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Dissecting key regulators of transcriptome 
kinetics through scalable single-cell RNA 
profiling of pooled CRISPR screens

Zihan Xu    1,2, Andras Sziraki1,2, Jasper Lee1, Wei Zhou1,3 & Junyue Cao    1,3 

We present a combinatorial indexing method, PerturbSci-Kinetics, for 
capturing whole transcriptomes, nascent transcriptomes and single 
guide RNA (sgRNA) identities across hundreds of genetic perturbations 
at the single-cell level. Profiling a pooled CRISPR screen targeting various 
biological processes, we show the gene expression regulation during 
RNA synthesis, processing and degradation, miRNA biogenesis and 
mitochondrial mRNA processing, systematically decoding the genome-wide 
regulatory network that underlies RNA temporal dynamics at scale.

Cellular functions are determined by the expression of millions of 
RNA molecules, which are tightly regulated by their synthesis, splic-
ing and degradation. However, understanding how key regulators 
impact genome-wide RNA kinetics is constrained by existing tools, 
which provide only snapshots of the transcriptome1–8. To resolve this 
challenge, we developed PerturbSci-Kinetics, combining CRISPR-based 
pooled genetic screen, single-cell RNA sequencing (RNA-seq) by com-
binatorial indexing and RNA metabolic labeling to uncover single-cell 
transcriptome dynamics across extensive genetic perturbations.

PerturbSci-Kinetics features a combinatorial indexing strategy 
(‘PerturbSci’) for targeted capture of single guide RNA (sgRNA) tran-
scripts that carries the same cellular barcode with the whole tran-
scriptome (Fig. 1a). In brief, we adopted the modified CRISPR droplet 
sequencing (CROP-seq) vector5 and developed a strategy for cap-
turing sgRNA sequences6,7 through reverse transcription using an 
sgRNA-specific primer followed by targeted enrichment of sgRNA 
sequences via polymerase chain reaction (PCR) (Extended Data  
Fig. 1, Supplementary Notes 1 and 2 and Supplementary Table 1). With 
extensive optimizations (Extended Data Fig. 2), PerturbSci achieves a 
high knockdown efficacy with a potent dual-repressor dCas9 (that is, 
dCas9-KRAB-MeCP2; ref. 9) and a high capture rate of sgRNA (that is, 
up to 99.7% of cells) and can readily scale up for profiling a large num-
ber of cells using the three-level combinatorial indexing approach10  
(Fig. 1b and Supplementary Note 3).

By incorporating 4-thiouridine (4sU) labeling11–17, PerturbSci- 
Kinetics retrieves time-resolved nascent transcriptomes at single-cell 
resolution, distinguishing newly synthesized transcripts from whole 

transcriptomes. The kinetic rates of mRNA such as RNA synthe-
sis and degradation in each genetically perturbed cell population 
were then inferred (Fig. 1a and Methods). Our method incorporates 
several optimizations to reduce the cell loss (Extended Data Fig. 2) 
and enhance the accuracy of nascent reads calling (Extended Data  
Fig. 3). With three levels of combinatorial indexing, PerturbSci-Kinetics 
demonstrates orders of magnitude higher throughput than previous 
approaches coupling metabolic labeling and single-cell RNA-seq (for 
example, scEU-seq, sci-fate and scNT-seq)18–22 (Fig. 1b).

As a proof of concept, we established a human HEK293 cell line with 
inducible dCas9-KRAB-MeCP2 (ref. 9) expression (HEK293-idCas9). 
We thoroughly validated the potent knockdown of target gene expres-
sion after doxycycline (dox) treatment (Fig. 1c and Extended Data  
Fig. 4a–c). Furthermore, we demonstrated the purity of the single-cell 
transcriptome and sgRNA capture of PerturbSci by profiling mixed 
human and mouse cells transduced with human and mouse-specific 
sgRNAs, respectively (Fig. 1d).

We proceeded to validate the capability of PerturbSci-Kinetics 
in capturing the three-layer readout at the single-cell level. After 
4sU labeling and chemical conversion, we observed a significant 
enrichment of T-to-C mismatches in the mapped reads, which 
is consistent with findings from our previous study20 (Fig. 1e). A 
median of 22.1% of newly synthesized reads were recovered, in con-
trast to only 0.8% in control cells (Fig. 1f). The proportion of reads 
mapped to exonic regions was also significantly lower in nascent 
reads compared to pre-existing reads (P < 1 × 10−20, Tukey’s test 
after ANOVA) (Fig. 1g). Moreover, genes with a higher fraction of 
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a proportion of cells for bulk library preparation (referred to as ‘day 0’ 
samples) and induced dCas9-KRAB-MeCP2 expression with dox for seven 
more days. The screening window was carefully chosen to maximize 
gene knockdown efficiency, minimize population dropout8 and allow 
cells to attain transcriptomic steady states24 (Extended Data Fig. 4d).  
We performed 200 µM 4sU labeling for 2 h at the end of the screening 
and harvested samples for both bulk and PerturbSci-Kinetics library 
preparation. As a quality control, the activation of CRISPR interference 
(CRISPRi) significantly altered the abundance of sgRNAs in the pool, 
which was consistent across replicates and aligned with previous stud-
ies25. For example, genes involved in essential functions (for example, 
DNA replication and ribosome assembly) were strongly depleted after 
the screening (Extended Data Fig. 4e,g). Reassuringly, the number of 

nascent reads were significantly enriched in highly dynamic bio-
logical processes23, whereas housekeeping genes were strongly 
enriched in genes with a lower fraction of nascent reads (Fig. 1h–i).  
Notably, the chemical conversion step is fully compatible with sgRNA 
detection. We recovered sgRNAs from 97% of chemically converted 
cells (a median of 62 sgRNA unique molecular identifiers (UMIs) per 
cell), in which 92.6% were annotated as sgRNA singlets (Fig. 1j–k).

To dissect the impact of genetic perturbations on transcrip-
tome kinetics, we performed a PerturbSci-Kinetics screening on 
HEK293-idCas9 cells. These cells were transduced with a library of 
699 sgRNAs, which included 15 no-target controls (NTCs), targeting a 
total of 228 genes involved in diverse biological processes (Fig. 2a and 
Supplementary Table 2). After a 5-d puromycin selection, we harvested 
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Fig. 1 | PerturbSci-Kinetics enables joint profiling of transcriptome dynamics 
and high-throughput gene perturbations. a, Scheme of PerturbSci-Kinetics. 
*4sU, chemically modified 4sU; α and Synth, RNA synthesis rate; β and Deg, RNA 
degradation rate; R and Exp, steady-state expression; tx, transcripts. b, Bar plot 
showing the cell numbers profiled in this study and those from published single-
cell RNA-seq coupled with metabolic labeling20–22. c, Left, the log-transformed 
normalized expression of dCas9-KRAB-MeCP2 in untreated (n = 3,344 cells) 
or dox-induced (n = 1,419 cells) HEK293-idCas9 cells. Right, the normalized 
expression of IGF1R in dox-induced HEK293-idCas9 cells transduced with sgNTC 
(n = 688 cells) or sgIGF1R (n = 820 cells). Norm, normalized. d, An equal number 
of induced HEK293-idCas9-sgIGF1R cells and 3T3-CRISPRi-sgFto cells were 
mixed and were profiled using PerturbSci. Scatter plot showed the concordance 
between percentage of transcriptome and sgRNA reads mapping to human 
and mouse genomes and human and mouse sgRNA, respectively, for each cell. 
e, Bar plot showing the sequencing-depth-normalized percentages of single-

base mismatches in reads from sci-fate20 and PerturbSci-Kinetics on chemically 
converted or unconverted cells. f, Box plot showing the fraction of nascent 
reads recovered from single cells without 4sU labeling and chemical conversion 
(n = 1,498 cells), 4sU-labeled cells without chemical conversion (n = 1,008 
cells) and 4sU-labeled/converted cells (n = 2,568 cells). g, Box plot showing the 
proportion of nascent, pre-existing and whole-transcriptome reads mapped to 
exons of the genome across single cells (n = 4,115 cells). h,i, Bar plots showing the 
enriched GO terms in genes with low (h) or high (i) nascent reads fractions. One-
sided Fisher’s exact tests were conducted with the alternative hypothesis that 
the true odds ratio is greater than 1. j, Box plot showing the sgRNA UMI counts 
per cell in cells with (n = 2,568 cells) or without (n = 2,506 cells) the chemical 
conversion. k, Stacked bar plot showing the fraction of converted/unconverted 
cells identified as sgNTC/sgIGF1R singlets, doublets and cells with no sgRNA 
detected. Boxes in box plots indicate the median and interquartile range (IQR), 
with whiskers indicating 1.5× IQR.
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Fig. 2 | Characterizing the impact of genetic perturbations on gene-specific 
transcriptional and degradation dynamics with PerturbSci-Kinetics.  
a, Scheme of the experimental design. b, Scatter plot shows the correlation between 
perturbation-associated cell count from PerturbSci-Kinetics and sgRNA read 
counts from bulk screen libraries. c, Box plot showing the log2-transformed FCs of 
gene expression, synthesis rates and degradation rates of sgRNA-targeted genes 
(n = 203 genes) in perturbed cells expressing the corresponding sgRNA compared 
to NTC. d, UMAP visualization of perturbed pseudobulk whole transcriptomes 
profiled by PerturbSci-Kinetics. We aggregated single-cell transcriptomes in each 
perturbation, followed by dimension reduction using PCA and visualization 
using UMAP. Population classes: the functional categories of genes targeted 
in different perturbations. e–h, Scatter plots showing the extent and the 
significance of changes on the distributions of global synthesis (e), degradation 
(f), proportions of exonic reads in the nascent transcriptome (g) and proportions 
of mitochondrial nascent reads (h) upon perturbations compared to NTC cells. 
The FCs were calculated by dividing the median values of each perturbation with 
that of NTC cells and were log2 transformed. Dashed lines indicate the statistical 
thresholds that were used (horizontal line, −log10(0.05); vertical line, 0). i, Scatter 

