Skip to main content
. 2024 Mar 23;15:2603. doi: 10.1038/s41467-024-46866-9

Table 1.

The result of AUC (Area under Curve) and test accuracy for all models based on 71 nucleoside derivatives

Models Features Test Accuracy AUC
Mean SEM Mean SEM
DT* Descriptor_4175 0.65 0.01 0.65 0.02
LR Descriptor_4175 0.65 0.02 0.67 0.02
RF Descriptor_4175 0.63 0.01 0.72 0.02
XGBoost Descriptor_4175 0.63 0.01 0.69 0.02
DT Descriptor_144 0.64 0.01 0.64 0.01
LR Descriptor_144 0.68 0.02 0.80 0.02
RF Descriptor_144 0.67 0.01 0.75 0.02
XGBoost Descriptor_144 0.64 0.02 0.72 0.02
DT Descriptor_40 0.66 0.02 0.69 0.02
LR Descriptor_40 0.70 0.01 0.81 0.02
RF Descriptor_40 0.67 0.01 0.74 0.02
XGBoost Descriptor_40 0.65 0.01 0.75 0.02
DT Descriptor_ REF # 0.59 0.02 0.63 0.02
LR Descriptor_ REF # 0.71 0.01 0.84 0.02
RF Descriptor_ REF # 0.67 0.01 0.75 0.02
XGBoost Descriptor_ REF # 0.70 0.02 0.79 0.02

*LR Logistic regression, DT Decision tree, RF Random forest, XGBoost Extreme gradient boosting, SEM Standard error of the mean.

#Descriptors-REF: Recursive feature elimination (REF) has different optimal descriptors for different Algorithms: LR, n = 24; XGBoost, n = 16; DT, n = 30; RF, n = 37.