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Abstract
Background: Brain metastases (BMs) are common in small cell lung cancer (SCLC),
and the efficacy of immune checkpoint inhibitors (ICIs) in these patients is uncertain.
In this study we aimed to develop and validate a radiomics nomogram based on mag-
netic resonance imaging (MRI) for intracranial efficacy prediction of ICIs in patients
with BMs from SCLC.
Methods: The training and validation cohorts consisted of 101 patients from two cen-
ters. The interclass correlation coefficient (ICC), logistic univariate regression analysis,
and random forest were applied to select the radiomic features, generating the radio-
mics score (Rad-score) through the formula. Using multivariable logistic regression
analysis, a nomogram was created by the combined model. The discrimination, cali-
bration, and clinical utility were used to assess the performance of the nomogram.
Kaplan–Meier curves were plotted based on the nomogram scores.
Results: Ten radiomic features were selected for calculating the Rad-score as they
could differentiate the intracranial efficacy in the training (area under the curve
[AUC], 0.759) and the validation cohort (AUC, 0.667). A nomogram was created by
combining Rad-score, treatment lines, and neutrophil-to-lymphocyte ratio (NLR).
The training cohort obtained an AUC of 0.878 for the combined model, verified in
the validation cohort (AUC = 0.875). Kaplan–Meier analyses showed the nomo-
gram was associated with progression-free survival (PFS) (p = 0.0152) and intracra-
nial progression-free survival (iPFS) (p = 0.0052) but not overall survival
(OS) (p = 0.4894).
Conclusion: A radiomics nomogram model for predicting the intracranial efficacy of
ICIs in SCLC patients with BMs can provide suggestions for exploring individual-
based treatments for patients.
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INTRODUCTION

Lung cancer ranks second among common cancers to be
diagnosed and is still the leading reason of cancer death.1

Approximately 15% of all lung cancer cases worldwide are
small cell lung cancer (SCLC) and are characterized by an
inferior prognosis. The 5-year overall survival (OS) rate for

SCLC is just 6.7%, primarily due to its propensity for early
metastasis during tumor development.2 Furthermore, it is
worth noting that around 10% of patients diagnosed with
SCLC have brain metastases (BMs) at the time of their ini-
tial diagnosis, and an additional 40% to 60% will eventually
develop BMs as the disease progresses. Despite extensive
research, the prognosis remains unfavorable.3

The combination of immune checkpoint inhibitors
(ICIs) and platinum-based chemotherapy has been widelyXiaonan Shi and Peiliang Wang are co-first authors.
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used in extensive-stage small cell lung cancer (ES-SCLC) as
the first-line treatment.4 IMpower 133, a phase 3 trial, dem-
onstrated that the combination of atezolizumab and carbo-
platin plus etoposide significantly prolonged both
progression-free survival (PFS) and OS in treatment-naive
ES-SCLC, but for patients with BMs, no significant distinc-
tion between the two groups was observed in OS or PFS.5,6

In another phase 3 trial known as CASPIAN research, the
updated results showed that compared with the platinum-
etoposide (EP) group, the durvalumab plus EP group con-
tinued to show OS benefits (hazard ratio [HR], 0.75; 95%
confidence interval [CI]: 0.62–0.91; p = 0.0032). However,
the median PFS was similar for all groups. For patients with
metastases in the brain, the two groups had no statistical dif-
ference in OS (HR, 0.79; 95% CI: 0.44–1.41).7,8 The efficacy
of ICIs for SCLC patients is still uncertain, especially for
patients with BMs.9

Programmed death-ligand 1 (PD-L1) has been identified
as the most reliable indicator of immunotherapy response.10

Tumor mutational burden (TMB), which reflects the poten-
tial for producing new tumor antigens in tumors, may also
be a valuable biomarker for cancer immunotherapy benefits
in recent years.11 However, the predictive capacity of these
indicators has not been observed in SCLC. Nevertheless, a
considerable proportion of patients may not have enough
high-quality tissue samples to conduct biomarker analysis.
The above issue arises due to the rare adoption of surgical
resection as a therapeutic measure in SCLC, resulting in a
dependence on diagnostic biopsy specimens, which are fre-
quently tiny and necrotic. Invasive sampling is not available
in BMs, therefore, the study using tissue samples for analysis
is limited, emphasizing the necessity of developing a nonin-
vasive predictor for cancer immunotherapy.

