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Background: Genetic defects in the human thyroid-stimulating hormone (TSH) receptor 
(TSHR) gene can cause congenital hypothyroidism (CH). However, the biological functions 
and comprehensive genotype–phenotype relationships for most TSHR variants associated 
with CH remain unexplored. We aimed to identify TSHR variants in Chinese patients with 
CH, analyze the functions of the variants, and explore the relationships between TSHR 
genotypes and clinical phenotypes.

Methods: In total, 367 patients with CH were recruited for TSHR variant screening using 
whole-exome sequencing. The effects of the variants were evaluated by in-silico programs 
such as SIFT and polyphen2. Furthermore, these variants were transfected into 293T cells 
to detect their Gs/cyclic AMP and Gq/11 signaling activity.

Results: Among the 367 patients with CH, 17 TSHR variants, including three novel vari-
ants, were identified in 45 patients, and 18 patients carried biallelic TSHR variants. In vitro 
experiments showed that 10 variants were associated with Gs/cyclic AMP and Gq/11 sig-
naling pathway impairment to varying degrees. Patients with TSHR biallelic variants had 
lower serum TSH levels and higher free triiodothyronine and thyroxine levels at diagnosis 
than those with DUOX2 biallelic variants.

Conclusions: We found a high frequency of TSHR variants in Chinese patients with CH 
(12.3%), and 4.9% of cases were caused by TSHR biallelic variants. Ten variants were 
identified as loss-of-function variants. The data suggest that the clinical phenotype of CH 
patients caused by TSHR biallelic variants is relatively mild. Our study expands the TSHR 
variant spectrum and provides further evidence for the elucidation of the genetic etiology 
of CH.
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INTRODUCTION

Congenital hypothyroidism (CH) is a disease characterized by im-
pairments in neurodevelopment and physical growth and devel-
opment owing to dysfunction of the hypothalamic-pituitary-thy-
roid axis present at birth [1]. CH is the most common congenital 
endocrine metabolic disease, with a global prevalence of 
1/2,000–1/3,000 [1]. With the recent developments in gene 
sequencing technologies, an increasing number of pathogenic 
genes related to CH, including genes related to thyroid dysgene-
sis and dyshormonogenesis, have been reported. Among these, 
the thyroid-stimulating hormone (TSH) receptor (TSHR) gene is 
one of the widely investigated candidate genes [2, 3].

The human TSHR gene is located on chromosome 14q31 and 
encodes a G-protein-coupled receptor that consists of a seven-
transmembrane domain (TMD) and a large extracellular domain 
(ECD) responsible for high-affinity hormone binding. The TSHR is 
activated upon binding to TSH and induces two signal transduc-
tion pathways: the Gs/cyclic AMP (cAMP) pathway and the 
Gq/11 phospholipase C pathway, which contribute to thyroglob-
ulin iodination and cell proliferation, whereas the Gs pathway is 
also responsible for iodine uptake regulation in thyrocytes [4, 5]. 
Both pathways are important for thyroid hormone synthesis and 
thyroid development [4, 6].

Loss-of-function (LOF) variants in the TSHR can cause TSH re-
sistance, which leads to congenital nongoitrous hypothyroidism 
1 (OMIM: 275200), which presents a broad spectrum of pheno-
types, ranging from severe congenital hypothyroidism to mild eu-
thyroid hyperthyrotropinemia [2, 7-10]. These LOF variants may 
result in a thyroid gland of normal position and size or in thyroid 
dysgenesis [11]. LOF variants in TSHR were first described in 
patients with TSH resistance in 1995 [12]. Up to April 2021, 
202 TSHR variants have been reported and documented in the 
Human Gene Mutation Database (HGMD). However, the biologi-
cal functions of most TSHR variants remain unknown, and geno-
type–phenotype relationships have not yet been clearly estab-
lished.

We previously identified 15 TSHR variants in 13 out of 220 
Chinese patients with CH [13]. In the present study, we enrolled 
an additional 367 patients with CH, expanding the sample for 
screening TSHR variants and characterizing the phenotypes of 
patients with CH carrying TSHR variants. The biological functions 
of the variants were investigated through a series of in vitro ex-
periments. We expected this study to deepen our understanding 
of the genetic landscape and functional consequences of TSHR 
variants and to provide valuable insights into the clinical man-

agement of patients harboring TSHR variants.

