	types	of	T	cells	and	M1	
macrophages. Histone modification- related genes may serve as po-
tential biomarkers for predicting the prognosis of OC patients. They 
also highlight the potential of these genes as therapeutic targets for 
the	development	of	more	effective	therapies.	Moreover,	our	study	
identifies LBX2 as a novel cell proliferation promoter in the carcino-
genesis of OC. These findings contribute to our understanding of the 

F I G U R E  4 The	correlation	analysis	targeting	five	key	genes	and	immune	microenvironment	in	OC	patients.	(A)	The	box	plots	showing	
the expression levels of five key genes in the high- risk and low- risk groups. (B) The nomogram integrating multiple clinical factors, including 
stage	and	age.	(C)	The	box	plots	depicting	the	immune	cell	infiltration	based	on	MCPcounter	algorithm	in	the	high-	risk	and	low-	risk	groups.	
(D)	Scatter	plots	showing	the	correlation	between	risk	score	and	immune	cell	compositions	in	the	immune	microenvironment.	(E)	The	
correlation	heat	map	showing	the	correlative	relationship	between	the	five	key	genes	and	immune	cell	infiltrations	based	on	MCPcounter	
algorithm.
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F I G U R E  5 The	immune	and	immune	regulatory	cells	characterization	in	the	high-	risk	and	low-	risk	group	in	the	OC	patients	based	on	
ssGSEA.	(A)	The	box	plots	showing	the	immune	cell	infiltration	based	on	ssGSEA	algorithm	in	the	high-	risk	and	low-	risk	groups.	(B)	The	
correlation	scatter	plot	presenting	relationships	between	the	five	key	genes	and	immune	cell	infiltrations	based	on	ssGSEA	algorithm.	
(C)	The	correlation	heat	map	illustrating	the	correlation	between	the	five	key	genes	and	immune	cell	infiltrations	based	on	ssGSEA	algorithm.
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F I G U R E  6 The	immune	and	immune	regulatory	cells	characterization	in	the	high-	risk	and	low-	risk	group	in	the	OC	patients	depicted	by	
xCell. (A) The box plots showing the immune cell infiltration based on xCell algorithm in the high- risk and low- risk groups. (B) The correlation 
scatter plot presenting the correlative relationship between the risk score value and immune cell infiltrations based on xCell algorithm.
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F I G U R E  7 Immune	and	mutation	landscapes	in	the	high-	risk	and	low-	risk	groups	in	the	CO	patients.	(A)	The	correlation	heat	map	
illustrating the relationship between the five key genes and immune cell infiltrations based on xCell algorithm. (B, C) The waterfall plots 
displaying the top frequently mutated genes in the high- risk and low- risk groups. (D) The box plot showing the detailed mutation type in the 
OV cancer patients of different risk value.
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molecular mechanisms underlying OC and provide insights for the 
development of targeted therapies.

The	 ELF3	 transcription	 factor,	 a	 member	 of	 the	 epithelium-	
specific	 ETS	 (ESE)	 family,	 plays	 a	 crucial	 role	 in	 regulating	 gene	

expression and maintaining the integrity of epithelial tissues.12 
Mutations	in	ELF3	have	been	identified	in	various	types	of	cancers,	
including bladder, cervical, ovarian and gastrointestinal cancers. 
Inactivating	mutations	of	ELF3	have	been	particularly	observed	 in	

F I G U R E  8 Drug	sensitivity	analysis	showing	the	optimal	drugs	for	OC	patients	of	different	risk	score	value.	(A)	The	correlation	heat	map	
presenting the relationship between the five key genes and sensitivity- related drugs. (B) The box plots displaying the drug sensitivity scores 
in the high- risk and low- risk groups.
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F I G U R E  9 Identification	of	LBX2	as	a	proliferation	promoter	gene	in	vitro.	(A)	Screening	the	mRNA	expression	levels	of	all	the	possible	
risk factor genes in the normal ovarian epithelial cells and cancerous cell lines. (B) The verification of LBX2 knockdown by assessing the 
mRNA	level	in	the	OVCAR-	3	cell	line.	(C)	The	knockdown	of	LBX2	significantly	reduced	the	proliferation	rate	of	OVCAR-	3	and	LBX2-	
knockdown	cell	lines.	(D)	CFA	analysis	results	of	normal	and	LBX2-	knockdown	OVCAR-	3	cell	lines.	*P<0.05; ***P<0.001.
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approximately 6% of mucinous OC, indicating their potential in-
volvement in OC development.13	Loss	of	ELF3	mRNA	and	protein	
expression has been associated with a worse prognosis in OC, sug-
gesting	that	ELF3	may	act	as	a	tumour	suppressor	in	this	context.14 
Experimental	 studies	have	demonstrated	 that	 re-	introducing	ELF3	
expression in OC cell lines with low endogenous expression inhib-
its cell proliferation both in vitro and in vivo, supporting its tumour- 
suppressive	 role.	 Additionally,	 the	 restoration	 of	 ELF3	 expression	
promotes a transition from a mesenchymal to an epithelial state, a 
process	 known	as	mesenchymal	 to	 epithelial	 transition	 (MET).	On	
the	other	hand,	knocking	down	ELF3	expression	in	OC	cell	lines	in-
duces	epithelial	to	mesenchymal	transition	(EMT),	a	phenomenon	as-
sociated with enhanced tumour progression and metastasis.14 These 
findings	 indicate	 that	 ELF3	 plays	 a	 critical	 role	 in	maintaining	 the	
epithelial state and inhibiting the progression of ovarian tumours. 
Further investigation into the underlying molecular mechanisms by 
which	ELF3	exerts	its	tumour-	suppressive	effects	may	provide	valu-
able insights into the development of targeted therapies for OC and 
other	cancers	with	aberrant	ELF3	expression.