Magnetic resonance imaging (MRI), as a powerful non-
invasive diagnostic imaging tool for BMs, holds the potential
possibility to predict the effectiveness of ICIs.12 Presently,
the best way to diagnose BMs is gadolinium-enhanced MRI,
which is more sensitive than enhanced computed tomogra-
phy (CT). As a secondary tumor, BMs have the characteris-
tics of latent onset, rapid progression, and poor prognosis,
so their accurate diagnosis, precise location, and early treat-
ment effectiveness evaluation are essential for prognosis.13

However, the subjective assessments of radiologists are sus-
ceptible to interobserver heterogeneity and typically exhibit
limited robustness and precision. Radiomics, an emerging
technology, has the potential to address this issue using
quantitative analysis of medical images. Radiomics is a pro-
cess that transforms encrypted medical images into inter-
pretable data through the extraction of high-throughput
imaging features. This data is then correlated with specific
clinical outcomes and analyzed to guide clinical decision-
making.14

Radiomics has been applied to identify the pathological
types of metastatic tumors as well as the prediction of thera-
peutic efficacy and prognosis in recent years.15–19 However,
there is a lack of related exploration in predicting the intra-
cranial efficacy of SCLC patients treated with ICIs and

diagnosed with BMs. Consequently, we conducted this study
to identify the related radiomics features and clinical factors
and construct a radiomics nomogram that could predict the
intracranial efficacy of these patients.

METHODS

Patients and study design

The retrospective analysis obtained ethical approval and
exempted the informed consent requirement. We identified
101 SCLC patients with BMs who had been treated with
ICIs from June 2019 to June 2022, which included a train-
ing cohort (n = 70) from Shandong First Medical Univer-
sity Affiliated Provincial Tumor Hospital and an
independent external validation cohort (n = 31) from Qilu
Hospital of Shandong University. The Supporting Informa-
tion 1: Figure S1 presents the recruitment pathway for
patients in this study. The following were the inclusion cri-
teria: (1) patients with a confirmed diagnosis of SCLC
through biopsy, (2) patients who were diagnosed with BMs
and had received therapy with ICIs and (3) patients who
received an enhanced MRI of the brain performed within
1 month before ICI treatment. The following were exclu-
sion criteria: (a) patients who received immunotherapy less
than twice; (b) patients for whom imaging data or medical
records necessary for evaluating intracranial efficacy were
not available; (c) patients who did not have a qualified
MRI before ICIs treatment and (d) patients with BMs hav-
ing a diameter <5 mm. The independent validation cohort
was selected based on the identical criteria used for the
training cohort.

The intracranial efficacy was assessed using the
Response Assessment in Neuro-Oncology Brain Metastases
(RANO-BM) criteria,20 with two neuroradiologists indepen-
dently classifying the response as good or poor. BMs with
any of the following were defined as having a good response:
(1) partial response, (2) complete response, and (3) main-
taining a stable disease state for a duration of either
3 months or more than 3 months. BMs with any of the fol-
lowing were defined as having a poor response: (1) progres-
sive disease and (2) maintaining a stable disease state for
less than 3 months. Baseline demographic and clinical data,
such as Eastern Cooperative Oncology Group (ECOG)
score, age, gender, smoking history, stage, number of BMs,
and blood indicators, were derived from medical reports,
and dates of baseline MRI were also recorded. In our study,
treatment lines represent which line of treatment ICIs were
applied in SCLC, and most ICIs were combined with che-
motherapy or angiogenic inhibitors treatments. OS is
defined as the time from the date of baseline MRI until
death due to any cause. PFS or iPFS is defined as the time
from the date of baseline MRI to the progression of systemic
or intracranial tumors or death from any cause (whichever
occurs first). PFS, iPFS, and OS were determined by calcu-
lating the time between the date of the baseline MRI and the
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last follow-up if there was no evidence of progression or
mortality at the last follow-up.

The radiomics nomogram workflow applied in this
study is presented in Figure 1. The study design was divided
into four sections: region of interest (ROI) segmentation,
feature extraction and selection, and model construction.

MRI acquisition

All included patients were imaged on the 3.0 T scanner sys-
tem (Magnetom Verio, Siemens) with an eight-channel
phased-array surface coil. An intravenous dose of gadodia-
mide (0.1 mmol/kg, Omniscan, GE Healthcare) was admin-
istered before the MRI using a power injector (rate of
2.5 mL/s). Then, 20 mL saline was injected to flush the
remaining agents (rate of 2.5 mL/s). The scanning range is
covered from the calva to the lower neck in the supine
position.

