
Inferring cellular and molecular processes in single-cell data
with non-negative matrix factorization using Python, R and
GenePattern Notebook implementations of CoGAPS

Jeanette A. I. Johnson1,2,11, Ashley P. Tsang3,11, Jacob T. Mitchel2,4, David L. Zhou5,
Julia Bowden1,2, Emily Davis-Marcisak2,4, Thomas Sherman1, Ted Liefeld6, Melanie Loth1,2,
Loyal A. Goff3,5,7,8, Jacquelyn W. Zimmerman1,2, Ben Kinny-Köster9, Elizabeth M. Jaffee1,2,
Pablo Tamayo6, Jill P. Mesirov6, Michael Reich6, Elana J. Fertig1,2,3,8,10,✉, Genevieve L.
Stein-O’Brien1,2,3,5,7,8,✉

1Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins
University, Baltimore, MD, USA.

2Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University,
Baltimore, MD, USA.

3Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

4Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.

5Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.

6Department of Medicine, Moores Cancer Center, University of California San Diego, San Diego,
CA, USA.

7Kavli Neurodiscovery Institute, Johns Hopkins University, Baltimore, MD, USA.

8Single Cell Training and Analysis Center, Johns Hopkins University, Baltimore, MD, USA.

9Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

✉Correspondence and requests for materials should be addressed to Elana J. Fertig or Genevieve L. Stein-O’Brien.
ejfertig@jhmi.edu; gsteinobrien@jhmi.edu.
11These authors contributed equally: Jeanette A.I. Johnson, Ashley P. Tsang.
Author contributions
E.J.F., G.L.S.-O. and T.S. originally conceived of the project. E.D.-M. and M.L. prepared a preliminary draft of the manuscript.
A.P.T. and J.A.I.J. wrote PyCoGAPS with guidance from G.L.S.-O. A.P.T. implemented the PyCoGAPS GenePattern Notebook and
introduced Docker support. M.R. and J.T.M. provided critical GenePattern Notebook support and collaboration. J.A.I.J. and A.P.T.
wrote user guides, and J.T.M. performed the PDAC Atlas single-cell analysis included in them. J.B. created the CoGAPS website. All
authors read, edited and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Code availability
All code and example data objects are accessible via our lab’s GitHub repositories, and/or available for download from Zenodo50. The
CoGAPS core library and R interface are available at https://github.com/FertigLab/CoGAPS/ and the PyCoGAPS (Python interface)
can be obtained from https://github.com/FertigLab/pycogaps.

Peer review information Nature Protocols thanks Martin Hemberg, Qing Nie and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
s41596-023-00892-x.

HHS Public Access
Author manuscript
Nat Protoc. Author manuscript; available in PMC 2024 March 25.

Published in final edited form as:
Nat Protoc. 2023 December ; 18(12): 3690–3731. doi:10.1038/s41596-023-00892-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/FertigLab/CoGAPS/
https://github.com/FertigLab/pycogaps
http://www.nature.com/reprints
https://doi.org/10.1038/s41596-023-00892-x
https://doi.org/10.1038/s41596-023-00892-x

10Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD,
USA.

Abstract

Non-negative matrix factorization (NMF) is an unsupervised learning method well suited to high-

throughput biology. However, inferring biological processes from an NMF result still requires

additional post hoc statistics and annotation for interpretation of learned features. Here, we

introduce a suite of computational tools that implement NMF and provide methods for accurate

and clear biological interpretation and analysis. A generalized discussion of NMF covering its

benefits, limitations and open questions is followed by four procedures for the Bayesian NMF

algorithm Coordinated Gene Activity across Pattern Subsets (CoGAPS). Each procedure will

demonstrate NMF analysis to quantify cell state transitions in a public domain single-cell RNA-

sequencing dataset. The first demonstrates PyCoGAPS, our new Python implementation that

enhances runtime for large datasets, and the second allows its deployment in Docker. The third

procedure steps through the same single-cell NMF analysis using our R CoGAPS interface. The

fourth introduces a beginner-friendly CoGAPS platform using GenePattern Notebook, aimed at

users with a working conceptual knowledge of data analysis but without a basic proficiency in

the R or Python programming language. We also constructed a user-facing website to serve as a

central repository for information and instructional materials about CoGAPS and its application

programming interfaces. The expected timing to setup the packages and conduct a test run is

around 15 min, and an additional 30 min to conduct analyses on a precomputed result. The

expected runtime on the user’s desired dataset can vary from hours to days depending on factors

such as dataset size or input parameters.

