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Abstract

Despite recognizing the devastating consequences of metastasis, we are not yet able to effectively
treat cancer that has spread to vital organs. The inherent complexity of genomic alterations in
late-stage cancers, coupled with numerous heterotypic interactions that occur between tumour
and stromal cells, represent fundamental challenges in our quest to understand and control
metastatic disease. The incorporation of genomic and other systems level approaches, as well

as technological breakthroughs in imaging and animal modelling, have galvanized the effort to
overcome gaps in our understanding of metastasis. Future research carries with it the potential to
translate the wealth of new knowledge and conceptual advances into effective targeted therapies.

Metastasis is the most deadly feature of cancer, accounting for greater than 90% of cancer-
related mortality!=3. The clinical manifestation of metastatic lesions is the end result of
a treacherous journey that few tumour cells are capable of completing, including local
invasion and intravasation, survival in the circulation, homing and extravasation into the
parenchyma of distant organs, and adaptation to the new environment and outgrowth

of secondary lesions:3-5. Although tumour cells that are shed from the primary tumour
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disseminate throughout the body, they tend to colonize select organs, with characteristically
different periods of latency and efficiency depending on tumour type or subtypel-. Steven
Paget’s century-old ‘seed and soil” hypothesis likened tumour cells to ‘seeds’ that are
systemically distributed, but that only inhabit particular environments, or “soils’, which are
supportive to their sustained growth®. Despite the intellectual clarity of this hypothesis,
understanding the exact molecular and cellular basis of the complex events that facilitate
cancer metastasis has been difficult.
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We are now in an era in which systems level data are being generated at unprecedented
rates, due, in large part, to a revolution in technology. Moreover, superior imaging modalities
and experimental models afford the ability to explore the dynamic intricacies of cancer
metastasis at a resolution that has not been achieved before (TIMELINE). We have begun
to reveal fundamental concepts that underlie the development of metastasis: the lineage
relationship between primary tumours and metastatic colonies’~19; the genetic properties
of metastatic tumour cells that facilitate their interaction with the host stromall:12; the
unique functional contributions of different stromal components!1:13-16: the organ-tropism
of different cancer types and subtypes'’20; and the /n vivo cellular and signalling
dynamics during the different steps of metastasis?1-24, With these newly acquired

insights into the ‘black box” of metastasis, the discovery of effective metastasis-targeting
agents that specifically attack cancer cells and interrupt their communication with the
microenvironment may soon be on the horizon. In this prospective Timeline article, we
discuss possible new avenues for investigation that could lead to the development of novel
approaches to prevent and to treat metastatic disease.

Characterizing metastatic seeds

Fundamental to understanding cancer progression is the identification of the distinguishing
features that endow certain tumour cells with metastatic capabilities. Characterizing such
features enables the discovery of potential diagnostic and prognostic biomarkers, as

well as targeted therapeutic agents. Genomic profiling?®, second-generation sequencing?5,
proteomics?”:28 and other systems level analytical techniques have dramatically accelerated
the effort to comprehensively characterize metastatic tumour cells and to understand their
natural history of evolution from primary tumours.

Molecular genealogy of metastasis.

It is generally agreed that cells acquire metastatic properties in the primary tumour, although
there is an ongoing debate surrounding both the extent to which metastatic potential can be
determined at this early stage in cancer progression and the lineage relationship between

the primary tumour and metastatic lesions2®. The linear and parallel models of metastatic
progression are at the centre of this discussion (BOX 1). High-quality genomic studies

have begun to explore the genetic and temporal relationship between primary lesions and
metastatic lesions, the results of which will undoubtedly help us to resolve many important
questions surrounding metastatic evolution®30,

DNA copy number analysis of metastatic prostate cancers has indicated a common clonal
origin in most cases, although additional subclonal alterations were also observed in
metastases3!. Consistently, a comparison between whole-genome sequences of a basal-like
primary breast tumour and its corresponding brain metastasis has shown that, although copy
number alterations and overall mutational spectra within the genome were not significantly
different, examining the prevalence of specific mutations revealed that a subset of cancer
cells from the primary tumour were preferentially enriched in the metastatic lesion.
Genomic sequencing analyses of pancreatic cancer lesions also suggested that metastatic
lesions are clonal in nature, and probably require additional driver mutations that are not
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found in the primary tumour, and also that certain alterations are linked to organ-specific
metastasis32:33. A recent study extended the metastasis genealogy investigation to the
single-cell level, revealing that a single clonal expansion formed the bulk of the primary
tumour and seeded the metastases®. Collectively, these studies suggest that metastases

are spawned from a late clonal expansion of the primary tumour, and that such clonal

cells may be additionally endowed with essential metastatic capabilities. However, we still
have little grasp on exactly how long it takes for these metastatic clonal populations to
emerge. Quantitative analysis of the mutation range in different stages of colorectal cancer
suggested that the time required for an invasive tumour to develop metastasis (<2 years) is
much shorter than the time needed for a benign tumour to evolve into advanced cancer34.
In pancreatic cancer, the timing between these stages of cancer progression followed a
comparable pattern, although it was shown that 5 years lapsed before a non-metastatic
founder cell acquired metastatic abilities33. These findings imply that a fairly small number
of rate-liming mutations are required for advanced tumours to gain metastatic competence.

Overall, these genomic studies seem to disagree with the parallel progression hypothesis
that metastatic cells arise from early intermediate cells with genetic and phenotypic
characteristics that differ from their primary tumour; they instead favour the linear
progression model of metastasis3®. A limitation of most of these studies is the use of cancer
specimens from late-stage patients whose aggressive primary tumours and metastases were
obtained within a relatively short time frame. Further investigations using retrospective or
prospective samples that are collected in more diverse clinical scenarios, such as metastases
that develop following prolonged latency, from large cohorts of patients are needed to
provide a comprehensive view of the evolutionary dynamics of metastasis for different
cancers. The insight we gain will guide the selection of treatment and will assist the design
of preventive and therapeutic strategies.