plot showing the number of synthesis/degradation-regulated DEGs from different 
perturbations. nDEGs, number of DEGs. j,k, Venn diagrams showing the number 
of merged DEGs with significantly enhanced synthesis (j) or impaired degradation 
(k) between DROSHA and DICER1. One-sided Fisher’s exact tests were conducted 
with the alternative hypothesis that the true odds ratio is greater than 1. l, Heat 
maps showing the steady-state expression, synthesis and degradation rate 
changes of genes included in j–k. Tiles of each row are colored by FCs of values of 
perturbations relative to NTC. tx, transcriptome. m, Line plot showing the AGO2 
binding patterns on transcripts of protein-coding genes in j–k revealed by eCLIP 
signal intensity. Data were obtained from a previous study42. Dashed lines indicate 
the position of the beginning of CDS (left) and the beginning of 3′ UTR (right). 
n, Box plots showing the relative proportion of labeled mRNA of transcription-
regulated genes (n = 8) and degradation-regulated genes (n = 12) after chase 
labeling for different times in HEK293-idCas9-sgNTC, sgDROSHA and sgDICER1 
cells. Two-sided Studentʼs t-tests were performed between knockdown groups 
and the NTC group. Boxes in box plots indicate the median and interquartile range 
(IQR), with whiskers indicating 1.5× IQR. OXPHOS, oxidative phosphorylation; 
Puro, puromycin.
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sgRNA singlets recovered by PerturbSci-Kinetics correlated well with 
read counts of bulk screen libraries (Pearson correlation r = 0.988, 
P < 2.2 × 10−16) (Fig. 2b).

We recovered 161,966 labeled cells with matched sgRNAs (88% 
of cells recovered in total), and 126,271 cells were annotated as sgRNA 
singlets (Extended Data Fig. 4j). Despite the shallow sequencing depth 
(~8,000 reads per cell), we achieved a median of 2,155 UMIs per cell. 
Of 699 sgRNAs, 698 were successfully recovered, with a median of 
28 sgRNA UMIs per cell. Subsequently, we excluded cells containing 
sgRNAs that demonstrated low knockdown efficiencies (≤40% gene 
expression reduction compared to NTC). The RT–qPCR validation on 
several individual sgRNAs corroborated the accuracy of our knockdown 
efficiency estimates (Extended Data Fig. 4h–l). Ultimately, 98,315 cells 
were retained for downstream analysis, corresponding to a median of 
484 cells per gene perturbation and a median knockdown efficiency 
of target genes at 67.7% (Fig. 2c).

We next quantified gene-specific synthesis and degradation 
rates in each perturbation using an ordinary differential equation 
approach26 (Methods). As expected, genes targeted by the CRISPRi 
demonstrated substantially reduced synthesis rates, whereas their 
degradation rates exhibited only mild alterations (Fig. 2c). As another 
validation, we observed significantly higher correlations of transcrip-
tomes among sgRNAs targeting the same genes across multiple layers 
(for example, whole/nascent transcriptome and synthesis/degradation 
rates; Extended Data Fig. 5a). We then performed dimension reduction 
and uniform manifold approximation and projection (UMAP) visu-
alization27 on aggregated whole transcriptomes of each perturbation. 
Perturbations targeting paralogous genes (for example, EXOSC5 and 
EXOSC6) or related biological processes (for example, RNA degrada-
tion and energy metabolism) were readily clustered together (Fig. 2d). 
Similar analyses on gene-specific synthesis/degradation rates managed 
to group perturbations by their functions (Extended Data Fig. 5b,c). 
Furthermore, by aggregating profiles of single cells carrying sgRNAs 
that target the same gene, we achieved robust estimations for both 
whole/nascent transcriptomes as well as transcriptome kinetic rates 
(Extended Data Fig. 5d).

We then investigated how genetic perturbations influence global 
transcriptome dynamics (Fig. 2e–g, Extended Data Fig. 6a–c,e–g and 
Supplementary Tables 5–7). As expected, the knockdown of genes 
encoding proteins involved in transcription initiation (for example, 
GTF2E1 and TAF2), mRNA synthesis (for example, POLR2B and POLR2K) 
and chromatin remodeling (for example, SMC3 and RAD21) significantly 
downregulated the global synthesis rates but not the degradation 
rates. Conversely, perturbations targeting critical biological processes, 
such as DNA replication (for example, POLA2 and POLD1), ribosome 
synthesis and rRNA processing (for example, POLR1A, POLR1B, RPL11 
and RPS15A) and mRNA and protein processing (for example, CNOT2, 
CNOT3, CCT3 and CCT4), reduced both global RNA synthesis and deg-
radation, indicating a compensatory mechanism for maintaining tran-
scriptome homeostasis28 (Fig. 2e,f). Moreover, we noted significant 
reductions in exonic read fractions in nascent transcriptomes after 
perturbations related to RNA processing (for example, NCBP1, LSM2, 
LSM4, CPSF2 and CPSF6) and energy metabolism (for example, GAPDH 
and NDUFS2), signifying dysregulated splicing dynamics (Fig. 2g).

Interestingly, the knockdown of AGO2, a recognized 
post-transcriptional regulator29, led to an increase in global synthesis, 
suggesting its potential role in transcriptional repression (Fig. 2e). The 
re-analysis of public datasets30,31 corroborated our observation. Specifi-
cally, genes exhibiting enriched AGO2 binding at transcription start 
sites (TSSs) were markedly upregulated after AGO2 silencing (Extended 
Data Fig. 7a,b). Additionally, the enrichment of AGO2 binding was 
observed immediately downstream of the TSS and was positively cor-
related with transcriptional pausing (Extended Data Fig. 7a–d). For 
validation, we employed SLAM-seq32 to examine the transcriptomic 
response after AGO2 knockdown, identifying 78 highly paused genes 

significantly upregulated (FDR of 0.05). Notably, the nascent RNA of 
these genes showed increased 3′ end coverages compared to NTC, 
indicative of more efficient transcriptional elongation (Extended Data 
Fig. 7e,f). Collectively, our integrated analyses support the unconven-
tional function of AGO2 in transcriptional repression.

We next investigated regulators of mitochondrial RNA dynamics 
by quantifying the fraction of nascent reads in single-cell mitochondrial 
transcriptomes. A significant reduction in mitochondrial transcrip-
tome turnover was observed after perturbing metabolism-associated 
genes, including those encoding proteins involved in glycolysis (for 
example, GAPDH, FH and PKM), the tricarboxylic acid (TCA) cycle 
(for example, ACO2 and IDH3A) and oxidative phosphorylation (for 
example, NDUFS2 and COX6B1) (Fig. 2h, Extended Data Fig. 6d,h and 
Supplementary Table 8). Notably, LRPPRC emerged as a key mitochon-
drial RNA dynamics regulator, as its knockdown led to substantial 
reduction in both turnover rates and expression levels across most 
mitochondrial protein-coding genes and mitochondrial functional 
defects (Extended Data Fig. 8a–c and Supplementary Table 9). In con-
trast, nuclear-encoded genes were primarily regulated at the tran-
scriptional level upon LRPPRC knockdown (Extended Data Fig. 8d–f). 
These kinetic changes in mitochondrial mRNA were validated through 
an independent PerturbSci-Kinetic experiment that profiled with LRP-
PRC knockdown (Extended Data Fig. 8g–i). Recent studies reported 
similar findings, observing impaired mitochondrial gene expression 
and mitochondrial functional defects in the hearts of LRPPRC knock-
out mice33 and in brown adipocyte-specific LRPPRC knockout mice34. 
This further corroborates the essential role of LRPPRC in maintaining 
mitochondrial mRNA homeostasis.