Introduction

The central challenge of high-throughput biology, as exemplified by single-cell analysis,

pertains to the reduction of extremely high-dimensional data into a format from which we

can observe patterns, formulate mechanistic hypotheses and design new experiments. High-

throughput experiments are now ubiquitous across many areas of biomedical and biological

research. As technology advances to perform these experiments, algorithmic strategies and

computing capabilities must develop just as swiftly to keep up with the increasing amount of

data they yield.

Non-negative matrix factorization (NMF) is a mathematical technique with a long history

in the field of genomics for the analysis of bulk RNA-sequencing (RNA-seq) data1, and it

has been widely adopted as a powerful dimensionality reduction tool for single-cell data

as well2. NMF reduces the expression of thousands of genes across numerous cells from

single-cell (sc)RNA-seq data, to a small number of patterns across those cells. The additive

nature of solutions from NMF yields interpretable patterns that can be associated directly

with biological processes. Thus, NMF solutions, by definition, encode many characteristics

of each cell simultaneously, including identity, state transitions, molecular processes and

even technical artifacts3. Moreover, as many of these cellular and molecular processes are

unknown a priori in single-cell data, this learning method is particularly well suited for

unsupervised analyses.

Johnson et al. Page 2

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Multiple software packages implement NMF, many of which apply to single-cell data4. Still,

biological interpretation of NMF solutions requires further functionalization and practical,

end-to-end workflows developed specifically for omics data. Technical components, such as

algorithm assumptions, convergence and dimensionality all impact the analysis findings5.

Biologically interpretable solutions of NMF analysis also rely on custom, post hoc

visualization and statistics of the patterns learned from the data6. These steps are often

customized for each analysis and are not previously codified into a cohesive description of

the workflow required for interpretable NMF analysis.

Here, we present four procedures for interpretable analysis of scRNA-seq data with our

sparse, Bayesian NMF algorithm Coordinated Gene Activity in Pattern Sets (CoGAPS7)

based on previous findings of its robustness to initial conditions8. CoGAPS was originally

released in an R/Bioconductor package by the same name9. Our four procedures

demonstrate step-by-step NMF analysis across distinct software platforms. They are applied

to characterize malignant epithelial cell state transitions in pancreatic cancer using public

domain scRNA-seq data10, which we collated and annotated for 25,422 epithelial cells

from tumor and control samples previously11. The first procedure demonstrates PyCoGAPS,

a new Python interface for CoGAPS that enhances accessibility and runtime of this

algorithm, which we demonstrate has faster performance than our previous R/Bioconductor

package. In the second procedure, we provide an option for deploying PyCoGAPS with

Docker, allowing users to quickly and easily set up the package and its dependencies

through a virtual container. The third procedure performs the same analysis using the R/

Bioconductor interface for CoGAPS. The fourth procedure demonstrates running CoGAPS

with large scRNA-seq datasets using a web-based, cloud-based computing environment

built with GenePattern Notebook12. This range of options makes NMF accessible to users

regardless of their programming background or access to computing architecture. To further

guarantee accessibility, we constructed a public-facing CoGAPS website, which serves

as a central repository for information about CoGAPS and its application programming

interfaces (APIs), including tutorials, explanatory information and links to source code:

https://fertiglab.github.io/CoGAPSGuide/.

Key components and considerations for NMF analysis

NMF approximates an input data matrix as the product of two lower-dimensional matrices

with non-negative entries. If the input matrix of single-cell data contains genes along its

rows and cells along its columns, the first result matrix is of dimension genes-by-patterns

and the second patterns-by-cells. The number of patterns (or equivalently, features) that

define the inner dimension of the two matrices in the factorization is an input variable to

the algorithm, which will here be referred to as κ, represented in our code as the parameter

nPatterns. When applying NMF to analyses of other high-dimensional data modalities,

‘genes’ and ‘cells’ in this protocol could be replaced by any number of other variables,

depending on the experiment and measurement technology. Following the standardized

notation for factorization analyses from Stein-O’Brien et al.6, we here refer to the genes-by-

patterns matrix as the amplitude matrix (A) and the patterns-by-cells matrix as the pattern

matrix (P). A variety of alternate nomenclature has been assigned to these matrices in other

studies; often the amplitude matrix is referred to as the weights matrix13 or meta-genes1,

Johnson et al. Page 3

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://fertiglab.github.io/CoGAPSGuide/

and the pattern matrix as the heights matrix13 or meta-cells. The amplitude matrix describes

the association of each gene with each pattern, and the pattern matrix provides information

about the relative contribution of each pattern to the phenotype of each cell or sample. The

non-negativity assumption in NMF yields non-negative features in these matrices that add

together to reconstruct the signal in the input data (Fig. 1). This non-negative constraint

contributes to the solution’s biological interpretability, as negative quantities do not exist in

nature6.