MATERIALS AND METHODS

Patients
In total, 367 patients were enrolled from the Chinese Han popu-
lations in Jiangsu province, Fujian province, Anhui province, and 
Shanghai. Among them, 362 patients (98.7%) received neona-
tal CH screening, which was performed using filter-paper blood 
spots (obtained through a heel prick) within 3–5 days after birth. 
Patients with TSH levels ≥10 μIU/mL at initial screening were 
recalled for re-examination using an immune-chemilumines-
cence assay (UniCelDxI 800; Beckman, Indianapolis, IN, USA) to 
determine the levels of TSH, free triiodothyronine (FT3), and free 
thyroxine (FT4). The details of the diagnostic standards for CH 
have been described in our previous study [14]. In addition, five 
patients who were on l-thyroxine replacement therapy were re-
cruited from outpatient clinics. Although these patients were not 
neonatally screened, they had a clear history of CH. Thyroid mor-
phology was determined by experienced radiologists through 
thyroid ultrasound or technetium-99m scanning. Written in-
formed consent to participate was provided by the participants’ 
legal guardians, and the study was approved by the Ethics Com-
mittee of Shanghai Ninth People’s Hospital affiliated with Shang-
hai Jiao Tong University School of Medicine, Shanghai, China 
(approval number: 2016-76-T33).

Whole-exome sequencing (WES)
WES was performed as previously described [15]. Genomic DNA 
was extracted from peripheral blood, fragmented to 200–300 
bp, and ligated to adapters using the KAPA HyperPrep Kit 
(Roche, Basel, Switzerland). Exonic hybrid capture was per-
formed according to the instructions in the Roche SeqCap EZ Li-
brary SR User’s Guide. Library quality and levels were deter-
mined using the MAN CLS140145 DNA 1 K Chip (PerkinElmer, 
Waltham, MA, USA) and the PE LabChip GXII Touch (PerkinElmer, 
Waltham, MA, USA). The Illumina HiSeq 3000 system (Illumina, 
San Diego, CA, USA) was then used to sequence the paired-end 
libraries with 150-bp paired-end reads, averaging approximately 
100×  depth.

Statistical analysis
IBM SPSS Statistics version 25.0 (IBM Corp., Armonk, NY, USA) 
was used for all statistical analyses. Quantitative variables are 
presented as mean ±SE. The normality of the data was as-
sessed using the Shapiro–Wilk test and intergroup comparisons 
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were performed using Student’s unpaired t-test (for normally 
distributed data) or the Mann–Whitney U test (for non-normally 
distributed data), as appropriate. Categorical variables are pre-
sented as percentages and were compared using the chi-square 
test or Fisher exact test, as appropriate. P <0.05 was considered 
statistically significant.

Additional methods are available in the Supplemental Materi-
als.

RESULTS

Clinical characteristics of 367 patients with CH
In total, 367 patients with CH, including 196 boys and 171 girls, 
were recruited in this study. The mean serum FT3, FT4, and TSH 
levels at diagnosis were 4.87 pmol/L, 10.55 pmol/L, and 77.57 
μIU/mL, respectively (reference ranges: FT3, 3.85–6.01 pmol/L; 
FT4, 7.46–21.11 pmol/L; TSH, 0.34–5.60 μIU/mL). Based on 
the serum FT4 level at diagnosis, CH was classified as severe 
(FT4 <5 pmol/L), moderate (5 pmol/L ≤FT4 <10 pmol/L), or 
mild (FT4≥10 pmol/L) [16]. In the present cohort, 49.1% of pa-
tients had moderate or severe CH, and 50.9% of patients pre-

sented with mild CH. There were no significant differences in 
hormone levels and other clinical characteristics between boys 
and girls (Table 1).