Tumor and peritumoral region segmentation

In order to guarantee the precision of ROI delineation, we
conducted a manual ROI by a radiologist with 5 years of
work experience (reader 1) on both tumor and peritumoral
areas from contrast-enhanced T1 weighted images

(CE-T1WI), drawing on the opening software ITK-SNAP
(http://www.radiantviewer.com). The tumor area was delin-
eated on the slice with the maximum tumor area but not
peritumoral edema, and the peritumor was defined as the
5 mm area around the tumor. A senior radiologist with
12 years (reader 2) of experience verified each ROI.

Feature extraction

All slices were resampled to a standard voxel size of
1 � 1 � 1 mm3. A total of 851 imaging features were
finally extracted from CE-T1WI on tumor and peritu-
moral areas, respectively. Consequently, a total of 1702
radiomic features were extracted for each lesion. The fea-
ture set was divided into four groups: (1) shape and size,
(2) first-order statistics, (3) texture and (4) wavelet fea-
tures. Radiomics features extracted in this experiment are
shown in the Supporting Information file 1: Table S1. All
feature extractions were implemented using Python
(https://www.python.org/downloads/). Texture features
were achieved based on five textural matrixes: (1) The
neighborhood gray-tone difference matrix, (2) the gray
level size zone matrix, (3) the gray level dependence
matrix, (4) the gray level run-length matrix, and (5) the
gray level co-occurrence matrix. The images with the
wavelet transformation were used to extract wavelet

F I G U R E 1 Radiomics nomogram workflow. The radiomics nomogram process included four parts: region of interest (ROI) segmentation, feature
extraction, feature selection, and model construction. ROI was delineated on both the tumor and the peritumoral areas on contrast-enhanced T1 weighted
images. Radiomics features were extracted, including nontextural, textural, and wavelet features. We performed interclass correlation coefficient (ICC),
logistics univariate analysis, and random forest for feature selection. The radiomics signature was combined with clinical features to build the radiomics
nomogram based on multivariable logistic analysis. Further performance evaluation was explored, including ROC curves, calibration curves, decision curves,
and prognostic value analysis.
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features. The wavelet transform process for CE-T1WI is
given in the Additional file 1: S1.

Feature selection and radiomics signature model
building

Interobserver reproducibility of radiomic features was ana-
lyzed with 30 randomly chosen patients by readers 1 and
2. The ICC was used to assess the consistency of feature
extraction between observers. Only stable features with an
ICC >0.75 were qualified. If a patient delineates multiple
BMs, the radiomic features of multiple BMs are integrated
based on a volume-weighted formula (Additional file 1: S2).
Based on the training cohort, logistic univariate regression
analysis and random forest method are used for further fea-
ture selection. The Rad-score for each patient was generated
using a logit model, incorporating selected features weighted
according to their corresponding coefficients. The AUC
obtained from the receiver operating characteristic (ROC)
analysis was applied to measure the discriminative ability of
the Rad-score in the training and validation cohorts. The
statistical software packages R (http://www.R-project.org;
The R Foundation) and EmpowerStats (http://www.
empowerstats.com, X&Y Solutions, Inc., Boston, MA) were
utilized to carry out the Rad-score.

Clinical model building

A univariate logistic regression analysis was applied to iden-
tify useful clinical candidate factors in the training cohort.
Then, the clinical candidate predictors were used to further
select and develop a clinical predictive model for intracranial
efficacy through multivariable logistic regression analysis.
The AUC derived from the ROC analysis was used to mea-
sure the discriminative ability of the clinical model in both
training and validation cohorts.

Combined model building and developing a
radiomics nomogram

The multivariable logistic regression analysis based on the
clinical predictors and Rad-score was applied to develop a
combined predictive model for intracranial efficacy in the
training cohort. We constructed the radiomics nomogram
using the combined model from the training cohort in order
to provide the oncologist with a quantitative clinical tool to
estimate the individual probability of intracranial effective-
ness. The Hosmer–Lemeshow test verified the goodness-
of-fit of the combined model.

The AUC derived from the ROC analysis was used to
measure the discriminative ability of the radiomics nomo-
gram. The radiomics nomogram’s calibration was evaluated
by plotting the calibration curve. The performance of the
nomogram was tested in the independent validation cohort.

Finally, the AUC values and calibration curves derived from
the training and validation cohorts were plotted.

Demographic and clinical characteristic analysis

The disparities in demographic and clinical factors among
all patient cohorts were assessed by Pearson’s chi-square or
Fisher’s exact tests.