There are a wide variety of NMF techniques used for high-throughput molecular analysis,

most recently for scRNA-seq analysis3. Algorithms used to solve the NMF problem can

be divided into two major classes: gradient-based methods that seek a single solution that

optimizes a cost function13 and Bayesian methods that estimate the posterior distribution

of the amplitude and pattern matrices14. Both classes can be modified to encode additional

constraints on top of non-negativity, further differentiating the various NMF techniques.

For example, the Bayesian NMF CoGAPS9 and gradient-based LS-NMF15 both model the

uncertainty in the expression data in the factorization. In addition, CoGAPS also leverages

the Bayesian architecture through an atomic prior16 to model sparsity in both the amplitude

and pattern matrices.

The NMF packages ccFindR17 and cNMF18 are also both well designed for use in single-

cell experimentation. Both use prior distributions to create estimates of the amplitude

and pattern matrices. ccFindR, however, implements Cemgil’s19 variational Bayesian

inference algorithm, enabling update of both the prior and the hyperparameters, and cNMF

implements neighbor clustering for outlier detection. CoGAPS is unique among these

examples in that it models the prior distribution using an atomic domain. The algorithm

implements update steps creating, removing or changing the values of individual atoms

within the domain. This provides the algorithm with a set of fine revision tools, allowing

it to make minute adjustments to the estimate after each iteration to yield a more precise

approximation. In a benchmarking study comparing latent factor models in single-cell data,

CoGAPS was shown to perform equally or better than other single-cell NMF algorithms20.

Ultimately, choice of algorithm should be driven by the question and data at hand, and, if

a different algorithm for NMF is used, the downstream analysis and interpretation methods

presented here, and general principles described, will still be applicable. While all the

procedures we present are readily adaptable for analysis with other NMF algorithms or even

other forms of matrix factorization, we demonstrate analysis with CoGAPS.

Overview of NMF analysis

A generalized workflow for NMF analysis of single-cell data is summarized in Fig. 2.

Each step in this workflow is described generally to facilitate customization of the template

protocols to other factorization methods, non-negative and otherwise. The mechanism by

which CoGAPS distributes across multiple sets when run in ‘distributed’ mode, as is

recommended for most single-cell data, is illustrated in Fig. 3 (for more details, see the

‘Finding robust patterns using consensus across parallel sets’ section below).

Johnson et al. Page 4

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We provide four independent, equivalent procedures (procedures 1–4) for NMF analysis.

Figure 4 is a decision tree to assist the user in deciding which protocol is best for them, and

Fig. 5 compares the workflows visually. First, we provide two options for running CoGAPS

via PyCoGAPS (procedures 1 and 2). Procedure 1 demonstrates using the PyCoGAPS

package in a Python script, and Procedure 2 demonstrates automatic deployment of the

computing job using a Docker image. Both options are functionally equivalent, so the user’s

choice of interface should depend on factors such as familiarity with Python and/or Docker,

and desire for flexibility and modification. Procedure 1 provides a full walkthrough of

PyCoGAPS package capabilities. To deploy and run PyCoGAPS in fewer steps but with

limited flexibility, follow Procedure 2.

Procedure 3 demonstrates the R CoGAPS API, and Procedure 4 demonstrates browser-based

GenePattern Notebook. All these procedures follow equivalent steps and share the same

CoGAPS backend, so the user’s choice of interface should depend on factors such as

computing performance, familiarity with the programming language, and programming

expertise. Please refer to Fig. 4 and/or Table 1 to determine which procedure is most

appropriate to follow. For a comprehensive index of CoGAPS software, please visit the

CoGAPS website, https://fertiglab.github.io/CoGAPSGuide/.

Each procedure first provides details on setting up the relevant software (Procedure 1 Steps

1–3; Procedure 2 Step 1; Procedure 3 Step 1; Procedure 4 Steps 1–3). The user is then

instructed to conduct a run on a simulated, small toy dataset called ModSim to quickly

ensure proper setup of the package and environment (Procedure 1 Steps 4–7; Procedure 2

Step 2; Procedure 3 Steps 3–5; Procedure 4 Steps 4–7). Then, each procedure demonstrates

running and analysis on a larger scRNA-seq pancreatic ductal adenocarcinoma (PDAC)

dataset to draw biological conclusions (Procedure 1 Steps 8–13; Procedure 2 Steps 3–5;

Procedure 3 Steps 6–8; Procedure 4 Steps 8–9). Figure 5 provides a general procedure

workflow overview for running each procedure. Finally, each procedure details approaches

to analyzing the output results (Procedure 1 Steps 14–19; Procedure 2 Steps 6–8; Procedure

3 Steps 9–13; Procedure 4 Step 10).

We will now discuss several best practices and open questions for NMF and offer strategies

for choosing parameters and assessing the learned solutions.