Screening for TSHR variants in Chinese patients with CH 
and pedigree analysis
Among the 367 patients with CH, 45 patients carried 17 non-
synonymous TSHR variants, including 16 missense variants and 
one nonsense variant. The TSHR variant frequency was 12.3% 
(45/367). Out of 17 variants, three (p.S237G, p.W546C, and 
p.M728T) were first reported in this study, and 10 were recur-
rent variants (p.G132R, p.G245S, p.S305R, p.N432S, p.R450H, 
p.F525S, p.R609X, p.Y613C, p.V689G, and p.E758K). p.R450H, 
which is a hotspot variant in the Chinese population, had the 
highest frequency (2.7%) (Table 2). Four of the 17 variants were 
located in the leucine-rich repeat (LRR) domain of the TSHR pro-
tein (Fig. 1A). Conservation analysis of the three novel variants 
showed that p.W546C was highly conserved across species, 
whereas p.M728T was less conserved (Fig. 1B). Out of the 45 
patients with TSHR variants, 18 patients carried biallelic vari-
ants. We conducted a long-term follow-up of two patients with 

Table 1. Clinical characteristics of 367 patients with CH

Clinical characteristics All patients (N=367) Male (N=196) Female (N=171) P 

Gestational weeks (weeks) 39.0 ±  0.3 (54) 38.5 ±  0.5 (23) 39.4 ±  0.3 (31) 0.177

Birth weight (kg) 3.3 ±  0.1 (55) 3.3 ±  0.1 (22) 3.3 ±  0.1 (33) 0.241

Birth length (cm) 50.1 ±  0.2 (52) 50.1 ±  0.3 (22) 50.1 ±  0.2 (30) 0.547

Age at diagnosis (days) 20.1 ±  1.0 (190) 20.9 ±  1.5 (102) 19.2 ±  1.2 (88) 0.708

Initial dose (μg)* 30.3 ±  1.2 (94) 29.1 ±  1.8 (38) 31.1 ±  1.6 (56) 0.453

Severity classification 0.445

    Mild 113 (50.9%) 58 (48.7%) 55 (53.4%)

    Moderate 54 (24.3%) 33 (27.7%) 21 (20.4%)

    Severe 55 (24.8%) 28 (23.5%) 27 (26.2%)

Thyroid morphology 0.227

    Normal 84 (80%) 39 (86.7%) 45 (75%)

    Goiter 5 (4.8%) 1 (2.2%) 4 (6.7%)

    Orthotopic hypoplasia 15 (14.3%) 4 (8.9%) 11 (18.3%)

    Ectopy 1 (1.0%) 1 (2.2%) 0 (0.0%)

Biochemical tests at diagnosis

    FT3 (pmol/L) 4.87±0.12 (222) 4.96±0.15 (119) 4.77±0.19 (103) 0.274

    FT4 (pmol/L) 10.55±0.45 (222) 10.40±0.59 (119) 10.73±0.70 (103) 0.749

    TSH (μIU/mL) 77.57±4.18 (228) 77.09±6.17 (122) 78.12±5.54 (106) 0.631

*Dose of levothyroxine administered for the first time after the diagnosis of CH. Data are shown as N (%) or mean±SE. The exact number of patients in each 
group is shown in parentheses after mean±SE.
Abbreviations: CH, congenital hypothyroidism; FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone.
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TSHR biallelic variants (CHT558 and CHT573) and collected 
blood samples from their parents for pedigree analysis. Sanger 
sequencing showed that the biallelic variants carried by the pa-
tients were inherited from their father and mother separately, 
which is in line with an autosomal recessive inheritance pattern 
(Fig. 2).

Pathogenicity prediction of detected TSHR variants
The potential effects of the 17 variants identified were assessed 
using in silico programs (SIFT, Polyphen-2, Mutation Taster, and 
M-CAP). All four programs predicted that the variants p.I216T, 
p.G245S, p.A275T, p.N432S, p.R450H, p.A526T, p.R531W, 
p.W546C, p.Y613C, and p.V689G were detrimental to TSHR pro-
tein function and that the novel p.M728T variant was harmless. 
The prediction results of the other variants were inconsistent 
among the four programs (Supplemental Data Table S1).

Subsequently, we predicted the three-dimensional structure 
of the wild-type (WT) and three novel mutant proteins using in 
silico tools. In the novel variant p.S237G, a polar neutral serine 
was replaced with a non-polar aliphatic glycine, disrupting the 
hydrogen bond between serine 237 and lysine 211 (Supplemen-
tal Data Fig. S1A). For the p.W546C variant, the aromatic trypto-

phan residue at 546 was mutated to a neutral cysteine, disrupt-
ing the hydrogen bond between tryptophan 546 and asparagine 
455, destabilizing the helix (Supplemental Data Fig. S1B). As for 
p.M728T, the model confidence at amino acid 738 was very 
low; therefore, it was not analyzed.