Clinical utility of the radiomics nomogram

The clinical utility of the radiomics nomogram was assessed
by analyzing the net benefits under various threshold proba-
bilities in both the training and validation cohorts through
decision curve analyses.

Prognostic value analysis

Kaplan–Meier curves were plotted based on the radiomics
nomogram scores in order to stratify the OS, PFS, and iPFS
in patients of SCLC with BMs treated with ICIs. The median
of the nomogram scores were used to divide all patients into
high- and low-score groups. The log-rank test was applied
to assess if the survival curves of the two patient groups were
significantly different.

Subgroup analyses

A total of 49 patients received treatment with chemotherapy
combined with PD-L1 inhibitors scheme. A total of
52 patients received treatment with chemotherapy combined
with programmed death-1 (PD-1) inhibitors and 41 patients
did not receive brain radiation therapy. We further analyzed
the predictive ability of the established combined model in
the above subgroups.

Statistical analysis

All statistical analyses were carried out using R software
(version 4.2.2; http://www.Rproject.org) and SPSS
software (version 26; IBM Corporation). The R packages
used in this study are reported in the Supporting Informa-
tion file 1: S3. A two-sided p-value <0.05 was identified for
statistical significance.

RESULTS

Clinical characteristics of patients

The baseline characteristics of all patients included are
shown in Table 1. We selected 101 patients according to the
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inclusion criteria: 79 males and 22 females; median age,
58 years; age range, 27 to 77 years. There were 76 patients
with the number of BMs ≤3 and 25 patients with the num-
ber of BMs >3. A total of 80 patients were found to have

extracranial metastasis, and 21 patients did not. Among all
patients, 51 received ICIs as first-line treatment, and
49 received concurrent brain radiotherapy. The training
cohorts comprised 70 individuals, while the validation

T A B L E 1 Characteristics of patients in the training and validation cohorts.

Training cohort (n = 70) Validation cohort (n = 31)
P (inter)

Good
response (n = 41)

Poor
response (n = 29) P (intra)

Good
response (n = 16)

Poor
response (n = 15) P (intra)

Age, year

≤60 23 (32.9) 24 (34.3) 0.019* 14 (45.2) 7 (22.6) 0.023* 0.953

>60 18 (25.7) 5 (7.1) 2 (6.5) 8 (25.8)

Gender

Male 30 (42.9) 24 (34.3) 0.347 14 (45.2) 11 (35.5) 0.394 0.694

Female 11 (15.7) 5 (7.1) 2 (6.5) 4 (12.9)

ECOG score

0 22 (31.4) 16 (22.9) 0.900 6 (19.4) 9 (29.0) 0.289 0.584

1 + 2 + 3 19 (27.1) 13 (18.6) 10 (32.3) 6 (19.4)

Smoking history

Yes 21 (30.0) 22 (31.4) 0.037* 12 (38.7) 6 (19.4) 0.073 0.750

No 20 (28.6) 7 (10.0) 4 (12.9) 9 (29.0)

T stage

0 + 1 + 2 18 (25.7) 12 (17.1) 0.834 7 (22.6) 7 (22.6) 1.000 0.829

3 + 4 23 (32.9) 17 (24.3) 9 (29.0) 8 (25.8)

N stage

0 + 1 + 2 24 (34.3) 15 (21.4) 0.572 8 (25.8) 8 (25.8) 1.000 0.703

3 17 (24.3) 14 (20.0) 8 (25.8) 7 (22.6)

Number of BM

≤3 32 (45.7) 19 (27.1) 0.245 14 (45.2) 11 (35.5) 0.394 0.403

>3 9 (12.9) 10 (14.3) 2 (6.5) 4 (12.9)

Extracranial metastasis

Yes 31 (44.3) 26 (37.1) 0.137 13 (41.9) 10 (32.3) 0.433 0.409

No 10 (14.3) 3 (4.3) 3 (9.7) 5 (16.1)

LDH

≤248 U/L 28 (40.0) 18 (25.7) 0.589 10 (32.3) 10 (32.3) 1.000 0.907

>248 U/L 13 (32.5) 11 (15.7) 6 (19.4) 5 (16.1)

Types of immunotherapies

PD-1 21 (30.0) 15 (21.4) 0.967 10 (32.2) 6 (19.4) 0.289 0.986

PD-L1 20 (28.6) 14 (20.0) 6 (19.4) 9 (29.0)

NLR

≤4.0 27 (38.6) 9 (12.9) 0.004* 12 (38.7) 3 (9.7) 0.004* 0.778

>4.0 14 (20.0) 20 (28.6) 4 (12.9) 12 (38.7)