Classification and prognosis.

An important task in cancer management is to identify early stage tumours that are at a

high risk of metastatic spread. Gene expression profiling of breast cancer samples revealed
the existence of distinct subtypes, which not only define the biological diversity of breast
cancer3®, but which also engender meaningful prognostic and predictive value for patients3’~
39, The molecular underpinning for the hetero geneity in clinical prognosis of different
tumour subtypes remains largely unclear and will be a major focus of future research.
Distinct metastatic potentials observed in these cancer subtypes may simply reflect the
cumulative effect of a diverse range of initiating and contributing oncogenic mutations.

In a different, but not mutually exclusive, scenario, the same oncogenic insults may take
place in different cell lineages, such as in basal versus luminal epithelial cells**-42, or
during different stages of differentiation, such as adult tissue stem cells versus differentiated
progenitor cells, and this may ultimately influence the malignant and metastatic potential

of the resulting tumours. Indeed, the introduction of identical genetic elements into two
independent normal human mammary epithelial cells led to tumour xenografts with distinct
lung metastatic properties*3. Such findings strongly suggest that the pre-existing cellular
programmes among distinct epithelial cell types can influence the ultimate cancer phenotype
irrespectively of subsequent genetic changes. Accordingly, exploring the role of adult tissue
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stem cells and stem cell-like tumour-initiating cells in the development and maintenance of
metastatic capabilities is becoming an active area of investigation’44. To date, transgenic
model systems that introduce specific genetic elements into individual cell types of a
particular tissue have been used to identify the cell of origin for several cancers*>4. For
example, the inactivation of RbZand 7rp53in distinct pulmonary cell types recently showed
that neuroendocrine and, to a lesser degree, alveolar type 2 cells are responsible for the
development of small-cell lung cancer#®. The picture is less clear in basal cell carcinoma, as
two separate transgenic models revealed different cells of origin in the skin epidermis#°-50.
These seemingly incongruent results may be reconciled if each model were shown to
represent a distinct clinical subtype of basal cell carcinoma. Future research harnessing the
power of sophisticated animal models of tumour initiation and progression will be integral
to studying the relationship between the cell of origin and the metastatic abilities of different
cancer subtypes. As we explore the diversity of cell lineages and cellular hierarchy during
organ development, tissue homeo stasis and oncogenesis, we will better understand the
cellular contexts that allow the acquisition of metastatic functions.

Beyond the genetic and cellular heterogeneity of tumour cells, the inherent diversity in the
host genetic background has also been recognized to influence metastatic risk. A pioneering
study showed that an identical oncogenic event in the mammary tissue of mice with different
genetic backgrounds led to the development of mammary tumours with similar primary
tumour properties but with distinct lung metastasis proclivities®L. Linkage analysis further
mapped several genomic loci that modify metastatic potential in mice52-54, Future studies
may extend this area of research to human patients with the application of genome-wide
association study (GWAS) methods. By understanding the relative influence of a patient’s
genetic background on their risk of developing metastatic disease, we will be better prepared
to implement appropriate therapeutic options early on in treatment.

Identifying drivers of metastasis.

As prognostic gene signatures were being discovered, gene expression profiling was
concomitantly being applied to identify functional drivers of metastasis (TABLE 1). This
area of research was built on decades of groundbreaking work by Isaiah Filder, Fred

Miller and many others who focused on deriving organ-specific metastatic sublines of
tumour cells through /n vivo selection or clonal expansion. Comparing the expression
profiles of highly metastatic cells with their weakly metastatic counterparts from an isogenic
background allowed for the efficient and unbiased identification of candidate regulators of
metastasis, including metastasis-promoting8-2055-57 and metastasis-suppressing genes>8-
60, Furthermore, gain-of-function or loss-of-function genomic screens, cross-species
integrated genomic analyses and computational reanalysis of genomic profiling data have
also led to the identification of functional mediators of metastasis with direct clinical
relevance®1-64 (TABLE 1).

As highlighted above, advances in massively parallel sequencing technology have vastly
improved our capacity to more comprehensively uncover genomic changes that underlie
cancer development and progression®5:66. Next-generation sequencing of matched primary
tumours and metastasis or isogenic cell lines with different metastatic abilities, together
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with the characterization of transcriptomic and epigenomic alterations in cancer through
RNA sequencing and chromatin immunoprecipitation (ChlP)-sequencing, respectively, will
help to reveal previously unidentified genomic disturbances that potentially contribute

to malignant progression. The considerable challenge that remains is the functional
interpretation of these genetic and epigenetic changes. Considering the magnitude of
alterations found in cancer genomes, this task seems daunting; however, sophisticated
computational algorithms that are currently being explored, such as those that use
sequence-based and structure-based predictive features (such as PolyPhen2), should aid in
distinguishing the driver mutations from the passenger mutations and will probably reduce
candidate gene lists by appreciable amounts®7—%9. Relevant genomic alterations should

be translated into gene expression and protein level phenotypes, which can be predicted
using computational models, but which will ultimately rely on fundamental molecular

and biochemical approaches. Following characterization, these molecular phenotypes can
be placed into the context of subcellular networks and pathways with an emphasis

on functional consequences (discussed below). Finally, the altered cellular phenotypes
should be connected to metastasis-promoting features and validated using clinically
relevant experimental model systems. Ultimately, harnessing the power of next-generation
sequencing will certainly facilitate our understanding of metastatic evolution.