The American College of Medical Genetics (ACMG) issued new 
guidelines for the interpretation of sequence variants in 2015, 
describing a process for classifying variants into five categories 
based on criteria related to typical variant evidence types (such 
as population data, computational data, functional data, and 
segregation data). Variants are classified as pathogenic (P), 
likely pathogenic (LP), variants of uncertain significance (VUS), 
likely benign (LB), or benign (B) [17]. Based on the available evi-
dence, the pathogenicity of the 17 variants identified was classi-
fied according to the ACMG guidelines and standards. Five vari-
ants (p.G132R, p.N432S, p.R450H, p.F525S, and p.R609X) 
were classified as P or LP, and p.M728T was classified as LB. 
The remaining 11 variants were classified as VUS (Supplemental 
Data Table S1).

Clinical characteristics of CH patients with TSHR variants
The clinical phenotypes of the 45 CH patients with TSHR vari-

Table 2. Detailed information on the TSHR variants detected in this study

Genomic position (hg38, chr14) Exon rs ID cDNA change Amino acid change N patients (AF)* AF in public database†

81557414 exon5 rs760874290 c.394G>C p.G132R 10 (0.0163) 0.00054

81574751 exon8 rs771936985 c.647T>C p.I216T 1 (0.0014) 0.00022

81606039 exon9 NA c.709A>G p.S237G 1 (0.0014) 0

81606063 exon9 rs189506473 c.733G>A p.G245S 4 (0.0054) 0.00114

81606153 exon9 rs180762551 c.823G>A p.A275T 1 (0.0014) 0.00033

81609317 exon10 rs142122217 c.915T>A p.S305R 2 (0.0027) 0.00326

81609697 exon10 rs368268514 c.1295A>G p.N432S 2 (0.0027) 0.00016

81609751 exon10 rs189261858 c.1349G>A p.R450H 17 (0.0272) 0.00256

81609976 exon10 rs200138601 c.1574T>C p.F525S 5 (0.0068) 0.00180

81609978 exon10 rs777308150 c.1576G>A p.A526T 1 (0.0014) 0.00022

81609993 exon10 rs139892516 c.1591C>T p.R531W 1 (0.0014) 0.00011

81610040 exon10 NA c.1638G>C p.W546C 1 (0.0014) 0

81610227 exon10 rs763679435 c.1825C>T p.R609X 2 (0.0027) 0

81610240 exon10 rs540799629 c.1838A>G p.Y613C 2 (0.0027) 0.00054

81610468 exon10 rs761341933 c.2066T>G p.V689G 3 (0.0041) 0.00054

81610585 exon10 NA c.2183T>C p.M728T 1 (0.0014) 0.00016

81610674 exon10 rs746522401 c.2272G>A p.E758K 4 (0.0054) 0.00033

*Allele frequency in our congenital hypothyroidism sample bank.
†Allele frequency in the gnomAD exome Eastern Asian database.
Abbreviations: TSHR, thyroid-stimulating hormone receptor gene; rs ID, reference SNP identification; AF, allele frequency; NA, not applicable.
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ants were compared with those of the 322 CH patients without 
TSHR variants. There were no significant differences between 
the two groups in terms of hormone levels, age at diagnosis, and 
initial levothyroxine dose (Supplemental Data Table S2).

Thyroid functional information at diagnosis was collected for 
25 out of 45 patients who harbored TSHR variants, including 
four patients with severe CH, seven with moderate CH, and 14 
with mild CH. One patient (CHT241) harboring TSHR variants 
had thyroid dysgenesis (Supplemental Data Table S3). Among 
the seven patients with TSHR biallelic variants, only one patient 
showed moderate CH, and the remaining six patients presented 
with mild CH. However, patients with the TSHR monoallelic vari-
ant can present with mild to severe CH. Surprisingly, we found 
that the patients with the TSHR monoallelic variant had more 
severe hypothyroidism, with lower FT4 levels (9.58 ±1.50 vs. 
15.87±1.18, P =0.020) at diagnosis, than patients with TSHR 
biallelic variants (Fig. 3A–3C).