Treatment lines

<2 26 (37.1) 9 (12.9) 0.008* 11 (35.5) 5 (16.1) 0.076 0.881

≥2 15 (21.4) 20 (28.6) 5 (16.1) 10 (32.3)

Concurrent brain radiotherapy

Yes 25 (35.7) 9 (12.9) 0.014* 11 (35.5) 4 (12.9) 0.032* 0.986

No 16 (22.9) 20 (28.6) 5 (16.1) 11 (35.5)

Note: P (Intra) the result of univariable analyses between good and bad groups, P (Inter) significant difference between training and validation cohorts. Data are numbers of
patients, with percentages in parentheses.
Abbreviations: BM, brain metastasis; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; NLR, neutrophil-to-lymphocyte ratio; T, tumor.
*p < 0.05.
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cohorts comprised 31. Additionally, there were no statisti-
cally significant differences between the training and valida-
tion cohorts concerning demographic or clinical features.

In the training cohort, 41 patients showed a good
response of intracranial efficacy, while 29 patients had a
poor response. In the validation cohort, 16 patients showed
a good response, while 15 patients had a poor response. No
significant difference was shown for the intracranial efficacy
status distribution in the training and independent valida-
tion cohorts (p = 0.515).

Feature selection and radiomics signature model
building

A total of 659 tumor features and 296 peritumoral features
with an ICC >0.75 were selected for further analysis. Subse-
quently, a logistic univariate regression analysis was con-
ducted to identify a total of 119 radiomic features of the
tumor and peritumoral regions (p < 0.05). Finally, the Rad-
score was calculated using the top 10 features selected based
on the random forest. The results of random forest are
shown in the Supporting Information file 1: Figure S2. Fea-
tures extracted from tumor regions performed statistically
better than those from the peritumoral regions. A total of
10 potential indicators were selected from 1702 features in
the training cohort, including nine tumoral and one peritu-
moral features. After using a logit model of selected features
that were weighted by their respective coefficients, the Rad-
score calculation formula obtained was presented as follows
(prefix PT represents the peritumoral feature):

Rad-score = 9.67819 + 3.28734*ORIGINAL_FIRST
ORDER_ENTROPY

�0.00325*ORIGINAL_NGTDM_COMPLEXITY
�12.13092*WAVELET.LHH_GLCM_SUMENTROPY
+0.01997*WAVELET.HLL_FIRSTORDER_RANGE
�0.34446*WAVELET.HLL_GLCM_JOINTAVERAGE
�0.80138*WAVELET.HLL_GLRLM_GRAYLEVEL

VARIANCE
�0.16710*WAVELET.LLL_GLCM_SUMENTROPY
+23.89111*WAVELET.

LLL_GLRLM_GRAYLEVELNONUNIFORMITYNOR
MALIZED

�0.00529*WAVELET.LLL_NGTDM_COMPLEXITY
�0.29136*PTWAVELET.

HHL_GLSZM_ZONEENTROPY
A detailed explanation of each selected feature is shown

in Supporting Information file 1: Table S2. Rad-scores for
every patient in each cohort are shown (Figure 2). The
AUCs that resulted from the use of Rad-score for prediction
were 0.759 (95% CI: 0.648–0.871) and 0.667 (95% CI:
0.470–0.863) in the training and validation cohorts,
respectively.

Clinical model building

The univariate and multivariate logistic regression analysis
results of related predictive indicators based on the training
cohort are shown in Supporting Information file 1: Table S3.
The clinical candidate indicators of age, smoking history,
treatment lines, concurrent brain radiotherapy, and NLR

F I G U R E 2 Rad-score for every patient
in each cohort. (a) Rad-score for every
patient in the training cohort. (b) Rad-score
for every patient in the validation cohort. The
intracranial efficacy response is marked with
different colors.

SHI ET AL. 743



were found to have associations with intracranial efficacy in
univariate logistic regression analysis. The younger the
patient, the poorer the intracranial efficacy of immunother-
apy, which is inconsistent with the conclusions of previous
studies.7,8 The relationship between smoking history and
intracranial efficacy is unstable and opposite in the two
cohorts and may be limited by the sample size. Therefore,
we excluded age and smoking history from the multivariate
analysis. The remaining clinical candidate indicators were
further selected through multivariable logistic regression
analysis. Finally, the treatment lines and NLR were used to
construct a clinical prediction model. The AUCs of the clini-
cal model were 0.754 (95% CI: 0.639–0.869) for the training
cohort and 0.825 (95% CI: 0.674–0.976) for the validation
cohort.