To further demonstrate the unique capacity of PerturbSci-Kinetics 
in unraveling the regulatory mechanisms that govern gene expres-
sion control, we identified 14,618 differentially expressed genes 
(DEGs) across perturbations, with 22.9% of them exhibiting signifi-
cant changes in their synthesis or degradation rates (Supplementary 
Tables 10 and 11 and Methods). Among these, DEGs regulated by RNA 
degradation were associated with perturbations in mRNA surveil-
lance/processing genes (Fig. 2i). For instance, our study revealed a set 
of significantly overlapped DEGs upon knockdown of DROSHA and 
DICER1 (refs. 35,36), genes encoding two crucial RNases in the miRNA 
biogenesis pathway37 (Extended Data Fig. 9a–c). These DEGs were 
regulated through distinct mechanisms: some genes were regulated by 
decreased degradation (for example, genes encoding miRNA-mediated 
silencing complex (RISC) components: TNRC6A and TNRC6B), whereas 
others are regulated through increased transcription (for example, 
miRNA host genes: MIR181A1HG and FTX; genes encoding protein 
involved in miRNA biogenesis: DDX3X) (Fig. 2j–l and Supplementary 
Table 12). The RNA-binding pattern of AGO2, a core component of 
RISC for miRNA-mediated mRNA degradation38, further validated our 
findings, exhibiting a strong enrichment in the untranslated regions 
(UTRs) of transcripts from degradation-regulated genes but not in 
synthesis-regulated genes (Fig. 2m). This finding was further sub-
stantiated through PerturbSci-Kinetics profiling on individual sgRNA 
knockdown clones and SLAM-seq after 4sU chase labeling32 (Fig. 2n 
and Extended Data Fig. 9d–g).

Finally, we delved into the effects of genetic perturbations on RNA 
dynamics during cell cycle progression. Using our validation dataset, 
we separated cells into five clusters representing different cell cycle 
stages using cell-cycle-related genes39 (Extended Data Fig. 10a–c), 
and we then calculated stage-specific kinetic rates of genes. Employ-
ing mfuzz clustering40, we identified four gene clusters displaying 
discrepant cell cycle timecourse synthesis dynamics patterns. Among 
these, only genes in cluster 1 exhibited evident steady-state expression 
fluctuations (Extended Data Fig. 10d). Although their synthesis and 
degradation rates both increased in early cell cycle phase, the syn-
thesis rates outpaced the degradation rates, leading to an increase in 
steady-state mRNA levels from the S to the G2M stage. Gene Ontology 
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(GO) term analysis further supported the crucial roles of proteins 
encoded by these genes in cell cycle (Extended Data Fig. 10e). Inter-
estingly, in cells with DROSHA and DICER1 knockdown, we observed 
a similar steady-state expression pattern for genes in cluster 1 but 
with unresponsive degradation and compensated synthesis during 
cell cycle progression (Extended Data Fig. 10f), suggesting the exist-
ence of synthesis/degradation feedback loops for gene regulation. In 
contrast, LRPPRC knockdown did not impact cell-cycle-dependent 
RNA degradation dynamics (Extended Data Fig. 10g), aligning with 
our results that it specifically affects mitochondrial mRNA stability. 
Together, our study emphasizes the coordinated regulation of gene 
expression throughout the cell cycle progression and highlights 
the presence of intricate feedback loops between RNA synthesis  
and degradation.

In summary, PerturbSci-Kinetics allows for the quantitative analy-
sis of the genome-wide mRNA kinetics across genetic perturbations 
in a massively parallel manner. Of note, there are several potential 
limitations to consider. First, extended 4sU labeling might impact cell 
states and potentially hinder the identification of sgRNA sequences. 
To mitigate this, we opted for a relatively short-term (2 h) treat-
ment to minimize such effects. Second, RNA dynamics identified by 
PerturbSci-Kinetics may not directly reflect causality in gene regulation, 
partly due to the gradual nature of CRISPRi-based gene knockdown. 
This limitation could be mitigated by coupling the technique with 
large-scale chemical perturbations. Third, the perturbation of essential 
genes might lead to significant dropout, affecting dynamic rate esti-
mations due to limited cells and reads. Moreover, apoptosis-triggered 
mRNA decay might further complicate the analysis41. Therefore, we 
recommend excluding genetic perturbations that lead to either strong 
dropout effects or substantial disruption of cell cycle distribution dur-
ing RNA dynamics analysis.

Despite these limitations, our findings illuminate the distinct 
advantages of PerturbSci-Kinetics over conventional assays. Its 
multi-layer readout provides a comprehensive perspective on gene 
expression and RNA dynamics in response to genetic perturbations, 
facilitating high-throughput and parallel characterization of elements 
that govern gene-specific RNA dynamics. Moreover, given the low cost 
and high sensitivity of PerturbSci, we envision the potential to system-
atically dissect cell-type-specific gene regulatory networks across 
various biological contexts with an unparalleled scale and resolution.

Online content
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Methods
Cell culture
The 3T3-L1-CRISPRi cell line was obtained from the Tissue Culture facil-
ity at the University of California, Berkeley. The HEK293 cell line was 
a gift from the Scott Keeney laboratory at Memorial Sloan Kettering 
Cancer Center. The HEK293T cell line and the NIH/3T3 cell line were 
obtained from the American Type Culture Collection. All cells were 
maintained at 37 °C and 5% CO2 in high glucose DMEM medium sup-
plemented with l-glutamine and sodium pyruvate (Gibco, 11995065) 
and 10% FBS (Sigma-Aldrich, F4135).

Cell lines generation
To generate HEK293 cells with dox-inducible dCas9-KRAB-MeCP2 
expression, the lentiviral plasmid Lenti-idCas9-KRAB-MeCP2-
T2A-mCherry-Neo was constructed. After sequencing validation, the 
lentivirus was produced by co-transfecting Lenti-idCas9-KRAB-MeC
P2-T2A-mCherry-Neo with psPAX2 (Addgene, 12260) and pMD2.G 
(Addgene, 12259) into low-passage HEK293T cells in a 10-cm dish using 
Polyjet (SignaGen, SL100688). After lentiviral titration, HEK293 cells 
were transduced at a multiplicity of infection (MOI) of 0.2 for 48 h. 
Cells were treated with 1 µg ml−1 dox (Sigma-Aldrich, D5207) for 48 h, 
and single cells with strong mCherry fluorescence were sorted for 
monoclonal generation.

The polyclone 3T3-CRISPRi cell line was generated in a similar 
way. pHR-SFFV-dCas9-BFP-KRAB (Addgene, 46911) was co-transfected 
with psPAX2 and pMD2.G to generate dCas9-expressing lentivirus, 
and the transduction at MOI = 0.2 was performed on 3T3 cells. BFPhi 
cells (top 35% in the BFP+ population) were sorted, and the sorting was 
repeated twice more after cell expansion to enrich cells with strong 
dCas9 expression.

Single-gene knockdown and efficacy examination
CROP-seq-opti-Puro-T2A-GFP was assembled by adding a T2A-GFP 
downstream of puromycin-resistant protein coding sequence on 
the CROP-seq-opti plasmid (Addgene, 106280). Oligos for individual 
guides cloning were ordered from Integrated DNA Technologies (IDT) 
with the following design:

Plus strand: 5′-CACCG[20 bp sgRNA plus strand sequence]-3′
Minus strand: 5′-AAAC[20 bp sgRNA minus strand sequence]C-3′
Oligos were phosphorylated using T4 PNK (New England Biolabs 

(NEB), M0201S) and were annealed. The CROP-seq-opti-Puro-T2A-GFP 
was digested by Esp3I (NEB, R0734L), and then the linearized backbone 
and the annealed duplex were ligated using the Blunt/TA Ligase Master 
Mix (NEB, M0367S). Transformation, clone amplification, sequencing 
validation, lentivirus generation and titer measurement were done as 
stated above.

Mouse 3T3-L1-CRISPRi cells and 3T3-CRISPRi cells were trans-
duced with the lentivirus expressing NTC sgRNA or sgRNA target-
ing Fto. Human HEK293-idCas9 cells were transduced with lentivirus 
expressing NTC sgRNA or sgRNA targeting IGF1R during technique 
development, and HEK293-idCas9-sgXPO5, sgAGO2, sgDROSHA, 
sgDICER1 and sgLRPPRC cell lines were later established for validat-
ing significant hits from the screen. Transduction was carried out at 
MOI = 0.2 with 8 µg ml−1 of polybrene for 48 h. Transduced cells were 
then selected by either fluorescence-activated cell sorting (FACS) or 
puromycin treatment.