Direct exploration of protein-level variations using modern proteomic techniques??:28

has emerged as another powerful tool in the investigation of cancer metastasis. A

key advantage of the proteomic approach is the ability to examine the biochemical,

cellular and sometimes even organismal phenotypic states rather than genotypic expression
patterns. Mass spectrometry can systematically analyse several thousands of proteins with
quantitative precision through the combination of stable isotope labelling by amino acids

in cell culture (SILAC)-based proteomic techniques and advanced bioinformatics. In recent
years, quantitative proteomics has been applied to identify proteins that are differentially
expressed in separate cellular compartments, such as those found in the membrane and/
orsecreted by the cell (the subset of the proteome known as the secretome) of highly
metastatic versus weakly metastatic cells’%-74, although the functional importance of such
proteins has not been thoroughly investigated. Furthermore, comparing the proteome of
plasma, serum and/or urine from patients with metastatic cancer with those from patients
with localized disease can aid in the recognition of prognostic biomarkers, a subset of
which may be drivers of cancer progression and thus strong candidates for therapeutic
intervention’®. These approaches have not entered mainstream medicine owing to current
shortcomings and inherent challenges such as the low sensitivity and specificity of existing
cancer biomarkers’®; a poor understanding of the biological and pathological importance
of protein dynamics (changes in protein quantity and post-transcriptional modifications, for
example); limited access to high-quality biospecimens; a lack of standardized methodology
in discovery and validation studies; the inadequate incorporation of biomarker assessment in
current clinical trial designs; and insufficient collaboration among proteomic, biological and
clinical teams, as well as institutions.
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Despite the multifaceted hurdles that riddle the path of proteomics en route to routine
clinical use, the potential of proteomics to revolutionize metastasis research and patient care
cannot be underestimated. At present, proteomic studies have yet to fulfil their potential of
providing the functional insight that has been achieved by classical genomic studies, and
therefore proteomic studies represent an area of investigation that warrants greater effort
and resources in the coming years. Future studies will need to evaluate biomarkers for
pre-cancerous lesions, localized disease and/or micrometastases in an effort to support early
diagnosis and prognosis: these molecules may be very different from those that are found

in advanced disease. Proteomic studies of microdissected clinical specimens should reveal
intricate signalling networks that exist between the tumour and stromal compartment at a
level that is unattainable by genomic profiling and sequencing studies alone. Ultimately, a
multidisciplinary and systems approach will provide the most insightful and comprehensive
understanding of cancer metastasis.

Towards systems biology of metastasis.

The application of genetic and molecular biology techniques to the investigation of cancer
metastasis has yielded the vast majority of discoveries over the past few decades. As

such, cancer metastasis has largely been explained through reductionism; that is, it has
been defined by individual genetic disturbances and their resultant cellular phenotypes.
Considering the complex nature of metastasis, a more holistic approach to its investigation,
perhaps through systems biology, seems to be essential (FIG. 1).

Signalling pathways in cancer metastasis have been extensively studied at the level of
individual proteins or as a linear cascade of proteins but they have been less frequently
evaluated through a network approach. High-throughput data can be extracted from

and annotated on the basis of comprehensive genomic, transcriptomic and proteomic
interrogation of experimental or clinical samples®:77. The information we gather from
these large-scale techniques can be used to develop network maps, interactomes, ensemble
descriptions and gene expression modules with the assistance of advanced computational
algorithms’8. These network models can be validated, using a myriad of experimental
methods, ranging from basic biochemistry looking at protein—protein interactions to
sophisticated molecular real-time imaging examining signalling pathway activity in live
tissue’®. Importantly, the response of these networks to stimuli, which can now be
measured through multiplex technologies such as multiparameter flow cytometry, and
selective perturbations of individual components using small interfering RNA (siRNA) or
drug compounds, is integral to establishing functional network models28. Ultimately, these
multifunctional models can be used to discover novel signalling proteins, predict therapeutic
response to selective inhibitors and uncover resistance mechanisms. For example, the drug—
gene—phenotype Connectivity Map approach8® was successfully used to identify the mTOR
inhibitor rapamycin as an effective agent for overcoming dexamethasone resistance in acute
lymphoblastic leukaemia.

Two active areas of investigation in cancer metastasis that could benefit greatly from a
systems biology approach are micro-RNA (miRNA) and epigenetic regulation. Of note,
these cellular programmes are not independent of each other, as DNA methylation has been

Nat Rev Cancer. Author manuscript; available in PMC 2024 March 24.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Sethi and Kang

Page 7

shown to silence miRNA activity81-83 and miRNAs have been shown to affect epigenetic
changes®485. miRNAs have predominately been implicated in cancer metastasis through
their regulation of the early steps in tumour progression, such as migration and invasion86-
88 hut more recently through their effect on later stages, such as colonization8. miRNAs
are commonly linked to their metastatic functions by regulating individual genes that are
involved in metastasis. However, miRNAs, like transcription factors, function as master
regulators that can simultaneously control the expression of several hundred genes and

also affect dramatic shifts in cellular phenotype®:91, As such, mapping out individual
genes that are targeted by miRNAs and other non-coding RNAs%2 may not faithfully
represent the extent of their influence. Instead, the breadth of genes regulated by an miRNA
can be collected using genomic and proteomic approaches and subsequently translated

into ensemble data sets with the help of computational algorithms that effectively group
specific genes into functional modules. These modules can further be used to generate
network models that will optimally reflect a more comprehensive picture of the cellular and
behavioural functions that are affected by an miRNA and can ultimately provide a better
insight into how miRNAs may affect cancer metastasis. Once these networks are established,
the discovery of future cancer-promoting genes and their regulation by miRNAs can be
placed in context.