Dual oxidase 2 (DUOX2) is a key protein for thyroid hormone 
synthesis, and DUOX2 is the most frequently mutated gene in 
Chinese patients with CH [14, 18]. We compared the clinical 
characteristics of patients with TSHR or DUOX2 biallelic variants 
in the present cohort. Compared with CH patients with DUOX2 
biallelic variants, patients with TSHR biallelic variants had lower 
serum TSH levels and higher FT3 and FT4 levels at diagnosis 
(TSH: 52.96 ±17.84 vs. 105.77 ±5.48, P =0.012; FT3: 
5.71 ±0.43 vs. 4.47 ±0.15, P =0.025; FT4: 15.87 ±1.18 vs. 
7.20 ±0.45, P <0.001) (Fig. 3D–3F). In patients with DUOX2 
variants, hypothyroidism may vary with age, whereas in patients 
with TSHR variants, it tends to remain stable over time. There-
fore, we compared thyroid function at 6 months and 3 yrs of age 
between patients carrying TSHR biallelic variants and those car-
rying DUOX2 biallelic variants. Interestingly, patients harboring 
TSHR biallelic variants exhibited higher FT4 levels at both 6 
months and 3 yrs of age than patients carrying DUOX2 biallelic 
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tion of 17 TSHR variants identified in the 367 patients with CH. The TSHR comprises seven LRR domains and one (PSD-95/Dlg/ZO-1) PDZ-
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shows a schematic diagram of the corresponding TSHR mRNA sequence. Red font denotes novel variants. (B) Conservation analysis of the 
three novel variants. Amino acid sequences of the TSHR from various species were downloaded from the NCBI website and aligned using 
the SnapGene software. The mutated amino acids in all TSHR homologs are indicated using red boxes.
Abbreviations: TSHR, thyroid-stimulating hormone receptor; CH, congenital hypothyroidism; LRR, leucine-rich repeat; NCBI, National Centre for Biotechnology 
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variants (6 months: 20.60±1.27 vs. 16.77±0.65, P =0.041; 3 
yrs: 22.72 ±1.73 vs. 16.83 ±0.96, P =0.019) (Supplemental 
Data Fig. S2).

Functional assessment of the TSHR variants in vitro
The eight variants (p.G132R, p.I216T, p.G245S, p.N432S, p.
R450H, p.F525S, p.A526T, and p.V689G) detected in 18 pa-
tients with TSHR biallelic variants and the three novel variants 
(p.S237G, p.W546C, and p.M728T) were selected for molecular 
function assessment. The variants were transiently transfected 
into 293T cells, and Gs/cAMP and Gq/11 signal transduction 

were investigated by measuring cAMP levels and luciferase ac-
tivity, respectively. Compared with 293T cells transfected with 
the WT plasmid, cAMP production in response to bovine TSH 
(bTSH) was significantly reduced in cells transfected with the 
p.G132R, p.I216T, p.S237G, p.G245S, p.N432S, p.R450H, 
p.F525S, p.A526T, and p.W546C mutant plasmids. However, 
the p.V689G and p.M728T variants did not affect cAMP produc-
tion (Fig. 4A). The p.G132R, p.I216T, p.S237G, p.G245S, p.
F525S, p.A526T, p.W546C, and p.V689G variants showed par-
tial Gq/11 signaling activity (14%–57%), whereas activity was al-
most abrogated for the p.N432S and p.R450H variants (<10%) 
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Fig. 3. Comparison of thyroid function at diagnosis. (A–C) Comparison of serum FT3, FT4, and TSH levels at diagnosis between patients with 
TSHR biallelic variants and those with the TSHR monoallelic variant. The number of patients carrying TSHR biallelic or monoallelic variants 
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after stimulation with 100 U/L bTSH. The p.M728T variant had 
no effect on Gq/11 signaling (Fig. 4B).

We next investigated the protein expression and subcellular 
localization of the three novel variants (p.S237G, p.W546C, and 
p.M728T) in 293T cells. Western blot analysis showed no signifi-
cant differences in protein expression between the WT and the 
three mutants (Supplemental Data Fig. S3A and 3B). Subcellu-
lar localization analysis showed that the WT and three mutant 
TSHR proteins all localized to the cell membrane in an intact 
manner (Supplemental Data Fig. S3C).

DISCUSSION

Through comprehensive screening, we identified 17 distinct 
TSHR variants in 367 CH patients in China. We found a high fre-
quency of TSHR variants in Chinese patients with CH (45/367, 
12.3%), with 4.9% of patients carrying biallelic TSHR variants. 
We identified three novel variants (p.S237G, p.W546C, and p.
M728T), two of which (p.S237G and p.W546C) impaired TSHR 
biological functions in the Gs/cAMP and Gq/11 pathways.