For RT–qPCR validation, primer pairs were selected from Primer-
Bank (https://pga.mgh.harvard.edu/primerbank/) and were synthesized 
by IDT. Total RNA of each sample was extracted using the RNeasy Mini 
Kit (Qiagen, 74104). Then, 1 µg of total RNA was reverse transcribed, and 
PowerUp SYBR Green Master Mix (Thermo Fisher Scientific, A25742) 
was used for RT–qPCR following the manufacturer’s instructions. The 
data were analyzed and visualized by GraphPad Prism (9.2.0) software.

For flow cytometry validation, 1 × 106 cells of each sample were 
harvested and resuspended in 100 µl of PBS/0.1% sodium azide/2% FBS. 

BV421 Mouse Anti-Human CD221 (BD Biosciences, 565966) and BV421 
Mouse IgG1 κ Isotype Control (BD Biosciences, 562438) at the final 
concentration of 10 µg ml−1 were added, and reactions were incubated 
at 4 °C in the dark with rotation for 30 min. Cells were then washed 
twice using PBS/0.1% sodium azide/2% FBS, and fluorescence signals 
were recorded. The data were analyzed and visualized by FlowJo (10.8.1) 
software.

Construction of the pooled sgRNA library
Genes to be included in our sgRNA library were selected based on the 
following considerations. (1) Essential and non-essential genes were 
identified using the bulk CRISPR screen data from a previous report25 
and Depmap43, and both were included in the gene set. (2) To validate 
the ability of PerturbSci-kinetics to characterize gene-specific RNA 
dynamics, we selected genes involved in transcription, chromatin 
remodeling, RNA processing and mRNA decay based on GO terms44 and 
KEGG pathways45. (3) We ensured that all selected genes were expressed 
in the cell line to be used in our study. An in-house HEK293 EasySci-RNA 
dataset was used to select expressing genes that met criteria 1 and 2.

sgRNA sequences targeting genes of interest were obtained from 
an established optimized CRISPRi sgRNA library (set A)25. Finally, 684 
sgRNAs targeting 228 genes (three sgRNAs per gene) and 15 NTCs were 
included in the present study.

The single-stranded sgRNA library was synthesized in a pooled 
manner by IDT in the following format:

5′-GGCTTTATATATCTTGTGGAAAGGACGAAACACCG[20 bp 
sgRNA plus strand sequence]GTTTAAGAGCTATGCTGGAAACAGCATA 
GCAAGTT-3′

Next, 100 ng of oligo pool was amplified by PCR using primers 
targeting the 5′ homology arm (HA) and the 3′ HA. The PCR prod-
uct was purified, and the insert was cloned into Esp3I-digested 
CROP-seq-opti-Puro-T2A-GFP by Gibson Assembly. In parallel, a con-
trol Gibson Assembly reaction containing only the backbone was set. 
Both reactions were cleaned up by 0.75× AMPure beads (Beckman 
Coulter, A63882) and eluted in 5 µl of EB buffer (Qiagen, 19086) and 
then were transformed into Endura electrocompetent cells (Lucigen, 
602422) by electroporation (Gene Pulser Xcell Electroporation  
System; Bio-Rad, 1652662). After recovery, cells of each reaction were 
spread onto a 245-mm square agarose plate (Corning, 431111) with 
100 µg ml−1 carbenicillin (Thermo Fisher Scientific, 10177012) and 
were then grown at 32 °C for 13 h. All colonies from each reaction were 
scraped from the plates, and the CROP-seq-opti-Puro-T2A-GFP-sgRNA 
plasmid library was extracted using ZymoPURE II Plasmid Midiprep Kit 
(Zymo Research, D4200). The lentiviral library was generated as stated.

The pooled PerturbSci-Kinetics screen experiment
For each replicate, 7 × 106 uninduced HEK293-idCas9 cells were seeded. 
Two replicates were transduced at MOI = 0.1, and another two repli-
cates were transduced at MOI = 0.2. At least 1,000× coverage was kept 
throughout the cell culture. At the end of the puromycin selection, we 
harvested 1.4 × 106 cells in each replicate (2,000× coverage per sgRNA) 
as day 0 samples of the bulk screen and pellet down at 500g and 4 °C 
for 5 min for genomic DNA extraction. For the rest of the cells, the 
dCas9-KRAB-MeCP2 expression was induced by adding dox at the final 
concentration of 1 µg ml−1, and l-glutamine+, sodium pyruvate−, high 
glucose DMEM was used to sensitize cells to perturbations on energy 
metabolism genes. Cells were cultured for an additional 7 d. On day 
7, 6 ml of the original media from each plate was mixed with 6 µl of 
200 mM 4sU (Sigma-Aldrich, T4509-25MG) dissolved in DMSO (VWR, 
97063-136) and was put back for nascent RNA metabolic labeling. After 
2 h of treatment, 1.4 × 106 cells in each replicate were harvested as day 
7 samples of the bulk screen, and the rest of the cells were fixed for 
PerturbSci-Kinetics profiling (see the next subsection).

Genomic DNA of bulk screen samples was extracted using 
Quick-DNA Miniprep Plus Kit (Zymo Research, D4068T) following the 
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manufacturer’s instructions. The bulk screen libraries were amplified 
from genomic DNA extracted using custom primers (Supplementary 
Note 2) for sequencing.

Step-by-step protocols for PerturbSci-Kinetics library preparation 
are included in Supplementary Note 1.

4sU pulse and chase labeling and SLAM-seq
HEK293-idCas9-sgAGO2 and sgNTC cells were induced with dox for 
7 d in 10-cm dishes, and cells were labeled with 600 µM 4sU for 20 min 
before total RNA extraction. HEK293-idCas9-sgDROSHA, sgDICER1 and 
sgNTC cells were induced with dox for 7 d and were treated with dox+ 
medium containing 100 µM 4sU for 18 h. The medium was refreshed 
every 6 h. Then, chase labeling was performed by using medium with 
10 mM uridine (Sigma-Aldrich, U3750-1G). After 2-h and 4-h incubation, 
total RNA was extracted.

Next, 2–5 µg of total RNA from each sample was used for chemical 
conversion. RNA was diluted into 15 µl and mixed with 5 µl of 100 mM 
iodoacetamide (IAA), 5 µl of NaPO4 (pH 8.0, 500 mM) buffer and 25 µl  
of DMSO. The reaction was incubated at 50 °C for 15 min and was  
then quenched with 1 µl of 1 M DTT. After RNA purification using the 
Monarch RNA Cleanup Kit (NEB, T2030L), samples were immediately 
used for library construction.

Full-length and 3′ end bulk SLAM-seq was used for different 
experimental purposes. For full-length bulk SLAM-seq library con-
struction, the CRISPRclean Stranded Total RNA Prep with rRNA 
Depletion Kit ( Jumpcode Genomics, KIT1014) was used. For 3′ end 
bulk SLAM-seq library construction, an in-house 3′ end library prepa-
ration workflow was used. In brief, 250–500 ng of total mRNA was 
mixed with 1 µl of 100 µM oligodT primer (ACGACGCTCTTCCGATCT 
NNNNNNNNNNTTTTTTTTTTTTTTT), 1 µl of 10 mM each dNTP mix 
and 0.5 µl of SUPERase In, and the volume was adjusted to 15 µl with 
water. After RNA priming at 55 °C for 5 min, 4 µl of 5×RT buffer and 1 µl 
of Maxima H Minus Reverse Transcriptase (Thermo Fisher Scientific, 
EP0753) were added to the reaction, and reverse transcription was 
performed as recommended by the manufacturer. After 0.6× AMPure 
beads purification, second strand synthesis (NEB, E6111L) was carried 
out by 1-h incubation at 16 °C, and then cDNA was purified by 0.6× 
AMPure beads. After Read2 tagmentation on 10 ng of cDNA using 1:20 
v/v Nextera Read2-Tn5, the reaction was quenched, and the final library 
was prepared as EasySci-RNA10.

Reads processing
For bulk CRISPR screen libraries, BCL files were demultiplexed into 
FASTQ files based on index 7 barcodes. Reads for each sample were 
further extracted by index 5 barcode matching. Every read pair was 
matched against two constant sequences (Read1: 11–25 bp; Read2: 
11–25 bp) to remove artifacts. For all matching steps, a maximum of 
one mismatch was allowed. Finally, sgRNA sequences were extracted 
from filtered read pairs (at 26–45 bp of Read1) and assigned to sgRNA 
identities with no mismatch allowed, and read counts matrices at 
sgRNA and gene levels were quantified using Python (2.7).