CCL18, a chemokine belonging to the β- chemokine sub- family, is 
characterized	by	the	presence	of	a	-	Cys-	Cys-		motif	at	the	N-	terminus.15 
It	 shares	a	 sequence	homology	of	59%	with	a	protein	and	approxi-
mately	50%	with	the	cDNA	for	CCL3/macrophage	inflammatory	pro-
tein 1α	 (MIP-	1α), suggesting that the CCL18 gene may have arisen 
from	the	duplication	and	fusion	of	two	MIP-	1α- like genes.16	Studies	
conducted in vitro and in vivo have shown that CCL18 is produced 
in	significant	amounts	by	tumour-	associated	macrophages	(TAMs)17 in 
the tumour microenvironment. It is also produced in smaller amounts 
by cancer- associated fibroblasts (CAF)18 and cancer cells,19 such as 
colon cancer cells. CCL18 has been found to play a role in tumour cell 
proliferation, although its effects seem to vary depending on the type 
of tumour. For instance, in non- small cell lung cancer cells20 and pre- B 
acute lymphocytic leukaemia cells,21 CCL18 has been shown to re-
duce cell proliferation. Conversely, in OC, CCL18 has been found to 
increase cancer cell proliferation.22 One of the receptors for CCL18 
is	 PITPNM3,	which	 has	 been	 extensively	 studied	 in	 the	 context	 of	
CCL18-	dependent	migration	induction,	invasion,	and	EMT	in	tumour	
cells.	PITPNM3	 is	known	 to	play	a	crucial	 role	 in	 the	migration	and	
metastasis of OC cells.23 These findings shed light on the complex role 
of CCL18 in cancer and highlight the importance of considering the 
specific tumour context when studying its effects on cell proliferation 
and migration. However, in our study, we failed to identify CCL18 as an 
independent risk factor for the OC incidence, which could be largely 
attributed to the limited size of cohort. Further research is needed to 
fully understand the molecular mechanisms underlying CCL18 signal-
ling and its potential as a therapeutic target in OC.

The LBX2 protein belongs to the homeodomain- containing family 
of transcription factors, known for their significant involvement in var-
ious biological processes. In zebrafish, LBX2 has been implicated in the 
regulation of hypaxial myogenic precursor cell migration and muscle 
cell differentiation.24 Additionally, LBX2 deficiency has been shown 
to disrupt the normal development of the heart by affecting the mi-
gration of neural crest cells and the process of cardiac septation.25 

However, despite these findings, limited information exists regarding 
the oncogenic role of LBX2. The association between LBX2 expres-
sion and colorectal cancer (CRC) carcinogenesis was depicted in the 
study published by Huang et al. Overexpression of LBX2 was found to 
be associated with the development of CRC and might serve as a novel 
prognostic marker and therapeutic target in CRC.26 LBX2 contributed 
to	 lung	adenocarcinoma	 (LUAD)	cell	proliferation,	migration,	and	 in-
vasion	 through	 the	 induction	of	EMT	progression,	 indicating	an	on-
cogene	role	in	the	LUAD	in	vitro.27	We	suspected	that	LBX2	played	a	
critical role in OC progression, given that LBX2 was found to be highly 
elevated in the high- risk group of OC patients. Through knockdown 
of LBX2, we found a distinguishable reduction in the cell prolifera-
tion	capability	by	both	CCK8	and	CFA	analysis.	These	evidences	were	
consistent	with	the	role	of	LBX2	in	the	LUAD.	The	exact	mechanism	
underlying the LBX2 mediated OC cell proliferation remained to be 
determined. However, our research on LBX2 provides a novel theoret-
ical basis for the development of subsequent targeted drugs.

Our study identified a crucial role of macrophage migration in-
hibitory	factor	(MIF)	in	CAF	signalling.	We	found	that	MIF	mediated	
signalling originating from CAFs. The downstream pathways acti-
vated	by	MIF	include	the	mitogen-	activated	protein	kinase	(MAPK),	
phosphoinositide	3-	kinase	(PI3K),	and	nuclear	factor	kappa	B	(NF-	κB) 
pathways, which are frequently involved in cancer progression and 
are subject to epigenetic regulation.28,29	MIF	has	been	implicated	in	
various aspects of cancer, including cell proliferation, tumorigenesis, 
and	metastasis.	Overexpression	of	MIF	has	been	observed	in	differ-
ent types of tumours, such as genitourinary cancer,30 melanomas,30 
and head and neck cancers.31 A recent meta- analysis revealed that 
MIF	overexpression	 is	associated	with	a	poor	prognosis	and	 lower	
survival	rates	in	cancer	patients.	Mechanistically,	MIF	activates	the	
MAPK	and	PI3K	pathways,	which	are	crucial	 for	 regulating	essen-
tial cellular functions, including cell proliferation, differentiation, 
apoptosis, and survival.32 These pathways are also known to play a 
role in cancer development and progression. Our findings highlight 
the	importance	of	MIF	in	CAF	signalling	and	its	potential	as	a	prog-
nostic factor and therapeutic target in cancer. Further research is 
needed	to	fully	elucidate	the	molecular	mechanisms	underlying	MIF-	
mediated signalling and its implications in cancer biology.