Combined model building and developing a
radiomics nomogram

A multivariable logistic regression analysis was applied to
develop a combined predictive model of the Rad-score,
treatment lines, and NLR (Table 2). The independent pre-
dictors mentioned above were developed into a combined
model and presented as a nomogram (Figure 3a). The p-
value of the Hosmer–Lemeshow test was 0.345, showing that
the combined model had a good fit.

The radiomics nomogram based on the combined
model achieved AUC values of 0.878 (95% CI: 0.801–
0.955) and 0.875 (95% CI: 0.754–0.996) in training
(Figure 3b) and validation (Figure 3c) cohorts, respectively.
The AUCs of models based on clinical predictors and/or
the Rad-score are shown in the Supporting Information file
1: Table S4. In both the training cohort (Figure 3d) and the
independent validation cohort (Figure 3e), the radiomics
nomogram for intracranial efficacy showed good agree-
ment between prediction and observation through the cali-
bration curves.

Clinical utility of the radiomics nomogram

Evaluating the clinical usefulness of the radiomics nomo-
gram can assess whether it improves patient outcomes. The

decision curve in the training cohort (Figure 3f) shows that
when the threshold probability of a patient is between 0%
and 99%, using the radiomics nomogram in the current
study to predict the intracranial efficacy response, different
degrees of net benefit can be obtained. For example, where
the personal threshold probability of a patient is 40%, using
the radiomics nomogram for treatment determination yields
a net benefit of 0.238. This advantage surpasses that of both
the treat-all strategy and the treat-none strategy. The valida-
tion cohort had a similar net improvement when evaluated
using the radiomics nomogram (Figure 3g).

Example of how to use nomogram

An SCLC patient is 59 years with BMs. Before immuno-
chemotherapy as first-line treatment, the Rad-score
obtained through radiomics calculations was �8.5. The
NLR value of this patient was <4, so the clinical indicator
points are all zero. The nomogram shows that the total
points are 20, and the probability of obtaining poor efficacy
could be <1%. The lower the total points on the nomo-
gram, the more likely it is to achieve good treatment
response. After treatment, the patient’s treatment efficacy
achieved a complete response.

Prognostic value of the radiomics nomogram

The radiomics nomogram is capable of predicting the prog-
nostic outcomes of all patients. The PFS of patients with a
low-score was longer than that of patients with a high-score
(HR = 0.604, 95% CI: 0.393–0.929, p = 0.0152, Figure 4a).
Patients with a low-score showed a significantly longer iPFS
versus patients with a high-score (HR = 0.541, 95% CI:
0.340–0.862, p = 0.0052, Figure 4b). However, the OS of
both patient groups did not exhibit a statistically significant
difference (HR = 1.267, 95% CI: 0.647–2.482, p = 0.4894,
Figure 4c). In our study, the median PFS (6.50
vs. 4.23 months) of the low and high-score groups was simi-
lar to that of the atezolizumab and placebo groups of
IMpower 133 (5.20 vs. 4.30 months), but the median OS
was not reached.

Subgroup analyses

In the subgroup of 49 patients treated with chemotherapy
combined with PD-L1 inhibitors, the combined model
achieved AUC values of 0.892 (95% CI: 0.805–0.978). In the
subgroup of 52 patients treated with chemotherapy com-
bined with PD-1 inhibitors, the combined model achieved
AUC values of 0.856 (95% CI: 0.752–0.960). In the subgroup
of 41 patients who did not receive brain radiation therapy,
the combined model achieved AUC values of 0.905 (95% CI:
0.818–0.992).

T A B L E 2 Risk factors for intracranial efficacy of the combined model.

Intercept and variable

Model

β Odds ratio (95% CI) p-value

Intercept �1.9939 0.0016

Rad-score 1.3285 3.775 (1.599 to 8.912) 0.0024

Treatment lines 2.1383 8.485 (2.092 to 34.409) 0.0028

NLR 1.8795 6.550 (1.750 to 24.523) 0.0053

Abbreviations: CI, confidence interval; NLR, neutrophil-to-lymphocyte ratio.
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F I G U R E 3 Radiomics nomogram and related model performance evaluation. (a) The radiomics nomogram was developed in the primary cohort, with
Rad-score, treatment lines, and neutrophil-to-lymphocyte ratio (NLR) incorporated. The receiver operating characteristic (ROC) curves of the radiomics
nomogram in the training cohort (b) and validation cohort (c). The calibration curves of the radiomics nomogram demonstrated satisfactory agreement
between prediction and observation in both the training (d) and test cohorts (e). Decision curve analysis for the radiomics nomogram in the training cohort
(f) and validation cohort (g). The y-axis measures the net benefit, and the x-axis represents the threshold probability. The black line at the bottom represents
the hypothesis that no patients had a good intracranial response. The gray line represents the hypothesis that all patients had a good intracranial response.
The red and blue lines represent the net benefit of the radiomics nomogram at different threshold probabilities.
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DISCUSSION