Epigenetics has been implicated in cancer progression through its regulation of tumour
initiation, stem-cell properties and, rather intriguingly, chronic inflammation®:93-9_ Similar
to miRNAs, epigenetic regulation modulates a broad range of coordinated genome-wide
expression changes, but does so at a different level from conventional genome aberrations
that are associated with cancer progression. The direct contribution of epigenetics to cancer
metastasis is fairly unexplored, but we are now starting to make headway with the support of
high-throughput genomic studies. For example, genome-wide methylation analysis of paired
colorectal cancer primary tumour and liver metastasis specimens demonstrated differences
in DNA methylation status in advanced cancer at a global and individual gene level when
compared with localized disease®”. However, the relationship between metastasis-related
epigenetic differences and corresponding changes in gene expression or cellular function
has not been defined. Using computational algorithms®8, a systems level approach can help
to incorporate the unique epigenetic-mediated gene expression and cellular changes in the
context of previously defined genomic and proteomic alterations that are associated with
metastasis. A systems level understanding of regulatory programmes that govern metastatic
behaviour will ultimately need to be integrated within the context of tumour—stromal
interactions that occur at different stages of tumour progression.

Cellular heterogeneity of metastasis

Understanding the contribution of stromal cells to cancer metastasis is essential to fulfil the
promise of improved therapy, as foreseen by the seed and soil hypothesis. Here, we base
our discussion on some of the key conceptual advances that have been made in the past
decade regarding the role of stromal cells and cellular dynamics during different phases of
metastasis. For more in-depth coverage of these topics see REFS 5,11,99.
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Effect of the primary tumour microenvironment on metastasis.

Although the ability of non-neoplastic stromal cells to promote tumour proliferation,
invasion, survival and chemoresistance is well known14:15:100-106 e are only now
beginning to recognize their function in the development of cancer metastasis. It should not
come as a surprise that tumour angiogenesis was among the initial findings that supported a
role for stromal cells in cancer metastasis; the poor vascular integrity of newly synthesized
blood vessels within the tumour allows for the escape of malignant cells with the potential
of distant spread. As mediators of tumour angiogenesis were uncovered, targeted therapies
against these molecules were designed and among the first to achieve clinical application
for the control of late-stage metastatic disease07-109, Although anti-vascular endothelial
growth factor (VEGF) therapy was approved to combat metastatic disease in patients10,
recent studies in mice paradoxically revealed an increased risk of metastasis associated
with this therapy111:112 which underscores the peril of oversimplifying the potential effect
of targeting the tumour stroma. These preclinical findings corroborate results from recent
clinical trials showing no overall survival benefit for the VEGF inhibitor bevacuzimab

in various cancers113-115 bringing its therapeutic value into question1 and serving

as a sobering reminder to consider the unexpected consequence of anticancer therapy,
particularly in regards to metastasis.

In more recent years, we have witnessed important roles for additional primary tumour
stromal cell types in cancer metastasis. Elegant studies combining intravital imaging

and mouse modelling have convincingly demonstrated a pro-metastatic role of tumour-
associated macrophages through colony stimulating factors (CSFs) and epidermal growth
factor (EGF) signalling!17:118, More recent reports have implicated additional pathological
and molecular mechanisms that mediate crosstalk between tumour cells and macro phages,
ultimately influencing cancer metastasis19120, |_eukocytes and other immune cells have
been recognized as crucial regulators of primary tumour growth and metastasis21-123,
Mesenchymal cells that reside in breast tissue have also been shown to affect the metastatic
behaviour of breast cancer cells through CCLS5 signalling!3. Moreover, a recent report
showed that mesenchymal cells can influence the metastatic behaviour of neuroendocrine
small-cell lung cancer. Most intriguingly, the mesenchymal cells and neuroendocrine cells
were descendants of the same progenitor cell, which exploited RAS signalling to generate
functional intra-tumoural heterogeneity124. These studies have established stromal cells as
important regulators of metastasis through their ability to influence cancer cell functions
such as chemotaxis and invasion, as well as microenvironment properties, such as vessel
integrity and the presence of immunological cells. Despite these advances, we have yet

to discover many of the molecular components that facilitate communication between
tumour cells and individual stromal cells of the primary tumour. We need a better working
knowledge of the paracrine signalling network that mediates these molecular interactions —
an area of research that will be facilitated by advanced proteomics — as these interactions
are key components in our systems level understanding of metastasis. There is also limited
insight into how multiple stromal components concomitantly associate with tumour cells.
For example, what is the significance of inter-stromal crosstalk between different lineages
of stromal cells in malignant progression? How does stromal heterogeneity synergize with
tumour heterogeneity to encourage metastatic spread? Importantly, advances in molecular
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imaging and microscopy have opened new avenues of investigation for better examining the
contributions of cellular heterogeneity in cancer progression (BOX 2).

Tumour cells in transit.

Essential to cancer metastasis is the ability of primary tumour cells to enter the vasculature
and to use these fluid ‘highways’ as a means to reach distant organs. Seminal studies by
James Ewing highlighted the influence of the vascular anatomy on the ultimate destination
for metastatic tumour cells3. Although we now understand that the vasculature alone

does not explain the pattern and distribution of metastasis, the ability of tumour cells

to endure substantial stress in transit remains a poorly understood aspect of metastasis.
Even more, we have yet to characterize how this selection pressure affects the subsequent
metastatic behaviour of surviving cells. Platelets have been recognized as an important
blood component that protects circulating tumour cells (CTCs) and promotes their metastatic
colonization125, Nevertheless, knowledge regarding the cellular and molecular mechanisms
that allow tumour cells to survive and adapt within circulation remains scarce, owing in part
to the inherent difficulty in isolating and analysing CTCs. Recent technical and conceptual
advances have helped overcome these limitations.