Seventeen non-synonymous TSHR variants were identified in 
45 CH patients, with a detection rate of 12.3%, which is higher 

than the rates reported in most domestic studies [13, 19-21] 
but lower than those in two cohort studies in Italy and Korea [22, 
23]. Most TSHR LOF variants reported to date are located in ex-
ons 1, 4, 6, and 10 [11]. In this study, 12 of the 17 identified 
variants were located in exon 10, whereas none were located in 
exons 1, 4, and 6. These findings suggest that there may be re-
gional and ethnic differences in the spectrum of TSHR variants. 
In addition, we found a hotspot variant, p.R450H, which is one 
of the most common TSHR LOF variants and has been demon-
strated to have a founder effect in Japan [24].

Notably, among the 45 patients carrying TSHR variants, 18 
carried biallelic variants. The total residual Gs/cAMP and Gq/11 
pathway signaling activities in CH patients with TSHR biallelic 
variants were calculated as the sum of pathway signaling activi-
ties from both TSHR variant alleles divided by two. Two patients 
(CHT385 and CHT573) harboring the p.R450H homozygous 
variant, who had 35% Gs/cAMP signaling pathway activity and 
6% Gq/11 signaling pathway activity, had clinically similar phe-
notypes and presented with mild hypothyroidism. Patient 
CHT506, who carried the p.G132R homozygous variant, had a 
62% reduction in Gs/cAMP signaling pathway activity and 70% 
Gq/11 signaling pathway activity and was diagnosed as having 
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Fig. 4. Signaling properties of WT and 11 TSHR variants. (A) cAMP production in 293T cells. 293T cells were transfected with the respective 
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moderate CH, with serum TSH and T4 levels of 150.00 μIU/mL 
and 9.27 pmol/L, respectively. Patient CHT436, who harbored 
the p.N432S/p.R450H biallelic variants with residual Gs/cAMP 
and Gq/11 signaling pathway activities of 32% and 8%, respec-
tively, presented with mild CH, with serum TSH and FT4 levels of 
27.26 μIU/mL and 18.66 pmol/L. Patients CHT445 and CHT516 
carried the p.G132R/p.R450H biallelic variants, with residual 
Gs/cAMP and Gq/11 signaling pathway activities of 37% and 
18%, respectively. They both exhibited mild CH. Patient CHT553 
harboring the p.R450H/p.F525S biallelic variants had 30% and 
32% residual Gs/cAMP and Gq/11 signaling pathway activities, 
respectively, and was diagnosed as having mild CH, with serum 
TSH and FT4 levels of 25.56 μIU/mL and 15.96 pmol/L, respec-
tively (Supplemental Data Table S4). These functional experi-
mental results in patients with TSHR biallelic variants support 
the hypothesis that TSHR variants can cause the onset of CH. 
Pedigree analysis of two patients showed that CH caused by 
TSHR variants is inherited in an autosomal recessive manner, 
which is consistent with previous findings [12, 25, 26].

LOF TSHR variants result in variable TSH resistance mani-
fested as euthyroid hyperthyrotropinemia with a normal thyroid 
gland (fully compensated TSH resistance), mild hypothyroidism 
with a normal thyroid gland (partially compensated TSH resis-
tance), or severe hypothyroidism with thyroid dysgenesis (un-
compensated TSH resistance) [2]. In the present study, out of 
seven patients with TSHR biallelic variants, six patients pre-
sented with mild hypothyroidism, and only one patient presented 
with moderate hypothyroidism. Moreover, patients with TSHR bi-
allelic variants had milder hypothyroidism than those with 
DUOX2 biallelic variants. These findings indicate that the pheno-
types of CH caused by TSHR defects are milder and associated 
with completely or partially compensated TSH resistance.