For PerturbSci-Kinetics, after demultiplexing on index 7, Read1 was 
matched against a constant sequence on the sgRNA capture primer 
to remove unspecific priming, and cell barcodes and UMI sequences 
sequenced in Read1 were added to the headers of the FASTQ files of 
Read2, which were retained for further processing. After trimming 
poly(A) sequences and low-quality bases from Read2 by Trim_Galore 
(0.6.7)46, reads were aligned to a customized reference genome con-
sisting of a complete hg38 reference genome (GRCh38.p13 from GEN-
CODE) and the dCas9-KRAB-MeCP2 sequence using STAR (2.7.9a)47. 
Reads with mapping score ≥30 were selected by SAMtools (1.13)48. Then, 
de-duplication at the single-cell level was performed based on the UMI 
sequences and the alignment location, and retained reads were split 
into SAM files per cell. These single-cell SAM files were converted into 
alignment TSV files using the sam2tsv function in jvarkit (d29b24f)49. 

After background single-nucleotide polymorphism (SNP) removal, 
we considered T > C mismatches with the CIGAR string ‘M’ and quality 
scores >45 as 4sU site. Only reads with >30% of T > C mutations among 
all mismatches were identified as nascent reads, and the list of reads 
was extracted from single-cell whole-transcriptome SAM files by Picard 
(2.27.4)50. Finally, single-cell whole/nascent transcriptome gene × cell 
count matrices were constructed by assigning reads to genes51.

Read1 and Read2 of PerturbSci-Kinetics sgRNA libraries were 
matched against constant sequences, respectively, allowing a maxi-
mum of one mismatch. For each filtered read pair, cell barcode, sgRNA 
sequence and UMI were extracted from designed positions. Extracted 
sgRNA sequences with a maximum of one mismatch from the sgRNA 
library were accepted and corrected, and the corresponding UMI was 
used for de-duplication. De-duplication was performed by collapsing 
identical UMI sequences of each individual corrected sgRNA under a 
unique cell barcode. Cells with overall sgRNA UMI counts higher than 
10 were maintained, and the sgRNA × cell count matrix was constructed.

SLAM-seq reads were processed similarly. In brief, for 3′ end 
SLAM-seq, UMI sequences in Read1 were extracted and attached to 
the headers of Read2 by UMI-tools (1.1.2)52, and only Read2 was fur-
ther processed. After poly(A) and low-quality base trimming by Trim_
Galore, reads were aligned to the hg38 reference genome by STAR. In 
the scenario of high-concentration 4sU labeling, more loose alignment 
parameters were used (–outFilterMatchNminOverLread 0.2–outFil-
terScoreMinOverLread 0.2). Reads were filtered by SAMtools, and 
PCR duplicates in passed reads were further removed by UMI-tools. 
Nascent reads were identified and extracted, and gene counting on 
both whole transcriptome and nascent transcriptome were performed 
as mentioned above but at the sample level. For full-length SLAM-seq, 
reads were processed similarly, but paired-end reads were retained.

sgRNA singlets identification and off-target sgRNA removal
Cells with at least 300 whole-transcriptome UMIs, 200 genes, 10 sgRNA 
UMIs and unannotated reads ratio <40% were kept. sgRNA singlets were 
assigned based on the following criteria: the most abundant sgRNA in 
the cell took ≥60% of total sgRNA counts and was at least three-fold of 
the second most abundant sgRNA.

Target genes with the number of cells perturbed ≥50 were kept. 
The knockdown efficiency was calculated at the individual sgRNA level 
to remove potential off-target or inefficient sgRNAs: whole transcrip-
tomes of cells receiving the same sgRNA were merged and normalized 
by counts per million (CPM), and then the fold changes (FCs) of the 
target gene expressions were calculated by comparing the normalized 
expression levels between corresponding perturbations and NTC. 
sgRNAs with ≥40% of target gene expression reduction relative to 
NTC were regarded as ‘effective sgRNAs’, and singlets receiving these 
sgRNAs were kept as ‘on-target cells’. Downstream analyses were done 
at the target gene level by analyzing all cells receiving different sgRNAs 
targeting the same gene.

UMAP embedding on pseudo-cells
The count matrix of the ‘on-target’ cells described above was loaded 
into Seurat27, and DEGs of each perturbation (compared to NTC) were 
retrieved. Cells from perturbations with ≥1 DEGs and cells from genetic 
perturbations involved in similar pathways of the top perturbations 
were kept. The FCs of the normalized gene expression between per-
turbations and NTC were calculated and were binned based on the 
gene-specific expression levels in NTC. The top 3% of genes showing 
the highest FCs within each bin were selected and merged as features 
for principal component analysis (PCA). The top nine principal com-
ponents (PCs) were used as input for UMAP embedding.

Differential expression analysis
Pairwise differential expression analyses between each perturbation 
and NTC cells were performed by Monocle 2 (ref. 53). We selected 
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significant hits (false discovery rate (FDR) < 0.05) with a ≥1.5-fold 
expression difference and CPM ≥5 in at least one of the tested cell pairs. 
More stringent criteria were used to obtain DEGs with high confidence: 
significant hits (FDR < 0.05) with a ≥1.5-fold expression difference 
and CPM ≥50 in at least one of the tested cell pairs were kept. For bulk 
RNA-seq libraries, genes with a minimum of ten raw counts in at least 
one sample and expressed in at least half of samples were kept, and 
EdgeR54 was used for bulk RNA-seq DEG analysis. Significant hits were 
selected at an FDR < 0.05 level.

Synthesis and degradation rates calculation
After the induction of CRISPRi for 7 d, we assumed that new transcrip-
tomic steady states had been established at the perturbation level 
before the 4sU labeling, and the labeling did not disturb these new 
transcriptomic steady states. The following RNA dynamics differential 
equation was used for synthesis and degradation rates calculation, 
similarly to the previous study26:

d(R)
d(t) = α − R × β (1)

in which R is the mRNA abundance of each gene; α is the synthesis 
rate of this gene; and β is the degradation rate of this gene. Because the 
RNA synthesis follows the zero-order kinetics, and RNA degradation 
follows the first-order kinetics in cells, d(R)

d(t)
 is determined by α and R ⋅ β.

As steady states had been established, the mRNA level of each gene 
did not change. We can get:

d(R)
d(t) = 0 (2)

R = α
β

(3)

Under the assumption that the labeling efficiency was 100%, all 
nascent RNA was labeled during the 4sU incubation, and pre-existing 
RNA would only degrade. So, for nascent RNA (Rn), Rn (t = 0) = 0 and 
αn = α. For pre-existing RNA (Rn), Rp(t = 0) = R = α

β
 and αp = 0. Based 

on these boundary conditions, we could further solve the differential 
equation above on nascent RNA and pre-existing RNA of each gene.

Rn =
α
β
(1 − e−β×t) (4)

Rp =
α
β
e−β×t (5)

As both R and Rn were directly measured in PerturbSci-Kinetics, 
and cells were labeled by 4sU for 2 h (t = 2), β can be calculated from 
equations 3 and 4. Then, α  can be solved by equation 3.

Due to the shallow sequencing and the sparsity of the single-cell 
expression data, synthesis and degradation rates of DEGs were cal-
culated at the target gene pseudo-cell level. DEGs with only nascent 
counts or degradation counts were excluded from further examination 
because their rates could not be estimated.

To examine the significance of synthesis and degradation rate 
changes upon perturbation, regarding the different cell sizes across 
different perturbations and NTC, which could affect the robustness 
of rate calculation, randomization tests were adopted. Only perturba-
tions with cell number ≥50 were examined. For each DEG belonging 
to each perturbation, background distributions of the synthesis and 
degradation rate were generated: a subset of cells with the same size as 
the corresponding perturbed cells was randomly sampled from a mixed 
pool consisting of corresponding perturbed cells and NTC cells. Then, 
these cells were aggregated into a background pseudo-cell; synthesis 

and degradation rates of the gene for testing were calculated as stated 
above; and the process was repeated for 500 times. Rates = 0 were 
assigned if only nascent counts or degradation counts were sampled 
during the process (referred to as invalid samplings), but only genes 
with fewer than 50 (10%) ‘invalid samplings’ were kept for P value cal-
culation. The two-sided empirical P values for the synthesis and deg-
radation rate changes were calculated, respectively, by examining the 
occurrence of extreme values in background distributions compared to 
the rates from perturbed pseudo-cell. Rate changes with P < 0.05 were 
regarded as significant, and the directions of the rate changes were 
determined by comparing the rates from the perturbed pseudo-cell 
with the background mean values.

Global changes of key statistics upon perturbations
For global synthesis and degradation rate changes, considering the 
noise from lowly expressed genes, we selected the top 1,000 highly 
expressed genes from NTC cells and then calculated their synthe-
sis rates and degradation rates in NTC cells and all perturbations 
with cell number ≥50. Kolmogorov–Smirnov tests were performed 
to compare rate distributions between each perturbation and NTC 
cells. The distributions of exonic reads percentage in nascent reads 
from cells with the same target gene knockdown and NTC cells were 
compared using Kolmogorov–Smirnov tests to identify genes affect-
ing RNA processing. The proportion of nascent mitochondrial read 
counts to total mitochondrial read counts was calculated in each 
single cell, and its distributions between cells with knockdown and 
NTC cells were compared by Kolmogorov–Smirnov tests to identify 
the master regulator of mitochondrial mRNA dynamics. In all global 
statistics examinations, Benjamini–Hochberg multiple hypoth-
esis correction was performed, and comparisons with FDR ≤ 0.05 
were considered significant. The medians value from each pertur-
bation and NTC cells were compared to determine the direction of  
significant changes.