The most effective strategies in isolating tumour cells from the circulation have relied

on antibody-based epitope capture methods!28. The application of microfluidic rare cell
detection approaches has improved CTC purity and yield in recent years'2?. Although

the technical challenges of detecting CTCs remain, rapid advances in bioengineering are
rendering these hurdles surmountable. We already appreciate the clinical value of CTCs, as
recent studies have associated their presence in the bone marrow with poor prognosis in
patients with breast cancerl28.129_ On the basis of these findings, the detection of CTCs has
been incorporated into the international tumour staging systems!3% and endorsed through
recent recommendations on tumour markers made by the American Society on Clinical
Oncology (ASCO)13L,

Despite their clear prognostic importance, the diagnostic value of CTCs is largely unknown
and fairly unexplored. We have not defined whether CTCs can be reliably detected before
the development of metastatic disease. Our ability to diagnose and to manage prostate cancer
would clearly benefit from this understanding: the surveillance and molecular analysis of
CTCs at regular intervals in patients with localized prostate cancer could help to distinguish
indolent disease from aggressive disease and could ideally inform subsequent treatment
decisions. Moreover, the ability of CTCs to predict clinical response to therapy would also
help to guide disease management, as shown by examples in breast cancer and non-small-
cell lung cancer'27:132. As such, many of the advantages and strategies of clinical proteomic
and next-generation sequencing discussed above can be adapted to the evaluation of CTCs.

There are also many unresolved questions concerning the biology of cancer metastasis that
may reveal their answers in the exploration of CTCs. For example, how does the genomic
and proteomic landscape of CTCs compare with their corresponding primary tumour or
metastasis? Are there unique gene expression changes in CTCs that are not found in the
primary tumour or metastasis? Do these expression patterns implicate independent signalling
pathways or cellular phenotypes? Are these expression changes associated with stem-cell
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properties, epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial
transition (MET), or other metastasis-promoting functions? Can these genomic or expression
patterns be exploited for drug development? The answers to these questions will improve
our understanding of metastatic evolution and will resolve different schools of thought with
respect to cancer progression, such as the linear versus parallel progression models (BOX 1).

Tumour—stromal interactions in distant organs.

The colonization and outgrowth of tumour cells in a secondary organ is often considered
the rate-limiting, as well as the most poorly delineated, step in the metastatic cascade. We
have begun to elucidate the basis of metastatic colonization by characterizing the functional
involvement of the tumour stromal cells of the secondary site®. Considering the vast area of
research that is encompassed by this subtopic, we focus on the salient advances that may
help to direct future research.

The emerging concepts of the premetastatic niche9%:133 and metastatic selfseeding?34135
have challenged our traditional view of metastasis and have stimulated new avenues of
research (FIG. 2). Metastasis is no longer considered a unidirectional flow between primary
tumours and distant organs. The pre-metastatic niche model shows that, preceding the
arrival of disseminated tumour cells (DTCs), bone marrow-derived haematopoietic stem
cells are mobilized by tumour-derived factors and are recruited to the secondary site where
they negotiate a more hospitable microenvironment to foster the survival and expansion of
metastatic lesions133. According to the self-seeding hypothesis, metastatic tumour cells can
also return to the primary site, accelerating the growth and malignant evolution of primary
tumours (FIG. 2). Further investigation using experimental and clinical models will help to
define the precise role and mechanism of these events in metastasis.

Inflammatory cytokines have emerged as crucial mediators of the pre-metastatic niche

and self-seeding33.135-137 The interplay between colonizing tumour cells and the
microenvironment of the secondary organ also seems to involve inflammatory cytokines,
exposing these molecules as prime targets for therapeutic intervention. Recent studies have
shown that the tumour-induced secretion of interleukin-6 (IL-6) by stromal cells that reside
in the bone and brain facilitates metastatic colonization38-141. |nterestingly, inflammatory
signals frequently affect tumour cells by altering their epigenetic regulatory programme and
by conferring cancer-promoting properties'42, which highlights a previously identified area
of research that could benefit from a systems biology approach. For example, an epigenetic
switch that is initiated by the oncoprotein SRC was sustained by an inflammatory regulatory
network involving IL-6 and nuclear factor-xB (NF-xB) signalling in tumour progression8®.
Intriguingly, an independent report showed that SRC signalling was preferentially activated
in latent breast cancer cells and mediated pro-survival responses to inflammatory cytokines
that supported bone metastasis. Associating these findings within the context of many
others, we recognize that inflammation-induced genetic and epigenetic changes may
contribute to the survival of disseminated cancer cells and may represent a principal topic of
future metastasis research and therapeutic development.

After surviving the adjustment to the secondary site, tumour cells must sustain
their growth to develop overt metastases. Developmental pathways have emerged as
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important players in tumour progression and metastasis'43. Although transforming growth
factor-p (TGFp)18:144.145 hone morphogenetic protein (BMP)146-151 \WNT152-157 gand
Hedgehog18-160 signalling have all been shown to influence bone metastasis, the Notch
pathway has recently joined the ranks through a stroma-dependent mechanism that was
susceptible to pharmacological inhibition40. In lung cancer, cell-autonomous activation of
the WNT-TCF transcriptional programme was shown to promote brain and bone metastasis
through the actions of LEF1 and HOXB9 (REF. 161). Furthermore, both the Notch and
WNT pathways were recently shown to participate in generating a viable metastatic niche
for lung-colonizing breast cancer cells through the actions of the extracellular matrix
protein tenascin C162, It is important to note that, similar to their pleiotropic function

during cell fate decisions in metazoan organisms, developmental signalling pathways often
regulate multiple metastasis genes with diverse functions that facilitate organ-specific
metastasis, and therefore developmental signalling pathways represent key regulatory nodes
in the metastasis network. A case in point is the TGFf pathway, which activates the
expression of prometastasis genes VEGF, angiopoietin-like 4 (ANGPTL4), JAGGED],
matrix metalloproteinase 1 (MMPI1), CXCRA4, parathyroid hormone-like hormone (PTHRP),
/L6 and connective tissue growth factor (C7TGF). The perspective of metastasis as a
developmental programme that has gone awry will continue to be a major topic of research
with important therapeutic implications.