The TSHR is a G-protein-coupled receptor with a TMD domain 
and a large ECD, which comprises an LRR domain involved in 
hormone binding specificity and a hinge region, linking the LRR 
domain to the TMD [11, 27]. TSHR activation results in intracel-
lular signaling via the Gs protein, which leads to cAMP cascade 
activation, and via the Gq protein, which leads to phospholipase 
C cascade activation. In the present study, four variants (p.
G132R, p.I216T, p.S237G, and p.G245S) were located in the 
LRR domain, and they caused varying degrees of impairment to 
the Gs/cAMP and Gq/11 signaling pathways. The novel p.
S237G variant had no effect on the expression and membrane 
localization of the TSHR protein but partially hindered Gs/cAMP 
and Gq/11 signaling. This may be attributed to the replacement 
of amino acids altering the TSHR protein structure, thereby de-

creasing its ability to bind to TSH. The novel p.W546C variant, lo-
cated in the fourth TMD of TSHR, is highly conserved among 
species. In silico tools predicted that this missense variant is 
detrimental to protein stability and function. In vitro experiments 
demonstrated that the p.W546C variant damages receptor func-
tion by affecting the Gs/cAMP and Gq/11 signaling pathways.

p.M728T, another novel variant identified in the present study, 
is located in the C-terminal intracellular region of TSHR. Chazen-
balk, et al. [28] confirmed that the removal of the C-terminal 
2/3 residues (Q709–L764) of TSHR did not impair receptor 
function. Concurrently, functional experiments in the present 
study showed that the p.M728T variant did not interfere with 
the Gs/cAMP or Gq/11 pathway. Numerous studies have con-
firmed that the hotspot variant p.R450H not only results in re-
duced cAMP activity and severely impaired Gq/11 pathway ac-
tivity but also reduces the TSH binding ability of TSHR [5, 13, 24, 
29], which is consistent with our findings.

The phenotypes of the TSHR monoallelic variant are report-
edly always mild, whereas biallelic variants are often associated 
with a more severe phenotype [7]. However, we found that pa-
tients with the TSHR monoallelic variant presented with mild to 
severe CH. Therefore, we compared thyroid function at diagnosis 
in patients with monoallelic and biallelic TSHR variants. Surpris-
ingly, patients with the TSHR monoallelic variant had lower FT4 
levels, which may be because of the following reasons. First, in 
our cohort, 12 of 27 patients with the TSHR monoallelic variant 
harbored biallelic variants in 21 other CH pathogenic genes 
(NKX2-1, NKX2-5, FOXE1, PAX8, HHEX, TPO, SLC5A5, TG, 
DUOX2, DUOXA2, TSHR, SLC26A4, IYD, DIO1, DIO2, THRA, 
THRB, DUOX1, DUOXA1, GNAS, and SLC16A2) as described in 
our previous study [14] (Supplemental Data Table S3). Com-
pared with patients with TSHR biallelic variants, patients with oli-
gogenic variants, including in TSHR, had lower FT4 levels and 
higher TSH levels at diagnosis, whereas patients with only a 
TSHR monoallelic variant showed no difference in thyroid func-
tion at diagnosis (Supplemental Data Fig. S4), which partially ex-
plains why patients with the TSHR monoallelic variant presented 
more severe hypothyroidism than those with TSHR biallelic vari-
ants. Second, the genetic etiology of CH is largely unknown, and 
patients with the TSHR monoallelic variant may also carry novel 
CH-causative genes, leading to a more severe phenotype. Fi-
nally, environmental modifiers, such as iodine intake and ethnic-
ity, should be considered in addition to genetic factors to explain 
this phenotypic variation. For example, Vigone, et al. [30] re-
ported phenotypic differences between two brothers harboring 
the same genetic variants attributed to different neonatal iodine 
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supplies, which suggested that the different neonatal iodine 
supplies acted as disease modifiers.

This study had some limitations. First, among the 18 patients 
carrying biallelic TSHR variants, pedigree analysis was con-
ducted for only two families. Second, we did not clarify whether 
patients carrying TSHR variants require lifelong thyroxine ther-
apy. Third, the pathogenic mechanism related to the presence 
of a heterozygous sequence variant in TSHR in patients with CH 
was not fully identified. In future work, we will mine and analyze 
unknown pathogenic genes in CH to gain insight into the molec-
ular mechanisms of CH pathogenesis.

In conclusion, we reported 17 TSHR variants in 367 Chinese 
patients with CH and investigated the biological function of 11 
variants (eight biallelic and three novel variants). Two novel vari-
ants (p.S237G and p.W546C) impair TSHR protein biological 
function by interfering with Gs/cAMP and Gq/11 signaling. Char-
acterization of the phenotypes of patients with TSHR variants re-
vealed that TSHR biallelic variants cause mild CH. The present 
study expanded the TSHR variant spectrum and provided further 
evidence for the elucidation of the genetic etiology of CH.
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