Coverage analysis
We reprocessed the raw data of AGO2 eCLIP obtained from HeLa cells 
from Zhang et al.42. After adapter trimming, UMI extraction, map-
ping and UMI-based de-duplication, BAM files were transformed to 
the single-base coverage by BEDTools55. The transcript regions of 
genes-of-interest were assembled based on the hg38 genome annota-
tion GTF file from GENCODE. In brief, for each gene, the exonic regions 
were extracted and redivided into 5′ UTR, coding sequence (CDS) and 3′ 
UTR by the 5′-most start codon and the 3′-most stop codon annotated 
in the GTF. The AGO2 binding coverages of these designated regions 
were obtained by intersection and were binned. The gene-specific 
signal in each bin was normalized by the number of bases in each bin, 
and the binned coverage of each gene was scaled to be within 0–1. After 
aggregating scaled coverages of synthesis/degradation-regulated 
genes, respectively, the lowest point within the CDS was used as the 
second scaling factor.

Meta-gene coverage analysis was conducted to visualize 
the gene body distribution of newly transcribed RNA in NTC and 
AGO2-knockdown samples. Genomic coordinates of protein-coding 
genes on chromosomes 1–22 and chromosome X were retrieved from 
the hg38 genome annotation GTF file from GENCODE. Gene bodies 
were binned into 50 bins, and ordered bins were exported as BED 
files. For input reads, two nascent read BAM files per group from the 
pulse-labeling full-coverage SLAM-seq were merged using SAMtools, 
and then reads with FLAG = 83/163 were assigned to genes on the plus 
strand, and reads with FLAG = 99/147 were assigned to genes on the 
minus strand. The gene-specific binned coverages were counted using 
the BEDTools intersect command. Binned counts of each gene were 
normalized by total counts in the gene body, and the coverage of any 
group of genes was finally drawn by averaging the normalized signals 
across genes.
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Public ChIP-seq, shRNA RNA-seq and GRO-seq data analysis
Genes with detectable expression were identified from shControl/
shAGO2 bulk RNA-seq in ENCODE. Processed gene count quantifica-
tion tables were downloaded from the ENCODE portal. Only genes with 
mean transcript per million (TPM) > 1 across four samples and with 
detected expression in at least three of four samples were included. 
log2 FCs of each gene upon AGO2 silencing were calculated by dividing  
the mean TPM in the shAGO2 group with the mean TPM in the  
shControl group.

AGO2 ChIP-seq BAM and narrow peak files from ENCODE were 
merged for identifying TSS binding of AGO2. TSS regions of genes 
with detectable expression (defined as 4 kb around the TSS) were 
retrieved, and genes were classified into AGO2 TSS peak+/− genes based 
on the overlap between their TSS regions with merged AGO2 ChIP-seq 
narrow peaks. The binding patterns were then visualized using the 
computeMatrix function in deepTools (3.5.1)56.

GRO-seq data were downloaded from the Gene Expression 
Omnibus (GEO) and reprocessed to depict the transcriptional paus-
ing status of genes. The 3′ end of reads was trimmed against poly(A) 
by Cutadapt (3.4)57, and reads were then aligned to the hg38 refer-
ence genome using Bowtie2 (2.3.0)58. After filtering out unmapped 
reads using SAMtools, BAM files were imported to R. TSS proximal 
regions and transcriptional elongation regions of protein-coding 
genes with gene lengths ≥1 kb were extracted, and the getPaus-
ingIndices() function from the BRGenomics package (3.17)59 was 
used to calculate the pausing indices of genes. Genes detected in 
both replicates were ranked by the pausing index within the repli-
cate, and an averaged rank was used to study the association with  
AGO2 TSS binding.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data generated by this study can be downloaded in raw and pro-
cessed forms from the National Center for Biotechnology Infor-
mation Gene Expression Omnibus (GEO)60 (GSE218566). The AGO2 
eCLIP data were obtained from the GEO database (GSE115146), 
and raw data from samples SRR7240709 and SRR7240710 were 
downloaded. Processed gene counts tables of RNA-seq on shCon-
trol/shAGO2 samples were downloaded from the ENCODE portal 
(ENCSR495YSS and ENCSR898NWE). The AGO2 ChIP-seq BAM and 
narrow peak files were downloaded from the ENCODE portal (ENCS-
R151NQL). The GRO-seq data were obtained from the GEO database 
(GSE97072), and raw data from samples SRR5379790 and SRR5379791 
were downloaded. The reference genome hg38 and corresponding 
genomic annotation GTF file were downloaded from the GENCODE 
database (release 38, GRCh38.p13). Source data are provided with  
this paper.

Code availability
The computation scripts for processing PerturbSci-Kinetics are 
included as supplementary files. Scripts and the user manual are avail-
able for open access in GitHub: https://github.com/JunyueCaoLab/
PerturbSci_Kinetics (ref. 61). Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Scheme of plasmids and experiment procedures 
of PerturbSci. a. The vector system used in PerturbSci for dCas9 and sgRNA 
expression. The expression of the enhanced CRISPRi silencer dCas9-KRAB-
MeCP2 (ref. 9) was controlled by the tetracycline responsive (Tet-on) promoter.  
A GFP sequence was added to the original CROP-seq-opti plasmid6 as an indicator 
of successful sgRNA transduction and for the lentivirus titer measurement. The 
CROP-seq vector utilizes the self-replication mechanism of lentivirus during 
the integration for amplifying the sgRNA expression cassette. In this lentiviral 
plasmid, the sgRNA expression cassette replaced the U3 region of the 3′LTR5. 
During the lentiviral integration, the shortened 5′LTR of reverse-transcribed 
lentiviral genomic DNA was extended by using its 3′LTR as a template, and the 

sgRNA expression cassette is self-replicated to the 5′LTR62. The self-replicated 
sgRNA expression cassette at 5′LTR generates functional sgRNA for guiding 
dCas9, and the original expression cassette at 3′LTR is transcribed as a part of 
the Puro-GFP fusion transcript driven by the EF-1α promoter. b. The library 
preparation scheme and the final library structures of PerturbSci, including 
a scalable combinatorial indexing strategy with direct sgRNA capture and 
enrichment that reduced the library preparation cost, enhanced the sensitivity 
of the sgRNA capture compared to the original CROP-seq5, and avoided 
the extensive barcodes swapping detected in Perturb-seq6. c. A schematic 
comparison of chemistries between PerturbSci, CROP-seq5, and Direct-capture 
Perturb-seq7.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Representative optimizations of PerturbSci. a. sgRNA 
primers of different designs were mixed with polyT primers respectively for 
RT. CB, cell barcode. P_R1, partial TruSeq read1 sequence. b-c. After RT, the 
capture efficiency of sgRNA by different RT primers was evaluated by ‘Direct 
PCR’, and the efficiency of by-product removal was examined by ‘sgRNA-only 
PCR’. 3 independent experiments were conducted. d. Different post-multiplex 
PCR purification strategies were tested. 3 independent experiments were 
conducted. e. A representative gel image of libraries of PerturbSci. 5 independent 
experiments were conducted. f-g. Boxplots showing sgRNA UMI counts (f) and 
the cell number recovered (g) from different sgRNA primer concentrations (n 
= 230, 181, 149, 529, 512, 445, 299 cells from 100nM to 10uM groups for sgNTC 
cells, n = 499, 399, 246, 1237, 1215, 904, 537 cells from 100nM to 10uM groups for 
sgFto cells). h. Scatterplot showing the correlation between log2-transformed 
counts per million (CPM) profiled by PerturbSci and EasySci10 in the 3T3L1-
CRISPRi cell line. i. Barplots showing effective knockdown in mouse 3T3-
CRISPRi-sgFto cells and human HEK293-idCas9-sgIGF1R cells computationally 

