Skip to main content
. 2024 Mar 23;15:2603. doi: 10.1038/s41467-024-46866-9

Table 2.

The result of AUC (Area under Curve) and accuracy for models based on test set of 14 nucleoside derivatives

Models Features Test set performance
Accuracy F1 Score Precision Recall AUC
DT Descriptor_ REF # 0.60 0.67 0.75 0.60 0.60
LR Descriptor_ REF # 0.67 0.76 1.00 0.61 0.81
RF Descriptor_ REF # 0.53 0.59 0.63 0.56 0.53
XGBoost Descriptor_ REF # 0.60 0.57 0.50 0.67 0.61

*LR Logistic regression, DT Decision tree, RF Random forest, XGBoost Extreme gradient boosting.

#Descriptors-REF: Recursive feature elimination (REF) has different optimal descriptors for different Algorithms: LR, n = 34; XGBoost, n = 33; DT, n = 23; RF, n = 26.