In this study, a radiomics signature-based nomogram was
established and verified to predict the intracranial efficacy of
ICIs in patients with BMs from SCLC. The predictors of this
nomogram included the Rad-score, NLR, and treatment
lines. The radiomic signatures were obtained from the pre-
treatment CE-T1WI of the MRI in order to assess the mor-
phology, signal intensity, and spatial diversity of the tumoral
and peritumoral areas. Finally, we verified the prognostic
value of the nomogram for patients.

In the past 10 years, there has been a remarkable trans-
formation in lung cancer treatment. The high mutational
burden of SCLC has resulted in the development of ICIs,
which can be used alone or in combination with chemother-
apy.21 Despite significant benefits, resistance to ICIs fre-
quently occurs in lung cancer, manifesting as either a lack of
response or disease deterioration after an initial positive
response. Therefore, the efficacy of the ICIs varies consider-
ably among individual patients. Nevertheless, the task of
accurately predicting the individuals who would exhibit a
reaction to ICIs has presented significant challenges. There
is a higher mortality rate particularly in BM patients. At pre-
sent, the clinical efficacy of SCLC patients with BMs remains
uncertain, and only a limited number of clinical trials have
included subgroup analyses focused on BMs. Invasive exam-
inations are also usually unsuitable for patients with BMs,
which increases the difficulty of predicting efficacy. Conse-
quently, a pressing requirement exists to identify an accurate
and repeatable decision-making method in clinical applica-
tions for selecting the beneficiaries of immunotherapy for
SCLC patients with BMs. At present, multiple previous stud-
ies indicate that radiomics has the potential to work as a
predictive tool for assessing the prognosis and response to
treatment in patients with SCLC. The study conducted by
Jain et al.22 showed that radiomic features obtained from CT
images of the lung tumor, both inside and around the
tumor, were predictors of OS and the effectiveness of che-
motherapy in patients with SCLC. Chen et al.23 established
and validated a PFS predictive model based on random for-
ests that performed better than the predictions made by sin-
gle clinical features in SCLC patients. Furthermore, a
number of radiomics model predictions have been estab-
lished to predict tumor differential diagnosis in SCLC

patients.24–29 These previous studies have demonstrated that
the radiomics method is practicable for predicting the intra-
cranial efficacy of ICIs in SCLC.

We chose CE-T1WI to extract radiomic features. As
indicated by multiple previous studies related to the progno-
sis of brain tumors, there is a significant correlation between
prognosis and the radiomic features in the contrast-
enhanced region of MRI.30 Among all 10 selected features in
our study, the tumoral region contributes more than the
peritumoral region, with nine features from the tumor and
one from the peritumor. Furthermore, more features with
an ICC >0.75 selected from the tumor region were more
reliable than peritumoral, possibly due to more heteroge-
neous information within the tumor region. However,
according to many previous studies, heterogeneity in peritu-
moral areas is also an important feature that should be
quantified for treatment outcome prediction in BMs.31,32

Consequently, it is reasonable to extract radiomic features
from the tumoral and peritumoral regions of the CE-T1WI,
which can include most of the details of the heterogeneous
areas of BMs and better predict the efficacy of patients with
BMs than the features from a single region. Then, evaluating
the combination of radiomics features and clinical factor
models or using any one separately, the results showed that
the combined model had stronger predictive power, as
shown by many previous studies that focused on radiomics
nomograms. Jaberipour et al. also reported a 16% relative
improvement in AUC for local failure prediction in BMs
undergoing hypofractionated stereotactic radiotherapy when
radiomic and clinical characteristics were combined, com-
pared to the clinical characteristics alone.33 In our study,
two clinical indicators were significantly associated with the
intracranial efficacy of SCLC, namely the treatment lines
and NLR. Yang et al.34 report ES-SCLC clinical practice
should use first-line ICIs combined with chemotherapy. If
the patient has not received ICIs as first-line treatment, con-
sideration should be given to incorporating ICIs into the
second-line treatment. This study showed that with chemo-
therapy alone as the first-line treatment followed by ICIs as
a second-line treatment, PFS was extended but did not reach
a significant difference. Two other prospective clinical trials
have shown that the efficacy of immunotherapy in the
second-line treatment of SCLC is unclear. CheckMate-33135