assigned in the species-mixing experiment (Fig. 1d). j–l. Barplots showing the 
cell identities fraction ( j), whole transcriptome (k) and sgRNA UMI counts (l) 
detected per cell in different fixation conditions (n = 1508, 1132, 1247, 1084 cells 
for conditions from the left to the right). Tukey’s tests after one-way ANOVA 
were performed. m-n. Dotplots showing the relative recovery rate (n = 4, mean 
± SEM) of HEK293-idCas9 cells in different fixation conditions following HCl 
permeabilization (m) and chemical conversion (n). Dunnett’s test after one-way 
ANOVA was performed. o. Boxplot showing the effect of chemical conversion 
on whole transcriptome UMI counts under 4 °C PFA + BS3 fixation condition (n = 
1988 cells in the control group, n = 4831 cells in the converted group). Two-sided 
Wilcoxon rank sum test was performed. p. Mapping statistics of reads from 
PerturbSci-Kinetics. q-r. Boxplots showing single-cell whole transcriptome UMI 
counts (q) and gene counts (r) under different sequencing depth (n = 500 cells in 
each subsampling group). Boxes in boxplots indicate the median and IQR with 
whiskers indicating 1.5× IQR.
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Extended Data Fig. 3 | Optimization and benchmarking of the computational 
pipeline for nascent reads calling. a–c. Barplots showing the normalized 
mismatch rates of all 12 mismatch types detected in unconverted cells (a), 
converted cells (b), and the original sci-fate A549 dataset20 (c) at different 
positions of the reads using the original sci-fate mutation calling pipeline20. 
d–f. Barplots showing the normalized mismatch rates of all 12 mismatch types 
detected in unconverted cells (d), converted cells (e), and the original sci-fate 
A549 dataset20 (f) at different positions of the reads using the updated mutation 
calling pipeline. Considering the different sequencing lengths between the 
present dataset and sci-fate, the Read2 from sci-fate were trimmed to the same 
length as the present dataset before processing. Compared to the original 
pipeline, the updated pipeline further filtered the mismatch based on the CIGAR 
string and only mismatches with ‘CIGAR = M’ were kept. Normalized mismatch 
rates in each bin, the percentage of each type of mismatch in all sequencing bases 

within the bin. g, h. Statistics of T > C mutations in PerturbSci-Kinetics reads. 
Histogram showing the number of T > C mutations on reads that were identified 
to be from newly synthesized transcripts (g). For each read with high-quality 
mismatches identified, the fraction of mismatches from T > C mutations was 
calculated, which clearly separated the reads with background mutations and 
mutants introduced by 4sU in the plot (h). 30% was set as the cutoff to assign 
nascent reads as sci-fate20. i, j. Downsampling comparison between sci-fate20 
and PerturbSci-Kinetics. A subset of raw reads in sci-fate A549 dataset20 were 
randomly selected to generate a downsampled dataset with the same single-cell 
raw reads number distribution with PerturbSci-Kinetics, and both datasets were 
processed using the same pipeline (n = 200 cells for each dataset). The single-
cell whole transcriptome UMI counts (i) and the nascent reads proportions ( j) 
between two datasets were compared. Boxes in boxplots indicate the median and 
IQR with whiskers indicating 1.5× IQR.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Validation of the performance of CRISPRi and quality 
control of bulk and single-cell PerturbSci-Kinetics libraries. a–d. Inducible 
IGF1R mRNA and protein knockdown were further validated by RT-qPCR (a) after 
3-day Dox induction (n = 4 biologically independent samples, data are presented 
as mean ± SEM. Dunnett’s test after one-way ANOVA was performed.) and by 
flow cytometry (b-d). The representative gating strategy for flow cytometry 
is shown in (b). Cells were treated with Dox+/Dox- media for 7 days before the 
flow-cytometry assay (c). To find the minimal time of Dox induction with stable 
knockdown, sgIGF1R and sgNTC cells were induced for either 4 days or 7 days and 
the IGF1R abundance was examined. Isotype, isotype control. αIGFIR, anti-IGF1R. 
e. Heatmap showing the Pearson correlations of normalized sgRNA read counts 
between the plasmid library and bulk screen replicates. f. Boxplot showing the 
reproducible trends of deletion upon CRISPRi between the present study and a 
prior report25 (n = 10, 57, 45, 49, 68 genes in each bin from left to right). g. Barplot 
showing the knockdown of genes with higher essentiality resulted in stronger 

cell growth arrest. h–i. Dotplots showing the expression fold changes of target 
genes upon CRISPRi induction compared to NTC in the single-cell PerturbSci-
Kinetics dataset. Each dot represents a sgRNA. Fold change < 0.6 was used for 
sgRNA filtering, and genes with 3, 2, 1, 0 on-target sgRNA(s) were visualized 
in b-e, respectively. FC, fold change. j. Histogram showing the distribution of 
the fraction of the most abundant sgRNA in singlets (78%) and doublet cells 
(22%). k, l. The accuracy of sgRNA targeting efficiency in PerturbSci-Kinetics was 
further confirmed by RT-qPCR. Individual HEK293-idCas9 clones expressing 5 
sgRNAs with high efficiency and 1 off-target sgRNA were established. RT-qPCR 
was conducted after 3-day Dox induction (n = 3 biologically independent 
samples). Data are presented as mean ± SEM, and two-sided Student′s t-test were 
performed (k). Mean expressions of target genes in NTC and corresponding cells 
in the original PerturbSci-Kinetics dataset were exhibited (l). Boxes in boxplots 
indicate the median and IQR with whiskers indicating 1.5 × IQR.
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Extended Data Fig. 5 | PerturbSci-Kinetics captures multi-layer transcriptome 
and RNA kinetics information upon perturbations with high fidelity.  
a. Boxplots showing the pairwise correlation coefficients of sgRNAs targeting the 
same/different genes, computed using aggregated whole transcriptomes, pre-
existing transcriptomes, nascent transcriptomes, gene-specific synthesis rates 
and degradation rates. Considering the data sparsity and different cell numbers 
across perturbations, 150 cells per sgRNA were assembled into one pseudobulk 
for downstream analysis. Spearman correlation coefficients were calculated 
using DEGs between perturbations and NTC in the pooled screen. Two-sided 
Welch′s t-tests were performed. b, c. UMAP of pseudobulk perturbations 
by inferred synthesis rates (b) and degradation rates (c). DEGs between all 
perturbations-NTC pairs were combined, and their synthesis and degradation 
rates were calculated for each perturbation. Only genes with calculable synthesis 
or degradation rate in at least 75% of pseudobulk perturbations were used for 
dimension reduction. The top 12 and 15 principal components from the synthesis 
and degradation rates matrix were used for UMAP visualization, respectively. 
These UMAPs showed meaningful patterns. For example, RNA exosome genes 

(for example, EXOSC2, EXOSC5, EXOSC6), nonsense-mediated mRNA decay 
pathway members (for example, SMG5, SMG7), ribosomal biogenesis genes (for 
example, NOP2, RPL30, RPL11, POLR1A, POLR1B), miRNA biogenesis pathway 
members (for example, DICER1, DROSHA, XPO5, and AGO2) were in relative 
proximity in both UMAPs. Chromatin remodelers (for example, HDAC1, HDAC2, 
STAG2, RAD21, KMT2A, KDM1A, ARID1A) were closely clustered in synthesis rates-
derived UMAP, while m6A regulators (for example, METTL3, METTL16, ZC3H13, 
IGF2BP1) and polyadenylation factors (for example, CPSF6, CSTF3) were closer to 
each other in degradation rates-derived UMAP. d. Boxplots showing effects of 
cell number on the estimation of the pseudobulk whole/nascent transcriptome 
expression, gene-specific half-life, and synthesis rate. We conducted 50 random 
samplings for each cell number on sgDROSHA cells, then we aggregated profiles 
of sampled cells and retrieved pseudobulk expression levels and estimated RNA 
dynamics rates. We calculated the Pearson correlation coefficients between each 
downsampled pseudobulk group and unsampled pseudobulk sample. Boxes in 
boxplots indicate the median and IQR with whiskers indicating 1.5× IQR.
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Extended Data Fig. 6 | A systematic view of the effects of perturbations on 
global synthesis rates, global degradation rates, exonic reads ratio, and 
mitochondrial turnover rates. a–d. For each gene category, we calculated 
the fraction of genetic perturbations associated with significant changes in 
global synthesis rates (a), global degradation rates (b), proportions of exonic 
reads in the nascent transcriptome (c), and proportions of mitochondrial 
nascent reads (d). Overall global transcription could be affected by more genes 
than degradation. Perturbation on essential genes, such as DNA replication 
genes, could affect both global synthesis and degradation. Perturbations on 
chromatin remodelers only specifically impaired the global synthesis rates 
but not the degradation rates, supporting the established theory that gene 
expression is regulated by chromatin folding. In addition to the enrichment of 
genes in transcription, spliceosome and mRNA surveillance, perturbation on 
OXPHOS genes and metabolism-related genes also affected the RNA processing, 
consistent with the fact that 5′ capping, 3′ polyadenylation, and RNA splicing 
are highly energy-dependent processes. That knockdown of OXPHOS genes 
and metabolism-related genes could reduce the mitochondrial transcriptome 