Clinical translation

As most metastatic cancers are inoperable, systemic treatments using chemotherapeutic or
targeted therapy is often the only option to slow tumour growth or to relieve metastasis-
associated morbidity. Although agents that target tumour-specific pathways have been,
and will continue to be, major components of anti-metastasis therapy, treatment strategies
targeting the tumour microenvironment of the secondary organs will greatly augment our
ability to treat late-stage cancer.

Tumour cell-targeted therapy.

The ultimate goal in the treatment of metastatic cancer is to achieve sustained disease
remission, which in theory would require the eradication of all cancer cells, regardless of
their systemic distribution. With this in mind, genes and pathways that have crucial roles in
primary tumour growth and metastasis are ideal targets for therapeutic inventions, as they
are likely to show efficacy in reducing both tumour burden and metastasis risk. For example,
rigorous research has shown that oncogenic BRAF signalling has an important role in the
pathogenesis of malignant melanomal®3-167 and this prompted clinical trials for specific
and potent inhibitors of mutant BRAF, the initial results of which suggest dramatic efficacy
in the treatment of metastatic malignant melanomal68-169, Despite substantial successes

in targeted cancer therapy, the chronic problem that will continue to plague the future of
targeted therapeutics is drug resistance. The mechanisms underlying resistance to targeted
therapy are under active investigation1’%-178_ Overcoming drug resistance will depend on
these characterizations, as well as on using the knowledge that we have gained from
previously defined effective strategies, such as second-generation ABL inhibitors179-181,
Similar to the story of first-generation ABL kinase inhibitors in chronic myeloid leukaemia,
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the effects of BRAF inhibitors, although profound, are only temporary owing to resistance.
Two recent studies82:183 e|ycidate the potential mechanisms that underlie resistance to
BRAF inhibitors and thus provide evidence encouraging novel avenues for rational drug
design of second-generation BRAF inhibitors. As new therapies for cancer metastasis are
discovered, the field investigating drug resistance will grow dramatically.

Targeting the tumour microenvironment.

As discussed above, the cellular microenvironment of the secondary site has a crucial role in
facilitating cancer metastasis. Often, the influence of the microenvironment, and the cellular
and molecular adaptations undertaken by tumour cells to successfully colonize a secondary
organ, alter metastatic cells in ways that render them resistant to cell-autonomous therapies
that effectively treat their corresponding primary tumour84.185 Moreover, even when well-
accepted cell-autonomous mechanisms of drug resistance are defined, as in the case of
BCR-ABL, alternative methods of drug resistance that are driven by the microenvironment
are still largely at work186, Experimental mouse models have shown the therapeutic
inadequacies of targeted agents in treating metastatic lesions'87:188, These observations

and findings collectively support the rationale for targeting the microenvironment of the
metastatic lesion in conjunction with targeting the tumour cells directly to better treat
metastatic disease.

Our progress in treating bone metastasis by targeting molecules that are found in the tumour
microenvironment, such as RANKL189:190 s 4 direct consequence of the insight gained
from systematically dissecting the intricate molecular and cellular crosstalk between tumour
cells and bone stromal cells. Elucidating the homeostatic balance between osteoclasts and
osteoblasts in the bone microenvironment has been paramount in establishing a contextual
basis for understanding bone metastasis and developing targeted therapiesl’. In addition,
the characterization of the haematopoietic niche!®! and its interactions with bone cells

is likely to help us to understand the potential existence of metastasis niches that have

been speculated to facilitate the survival and expansion of DTCs in bone. Thus, a sound
framework of normal homeostatic mechanisms can improve our ability to understand and
target tumour—stromal interactions in metastasis.

Future directions

We have made significant progress over the past decade in harnessing new technology

and research tools to piece together an intellectual framework for understanding cancer
metastasis. Moving forwards, efforts should be focused on closing some of the major gaps
in areas of metastasis research that have important implications for therapeutic development.
For example, the best window of opportunity to control metastatic disease may be the time
period between metastatic seeding and the clinical detection of overt metastasis, as this time
period represents an occasion when tumour cells are likely to be vulnerable to therapeutic
agents and patients are expected to be in an optimal physical condition to endure treatment.
However, despite our increasing knowledge about metastatic colonization, we still hold
little understanding of how metastatic tumour cells behave as solitary disseminated entities,
particularly at crucial junctures in their dynamic existence, such as during the establishment
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of micrometastases, activation from latency and response to therapeutic regimens. We will
need to resolve tumour—stromal dynamics at the single cell level using advanced imaging
technology, so that the fate of individual tumour cells and the different lineages of stromal
cells, as well as their molecular interactions, can be traced during disease progression and
drug treatment. The understanding that we gain from these studies could facilitate the
generation of clinically relevant cancer models with the potential to guide the direction of
drug development.

A systems biology approach for identifying linker components or key regulatory nodes that
connect different functional networks and processes may help us to integrate the components
of tumour progression with the individual steps of the metastatic cascade, leading to a more
fluid, interdependent depiction of metastasis (FIG. 1). Network modelling can be correlative
and therefore considered a descriptive science that often requires further investigation to
establish causal relationships. For systems biology to thrive, there will need to be a shift

in culture, especially from the funding and peer-reviewed perspective, to encourage a more
global understanding of disease.

Systems level investigations will undoubtedly reveal many possible directions for
therapeutic exploration. A potential bottleneck is the requirement to functionally validate
individual candidate genes cost-effectively and efficaciously in clinically relevant animal
models192-196 (TABLE 2). Xenograft models, which have played a predominant part in
metastasis research, need to be supplemented with robust transgenic and knockout mouse
models. Furthermore, humanized mouse models in which components of mouse stroma
are replaced with human counterparts are proving to be valuable tools. By integrating

the insight gained from these distinct animal models, we will improve our ability to
characterize candidate metastasis genes. In particular, we will be able to understand

their normal physiological roles, define their precise functions during different stages of
tumour progression and evaluate their effect on therapeutic targeting. Extensive preclinical
validation of candidate metastasis genes using robust animal models will increase the
success rate of developing effective anti-metastasis agents while minimizing the risk of
unexpected adverse side effects.