TP53,	 TTN	 and	CSMD3	 are	 consistently	 among	 the	 top	 three	
genes with the highest mutation frequencies in both risk groups. 
However, there are slight differences in mutation rates between the 
two groups. This consistency suggests that these genes may play 
pivotal roles in the tumorigenesis of both low and high- risk groups. 
FAT3	 exhibits	 a	 significantly	 higher	 mutation	 rate	 in	 the	 low-	risk	
group compared to the high- risk group, while no significant muta-
tion occurrence is observed in the high- risk group. This disparity im-
plies	that	FAT3	mutations	may	have	a	more	pronounced	impact	on	
the tumorigenesis or progression of ovarian cancer in the low- risk 
subgroup.	While	certain	genes	may	exhibit	differential	mutation	fre-
quencies, the overall mutation spectrum remains consistent across 
both risk groups. The observed mutation patterns may reflect under-
lying differences in the molecular pathways or biological processes 
driving ovarian cancer development and progression in distinct risk 
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groups.	Understanding	 the	distinct	mutation	profiles	and	 their	as-
sociation with different risk groups may have implications for risk 
stratification, prognosis, and personalized treatment approaches in 
ovarian cancer patients. Further investigations into the functional 
significance of identified mutations and their impact on tumour bi-
ology are warranted to elucidate underlying mechanisms and guide 
the development of targeted therapeutic strategies.

The implications of drug sensitivity analysis are significant for po-
tential therapeutic interventions in OC. First, identifying drugs that 
effectively target the model genes associated with histone modifica-
tion could lead to the development of more precise and personalized 
treatment	 strategies.	 Second,	understanding	 the	 sensitivity	of	OC	
cells to these drugs provides insights into potential therapeutic op-
tions for different patient subgroups, particularly high- risk individu-
als who may require more aggressive treatment approaches.

Our study provides a novel perspective on the prognostic assess-
ment of OC patients, revealing the potential role of key genes associ-
ated with histone modification. These genes are implicated in immune 
cell infiltration and signalling transduction within the tumour microen-
vironment, closely correlating with the survival rates of OC patients. 
First, we established a risk score model for histone modification- 
related genes that effectively predicts the survival of OC patients. 
Five	selected	key	genes	(CGN,	LBX2,	CCL18,	CDC7	and	ELF3)	demon-
strated	 significant	prognostic	 value	 in	OC	patients.	 Second,	we	ob-
served a close association between the expression levels of these 
genes and the infiltration status of various immune cells, emphasizing 
the critical role of the immune system in OC and suggesting potential 
avenues for exploring immunotherapy in the future. Additionally, our 
research unveiled the proliferative role of LBX2 in OC cells, presenting 
a novel potential target for future therapeutic interventions. In sum-
mary, our study provides a fresh perspective and hope for the prog-
nostic assessment and treatment of OC, offering important insights 
for the development of personalized treatment strategies.

Despite the valuable insights gained from our study, several 
limitations should be acknowledged. First, the retrospective nature 
of our analysis using publicly available datasets may introduce bias 
and limit the generalizability of our findings. Furthermore, while 
we identified potential biomarkers and therapeutic targets, further 
functional studies and clinical validations are necessary to confirm 
their	 roles	 in	 ovarian	 cancer.	 Moreover,	 our	 in	 vitro	 experiments	
were limited to a few cell lines, and the complexity of the tumour 
microenvironment was not fully recapitulated. Future studies incor-
porating larger cohorts, functional assays in relevant animal models, 
and clinical validation are needed to address these limitations and 
translate our findings into clinical practice.

5  |  CONCLUSION

In conclusion, our study sheds light on the potential prognostic 
significance of histone modification- related genes in OC. Through 
comprehensive transcriptome analysis and functional validation, 
we	identified	five	key	genes	(CGN,	LBX2,	CCL18,	CDC7,	and	ELF3)	

associated with OC prognosis, providing insights into novel biomark-
ers	 for	 patient	 stratification.	We	elucidated	 the	 oncogenic	 role	 of	
LBX2 in promoting OC cell proliferation in vitro, suggesting its po-
tential as a therapeutic target. Furthermore, our findings highlight 
the	role	of	MIF	signalling	in	mediating	fibroblast	signal	transduction	
within the OC microenvironment. Our study contributes to a better 
understanding of OC pathogenesis and offers potential avenues for 
prognostic prediction and therapeutic intervention.
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