dynamics and also supported the complex feedback mechanisms between 
energy metabolism and mitochondrial transcription63. e–h. Scatterplots 
showing the relationships between dropout effects and global synthesis rates 
(e), global degradation rates (f), proportions of exonic reads in the nascent 
transcriptome (g), and mitochondrial RNA turnover (h). A linear regression 
line was fitted and ±95% confidence intervals are visualized for each metric. 
Dropout rank, the ascending rank of gene-level sgRNA counts log2FC from 
the bulk screen. Directions were assigned as shown in Fig. 2e–h. Both global 
synthesis and degradation rates showed strong negative correlations with 
dropout, indicating knocking out essential genes generally resulted in impaired 
global RNA synthesis and degradation. In contrast, proportions of exonic reads 
in the nascent transcriptome were much more stable across perturbations, 
and were only specifically affected by genes functioning in RNA processing. 
Proportions of mitochondrial nascent reads were also prone to be affected by 
genetic perturbation, but directions of changes depend more on the functions of 
perturbed genes than the essentiality of genes.
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Extended Data Fig. 7 | AGO2 functions as a transcriptional repressor by 
arresting transcription at the pausing status. a. The density plot (top) and 
heatmap (bottom) show the density of AGO2 ChIP-seq reads around TSS of 
genes with or without enriched AGO2 TSS binding peaks. b. Boxplot showing the 
log2FC of gene expression between AGO2-silenced and control groups of genes 
with (n = 7315 genes) or without AGO2 TSS binding peaks (n = 3615 genes). Two-
sided Wilcoxon rank sum test was performed. c. Boxplot displaying the positive 
correlation between PI of genes and normalized AGO2 ChIP-seq coverage within 
corresponding TSS regions. c, d. Genes were separated into 4 bins based on the 
average ranks of PI in two replicates (Methods). The Venn diagram highlights 

the significant association between AGO2 TSS binding and the strong pausing 
status of genes. One-sided Fisher′s Exact Test was conducted with the alternative 
hypothesis that the true odds ratio is greater than 1. Highly-paused genes, genes 
with top 10% of average PI ranks. e, f. Highly-paused genes were split into two 
groups, 1) significantly-upregulated genes upon AGO2 knockdown or 2) genes 
without significant expression changes. We then calculated the nascent RNA 
coverage of these two groups of genes in sgNTC and sgAGO2 cells. Notably, only 
genes in group 1 displayed increased 3′ end enrichment upon AGO2 knockdown 
(f). Boxes in boxplots indicate the median and IQR with whiskers indicating  
1.5× IQR.
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Extended Data Fig. 8 | PerturbSci-kinetics identified LRPPRC as the master 
regulator of mitochondrial RNA dynamics. a. Heatmap showing the relative FC 
of gene expression, synthesis and degradation rates of mitochondrial protein-
coding genes upon NDUFS2, CYC1, BCS1L and LRPPRC knockdown compared 
to NTC cells. b. The heatmap (left) showed mean z-scored mitochondrial gene 
expression changes between wild-type and LRPPRC-knockout mice heart tissue 
samples reported by Siira, S.J., et al.33. The DEG statistical examination was 
conducted by the original study. The heatmap (right) showed the FC of the mRNA 
secondary structure increase upon LRPPRC knockdown observed in the same 
prior report33, which positively correlated with the accelerated degradation of 
mitochondrial genes detected in our study (coefficient of Pearson correlation 
= 0.708, p-value = 6.8e-3). c. Boxplot showing the distribution of integrated 
stress response scores of single cells (n = 2758, 478, 768, 631, 504 cells in each 
group from left to right). Dunnett’s test after one-way ANOVA was performed. 
ISR, integrated stress response. ISR score, the average normalized expression 
of genes within the ISR transcription program identified by Genome-wide 
Perturb-seq8. d. Barplot showing the fraction of genes regulated by synthesis, 

degradation or both in mitochondrial/nuclear-encoded DEGs. e. Barplot showing 
the enrichment of ATF4/CEBPG motifs at promoter regions of DEGs with/without 
significant synthesis changes. We identified two transcription factors (ATF4 and 
CEBPG) that were significantly upregulated upon LRPPRC knockdown, and motifs 
of their protein product were significantly over-represented in TSS regions of 
the synthesis-regulated nuclear-encoded DEGs. Nc DEGs w/o synth changes, 
Nuclear-encoded DEGs without synthesis changes. Nc DEGs w/ synth changes, 
Nuclear-encoded DEGs with synthesis changes. f. The transcriptional regulatory 
network in LRPPRC perturbation inferred from our analysis. It was consistent 
with the prior study64 that ATF4 was regulated at both transcriptional and post-
transcriptional levels. g. Single-cell UMAP of HEK293-idCas9-sgNTC/sgLRPPRC 
cells in the validation dataset. h, i. Correlations of synthesis and degradation 
rate changes of mitochondrial mRNA upon LRPPRC knockdown between the 
original screen and the validation dataset. A linear regression line was fitted and 
±95% confidence intervals are visualized for each metric. r, coefficient of Pearson 
correlation. Boxes in boxplots indicate the median and IQR with whiskers 
indicating 1.5× IQR.
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Extended Data Fig. 9 | PerturbSci-Kinetics identified post-transcriptional 
gene expression regulations by perturbing miRNA biogenesis pathway. a. 
Illustration of the canonical miRNA biogenesis pathway. After the transcription 
of miRNA host genes, the primary miRNA (pri-miRNA) forms into a hairpin and is 
processed by DROSHA. Processed precursor miRNA (pre-miRNA) is transported 
to the cytoplasm by Exportin-5. The stem loop is cleaved by DICER1, and one 
strand of the double-stranded short RNA is selected and loaded into the RISC 
for targeting mRNA35. b. Venn diagram showing the overlap of upregulated 
DEGs across perturbations on four genes encoding main members of the miRNA 
pathway. The knockdown of DROSHA and DICER1 in this pathway resulted in 
significantly overlapped DEGs (p-value = 2.2e-16, one-sided Fisher’s exact test). 
In contrast, AGO2 knockdown resulted in more unique transcriptome features. 
XPO5 knockdown showed no upregulated DEGs, consistent with a previous 
report in which XPO5 silencing minimally perturbed the miRNA biogenesis36. 
c. Bar plot showing the fraction of upregulated DEGs driven by synthesis/
degradation changes upon DROSHA, DICER1, and AGO2 perturbations. While 
DROSHA and DICER1 knockdown resulted in increased synthesis and reduced 

degradation, AGO2 knockdown only affected gene expression transcriptionally, 
consistent with our finding that AGO2 knockdown resulted in a global increase of 
synthesis rates (Fig. 2e), and further supported its roles in nuclear transcription 
regulation65–67. As DROSHA is upstream of DICER1 in the pathway, we observed 
stronger effects of DROSHA knockdown than DICER1 knockdown, which was 
supported by the previous study36. d, e. UMAP of sgNTC cells and single cells 
with individual miRNA biogenesis pathway genes knockdown. f. Reproducible 
steady-state expression, synthesis rate, and degradation rate changes of 
synthesis/degradation-regulated genes in the validation dataset. g. Example 
genes showing unchanged (transcription-regulated genes: FTX, YY1AP1) and 
enhanced (degradation-regulated genes: SHCBP1, PRTG) mRNA stability upon 
DROSHA/DICER knockdown. After long term 4sU labeling on Dox-induced 
HEK293-idCas9-sgNTC, sgDROSHA, sgDICER cells, uridine chase was performed. 
3′end SLAM-seq was performed to directly track the degradation of labeled 
mRNA. The fraction of labeled read counts of individual genes at each time point 
were normalized by their labeled fractions at 0h.
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Extended Data Fig. 10 | PerturbSci-Kinetics enables dissecting the effects of 
perturbations on cell cycle-dependent RNA dynamics. a. UMAP embedding 
of cells with miRNA pathway genes knockdowns and NTC cells reflected the cell-
cycle progression. b. Stacked barplot showing the cell cycle distribution of cells 
from each perturbation. c. The expression changes of cell cycle marker genes 
in cell cycle clusters. d. The cell cycle time-course synthesis rates, degradation 
rates, and steady-state expression changes of 4 gene clusters. Solid lines with 
dots, the mean values and the average trend of all genes within the cluster. e. 
The top enriched GO terms of genes in the cluster 1 identified in GO enrichment 

analysis. f. Averaged trends of cell cycle time-course synthesis rates, degradation 
rates, and steady-state expression changes of cluster 1 genes in HEK293-idCas9-
sgNTC, sgDROSHA, sgDICER1 cells. g. Averaged trends of cell cycle time-course 
synthesis rates, degradation rates, and steady-state expression changes of genes 
in cluster 1 in HEK293-idCas9-sgNTC and sgLRPPRC cells. Considering potential 
strong batch effects from distinct genetic perturbation, cell cycle clustering 
analysis in (g) was performed independently of (a), and cell cycle clusters in (g) 
were not fully synchronized with clusters in (f).
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