is a phase III clinical trial primarily targeting SCLC patients

F I G U R E 4 Kaplan–Meier survival analysis of the radiomics nomogram. All patients were divided into low-score (red line) and high-score (blue line)
groups based on the median of the radiomics nomogram scores. The Kaplan–Meier analysis of (a) progression-free survival (PFS) and (b) iPFS showed
statistically significant differences in the two patient groups but not (c) overall survival (OS).
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who have relapsed after first-line platinum chemotherapy,
making a comparative trial between nivolumab and stan-
dard chemotherapy regimens. The main study endpoint OS
remained a negative result between the two groups (7.5
vs. 8.4 months, HR = 0.86), while PFS was even worse
numerically in the nivolumab group (1.4 vs. 3.8 months,
HR = 1.41). The IFCT-160336 study is a phase II clinical
trial evaluating the efficacy and safety of atezolizumab com-
pared to chemotherapy after the progression of first-line EP
regimen treatment. The results showed that the 6-week
objective response rate of the atezolizumab group and che-
motherapy group were 2.3% and 10%, respectively, with PFS
of 4.3 and 1.4 months (HR = 2.26, 95% CI: 1.3–3.93,
p = 0.004), but there was no difference in OS between the
two groups (9.5 vs. 8.7 months; HR = 0.84, 95% CI: 0.45–
1.58, p = 0.6). The above studies are consistent with our
research results, showing that applying ICIs in the first-line
treatment of ES-SCLC can achieve better intracranial effi-
cacy, and both iPFS and PFS are prolonged. However, the
efficacy of using ICIs in second-line treatment of ES-SCLC
is unsatisfactory. Another clinical predictor, NLR, has been
confirmed by multiple previous studies37,38 to be associated
with the prognosis of ES-SCLC, with higher NLR typically
indicating poorer prognosis. NLR can reflect the systemic
inflammatory status. Inflammatory response has a tumor-
promoting effect, which helps the proliferation and survival
of tumor cells, promotes angiogenesis and metastasis.39

The model established in this study was further evaluated
for long-term survival assessment through Kaplan–Meier
analysis. The Kaplan–Meier curves of patients in the low and
high-score groups showed statistically significant differences
in terms of PFS and iPFS, indicating that the model has the
potential to divide pretreatment BM patients into different
long-term prognostic groups. However, it failed to stratify
OS, potentially because of the limited sample size. We further
analyzed the predictive ability of the established combined
model in the different subgroups. The model achieved good
performance in the subgroups of chemotherapy combined
with PD-1 or PD-L1, respectively. Therefore, our model per-
formance is stable, and when PD-L1 inhibitors are not avail-
able, PD-1 inhibitors can be considered as a substitute. In
recent years, serplulimab combined with chemotherapy has
become a breakthrough in the first-line treatment of ES-
SCLC. Another important issue related to the radiomics
nomogram is its role in guiding clinical decision-making.
According to the decision curve, if the radiomics nomogram
shows that a certain SCLC patient with BMs will respond well
to treatment, adopting appropriate intervention strategies will
promote the patient’s prognosis.

There were still several limitations in this study. First, it
was conducted retrospectively and was subject to its inher-
ent limitations, including the presence of unavoidable selec-
tion bias. Second, manual segmentation in this research may
have introduced potential bias in selecting tumor slices and
delineating manual ROIs. Therefore, a reproducibility analy-
sis was conducted in order to verify the repeatability of the
delineated ROI, as mentioned in the part on feature

selection. Third, the radiomics nomogram was built using a
training cohort and verified in the independent external val-
idation cohort. Although the multi-institutional data guar-
antees the radiomics nomogram’s clinical generalizability
and utility, morbidity reduces the sample size, making it
lower than other type of tumor radiomics research samples
but comparable to SCLC studies.

In conclusion, we developed and validated a radiomics
nomogram prediction model for predicting the intracranial
efficacy of ICIs in SCLC patients with BMs. This study can
help tailor patient treatment schedules, improve clinical
decision-making, and offer extensive potential applications.
A larger cohort of patients is still necessary for subsequent
studies.
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