We also need to renovate the design of clinical trials to expedite the development and
approval of anti-metastasis therapies. Owing to the considerable financial burden of testing
therapeutic agents, clinical trials are seldom designed to evaluate anti-metastasis therapy

in the setting of early stage cancer, which may represent a point in disease progression
when metastasis might be preventable. As such, many effective anti-metastasis agents

that are already US Food and Drug Administration (FDA)-approved for other indications

in the United States have not benefited cancer patients who are at risk for metastasis.
Reliable and specific biomarkers that reflect an accurate readout of disease progression and
efficacy of therapeutic targeting should be implemented in clinical trial design. This will
improve our ability to measure the effectiveness of drug targeting, select the optimal patient
population for therapeutic intervention and gain accelerated regulatory approval. Finally,
clinical trial design should incorporate standardized procedures for the collection of patient
tumour samples from localized and metastatic disease at distinct clinical stages, as well as
during different points in disease management (such as pre-therapy and post-therapy). These

Nat Rev Cancer. Author manuscript; available in PMC 2024 March 24.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Sethi and Kang

Page 14

invaluable specimens, including their associated molecular profiles, should be deposited

in publically available tumour and data banks to facilitate multidisciplinary research and
collaborations. With concerted effort from basic researchers, clinical investigators, drug
developers and regulatory agencies, considerable improvements in the management of
metastatic cancer may be within reach. We foresee a future in which patients at a high

risk of metastasis will be reliably identified using molecular profiles of their primary tumour
and CTCs. Effective cocktails of drugs with minimal adverse side effects will be tailored to
prevent metastatic recurrence in individual patients. Even for patients with advanced cancer,
the diagnosis of metastasis will no longer carry the label of a terminal illness, but will rather
be acknowledged as another complex chronic condition that can be effectively controlled
with a large arsenal of effective therapeutic agents.
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Box 1 |
Linear and parallel progression models

According to the linear progression model, primary tumour cells undergo successive
rounds of mutation and selection3®, giving rise to a biologically heterogeneous cellular
population in which a subset of malignant clones have accumulated genetic alterations,
necessary for metastasis'97:198, The metastatic capabilities may be developed at the
primary site as a by-product of the selective pressures, or may further evolve after the
tumour cells reach the secondary organs. Pioneering work by Isaiah Fidler in the 1970s
demonstrated that only a subset of pre-existing cells in a heterogeneous primary tumour
can successfully metastasizel®®. From a clinical perspective, a direct correlation between
tumour size and frequency of metastatic events29%.201 in addition to the reduction of
metastatic risk by the surgical resection of tumours that are <2cm in size, also support the
linear progression model.

By contrast, the parallel progression model argues that tumour cells may disseminate
very early in malignant progression, colonize multiple secondary sites at different times
and ultimately accumulate genetic changes independently from those incurred by the
primary tumour®. Select studies comparing the growth rates of primary tumours and
their secondary lesions concluded that metastases were too large to be initiated during
advanced stages of cancer progression292:203, A more recent report provides evidence
supporting the early dissemination of metastatic tumour cells in transgenic mouse
models of breast cancer294; however, the competence of these disseminated tumour
cells in forming secondary lesions is currently under investigation3°. As such, these two
competing, but not mutually exclusive, paradigms provide a conceptual basis for the
investigation of metastatic evolution, and have important implications in the prevention
and treatment of metastatic disease®.
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Box 2 |
Imaging cancer dynamics

Currently, the mainstay objective of imaging modalities in the clinical setting is

to characterize the extent of metastatic disease in cancer patients, which has been
greatly refined by the integration of diverse macroscopic imaging modalities. Positron
emission tomography (PET) has been combined with computed tomography (CT)
imaging to improve our ability to stage metastatic disease and to monitor response

to treatment20°206, The simultaneous use of multiple isotope-labelled probes, such

as the combination of *fluoride and 18fluorodeoxy glucose (8FDG), in conjunction
with hybrid imaging modalities, has further enhanced our ability to detect metastatic
disease?%’. Moreover, cancer-specific and organ-specific molecular probes, such as those
used in the detection of melanoma using PET and liver metastasis using magnetic
resonance imaging (MRI), respectively, hold great promise in augmenting the resolution
with which we can detect systemic cancer spread208.209,

At the bench, we have come a long way from direct visualization of tumour cell

invasion using green fluorescent protein?10. For example, direct visual evidence of
specific cell lineages, such as cancer stem cells, in metastasis can be obtained using high-
resolution, non-invasive imaging?1. The combination of a mammary imaging window
and a photo-switchable fluorescent protein has been used to investigate the influence

of spatially and functionally distinct tumour microenvironments on cancer cell invasion
and intravasation?12:213, The simultaneous observation of distinct stromal cells as they
interact in the primary tumour can be achieved through multiphoton microscopy, which
has the benefits of enhanced tissue depth and multiple colour channels?1:23.214,

Probing beyond the cellular level, there is now evidence that molecular imaging will
provide functional readouts of subcellular biological processes, such as protein—protein
interactions?15. These modalities can be used to visualize real-time /7 vivo subcellular
events that regulate tumour metastasis. For example, non-invasive imaging techniques
together with tumour cells genetically engineered to provide functional readouts of a
signalling pathway can be used to test targeted anti-metastatic agents in preclinical
metastasis models216. Importantly, these powerful tools have been integrated with
computational programs to provide quantitative readouts in addition to high-resolution,
real-time qualitative impressions. In the future, the sophistication of molecular imaging
may also translate into the clinical setting to provide instant readout and direct
visualization of biological processes that promote tumour metastasis?L’.
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Figurel|. Research strategies for under standing the molecular basis of cancer metastasis: from
reductionism to systems biology.

The evolving states of cancer, including metastasis, are reflected in dynamically changing
expression patterns of the genes and proteins within the cancer cells. Metastasis research
has generally relied on the linear approach of gene-to-trait mapping, which links the
metastasis genotype with its corresponding metastatic phenotype (part a). More complex
linear linkages may include multivalent relationships, in which one gene (or group of
genes) can have functions in multiple metastasis phenotypes (pleiotropy), and a metastasis
tissue tropism can be exerted by many independent genes or gene groups (redundancy)
(part b). However, gene interactions are influenced by their context, which often cannot

be captured by traditional one-gene-one-trait approaches. Therefore, metastatic behaviour
should be considered as the consequence of the collective action of individual metastasis
genes through nonlinear interactions (part c). Understanding the nature of these network
level interactions and identifying crucial nodes of functional control will pave the way
towards rational therapeutic design for metastatic breast cancer. Red circles represent genes
or groups of genes that mediate tissue-specific metastasis of breast cancer. Blue circles
represent regulators of metastasis genes. Yellow circles represent key functional nodes of
metastasis regulation networks and are prime targets for therapeutic development. The black,
grey and dashed arrows indicate different pathways.
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Bone marrow-
derived cells

Nature Reviews | Cancer

Figure 2 |. Evolving view of the dynamic relationship between the primary tumour and
metastasis.

a| The traditional view of cancer metastasis in which primary tumour cells escape their
site of origin, travel in a unidirectional path away from the primary site and ultimately
colonize distant organs to give rise to systemic disease is shown. b | A dynamic view of
cancer metastasis in which bone marrow-derived cells are mobilized by tumour-derived
inflammatory factors and prime distant sites of metastasis to form the pre-metastatic niche
is shown. Disseminated tumour cells (DTCs) (either from the primary tumour or from
metastases) that have been selected with enhanced malignancy can colonize distant organs,
as well as repopulate the primary site through the phenomenon of self-seeding.
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Timeline | The major technological breakthroughs and conceptual advances in cancer metastasis research

Advancement in mass
spectrometry with the
development of MALDI
and the association of 2D
gels for the identification
of cancer proteins?®

(1996-1998) Multiphoton
excitation fluorescence
imaging isintroduced as a
novel microscopic technology
for high quality visualization at
greater tissue depths?¥#3%

TMA technology as a
novel, high-throughput
method to detect specific
proteins in patient
tumour samples?**

(1999-2000) Hybridization-
based ChlP assay
developed to study the
location and function of
DNA binding proteins, such
as transcription factors,
across the genome?*024

Page 31

(2000-2001) Application of
gene expression profiling
to patient tumour samples
reveals the existence of
distinct subtypes in several
cancers?6249.250

Application of gene
expression profiling to
patient tumour cells
reveals poor prognosis
signatures associated with
increased frequency of
metastatic events*2?

DNA microarray
technology developed to
quantitatively measure
gene expression patterns®

(1997-1999) Live visualization
of tumour metastasis using
intravital video microscopy
and green fluorescent
protein?10739-243

Transtuzumab, a monoclonal
antibody against ERBB2, is
FDA approved as targeted
biological therapy for
patients with
ERBB2-amplified metastatic
breast cancer’®®

* Arole for cancer stem cells Reverse phase
in metastasis is proposed** protein

© Application of genomic microarrays as a
profiling technology in novel method to
experimental metastasis investigate the
models helped to identify

cancer proteome?*!

Intravitalimaging
used to investigate
the metastatic
behaviourof a
single breast
cancer cell””?

putative metastasis genes®

Black boxes denote technological advances, blue boxes denote conceptual advances and red boxes denote therapeutic advances. 2D, two-dimensional; ChIP, chromatin immuno-
precipitation; FDA, US Food and Drug Administration; MALDI, matrix-assisted laser desorption/ionization; NIH, US National Institutes of Health; TMA, tissue microarray; VEGF, vascular

endothelial growth factor.

Microarray profiling and
functional xenograft

metastasis'®

metastasis studies reveal
genetic determinants of bone

Experimental
evidence supporting
the pre-metastatic
niche is published'**

Application of mass
spectrometry and
protein labelling to the
investigation of cancer
protein alterations?*®

(2008-2010) Application of second-generation
sequencing to the investigation of cancer
genomes and metastasis®? 3426426

|
Advances in RNA-sequencing technologies
allow for the mapping and quantifying of
transcriptomes?*s-20%

Denosumab, a fully
monoclonal antibody
against RANKL, is FDA
approved for the treatment
of cancer patients with
bone metastasis?*?"°

Bevacizumab, a
monoclonal antibody
against VEGF, is FDA
approved as first-line

colorectal cancer

treatment for metastatic

© The Cancer Genome Atlas is
established by the NIH to catalogue

Identification of the first microRNA
linked to cancer metastasis®*®

genomic alterations in cancer
* Second-generation DNA

sequencing technologies provide
afeasible, high-throughput,
cost-effective method for
sequencing genomes?**?*>

ChlP-sequencing as a novel method to
study genome-wide transcription factor
binding sites and epigenetic modifications,
such as histone methylation?’

Experimental evidence

supporting the ‘self-seeding’

phenomenon in tumour
progression’*®

PLX4032,a
small-molecule inhibitor
of mutant BRAF, is shown
toimprove survivalin

patients with metastatic
melanoma?’!?7?

Timeline|. Themajor technological breakthroughs and conceptual advancesin cancer metastasis

research

Black boxes denote technological advances, blue boxes denote conceptual advances
and red boxes denote therapeutic advances. 2D, two-dimensional; ChIP, chromatin
immunoprecipitation; FDA, US Food and Drug Administration; MALDI, matrix-assisted
laser desorption/ionization; NIH, US National Institutes of Health; TMA, tissue microarray;
VEGF, vascular endothelial growth factor.
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