Data preprocessing and input

The majority of NMF analyses are performed on normalized and log-transformed data21,

which is recommended as a preprocessing step in our CoGAPS protocols (Procedure 1 Step

10; Procedure 2 Step 4; Procedure 3 Step 6; Procedure 4 Step 8). We note that regardless

of how the input data is transformed, it must contain only non-negative values, as this is

a central requirement of NMF. We note that some emerging NMF algorithms have error

models designed for raw count data22, and therefore do not require this normalization.

Many scRNA-seq technologies are subject to drop-out, resulting in zero values for a

large proportion of measurements from technical rather than biological conditions. Several

imputation approaches have been developed to estimate the signal in these missing data

before analysis23. Still, it is not necessary to impute the input data for NMF analysis and

Johnson et al. Page 5

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://fertiglab.github.io/CoGAPSGuide/

indeed the reconstruction of the data estimated from the product of the inferred amplitude

and pattern matrices can be used as an alternative imputation scheme24. Moreover, the

sparsity model in the atomic prior from CoGAPS is tailored to the sparsity of scRNA-seq

data, motivating our selection of this algorithm as the foundation for this protocol9. If the

user desires, imputed data is acceptable for input, but we note that the imputation algorithm

employed will impact the inferred solutions.

Technical aspects of scRNA-seq experiments, such as library preparation, processing day,

dissociation quality, etc., can introduce further artifacts in the signal from scRNA-seq

data, leading to numerous batch correction approaches for scRNA-seq data25. Some

batch correction algorithms do not change the raw data and focus instead on aligning

the embedding used to visualize scRNA-seq data26, and therefore would not impact the

factorization results. Other batch correction algorithms attempt to remove these technical

signals from the data27. These batch correction approaches may also affect the solution

and should be used with caution. This is especially important as some algorithms, such as

CoGAPS, have been demonstrated to concurrently learn technical and biological signals,

making preprocessing to eliminate batch effects unnecessary8. Likewise, NMF approaches

can also provide a unified embedding between datasets28. We acknowledge that these first

steps must often vary greatly depending on the biological context and invite the user

to validate optimized custom preprocessing workflows for that context. Comprehensive

reviews of preprocessing pipelines for scRNA-seq data have been previously published29.

Iterative assessment of optimality of solutions

Biological inference based upon solutions of the amplitude and pattern matrices for a dataset

relies on the assumption that the NMF algorithm has returned a stable and biologically

relevant factorization. Determining optimality of factorization remains an open question,

with various metrics developed to assess performance. These metrics will vary based on

the type of NMF analysis used. Bayesian methods for NMF, including CoGAPS, estimate

the posterior probability distribution for amplitude and pattern matrices. Bayesian NMF

methods for genomics analysis employ a wide variety of Markov chain Monte Carlo

(MCMC) and variational algorithms to learn these distributions. Whereas gradient-based

and variation methods are subject to local minima, many MCMC methods are designed to

overcome local optima, which is crucial in biological applications where there may be many

semi-stable states and thus many local optima. However, this gain in the global optimality of

solutions occurs at a cost: these algorithms must be run over many iterations, often resulting

in long runtimes, which can be addressed with parallelization30 or graphics processing unit

computing31. Likewise, the local optima of gradient-based techniques can be overcome by

leveraging parallel computing to determine the global optima by sampling solutions from

multiple initial conditions.

After an MCMC run on a given dataset is complete, it remains to be assessed whether

it was run for a sufficient number of iterations to attain accurate sampling from the

posterior distributions for both the amplitude and pattern matrices—a property known

as convergence— and whether the user-specified number of patterns learned corresponds

appropriately to the biological question under investigation. When convergence is reached,

Johnson et al. Page 6

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

increasing the number of iterations will enhance the density of sampling from the posterior

distribution to improve analytic estimates of the distribution but will no longer improve the

learned solution. The application of Bayesian convergence metrics to determine the stopping

criterion for Bayesian NMF algorithms remains an open area of research. Therefore, it is

critical to empirically evaluate the stability of the likelihood calculation over the chain to

assess the optimal number of iterations for each Bayesian NMF algorithm.

As CoGAPS uses MCMC sampling to find the values of the A and P matrices, the results

are stochastic. While results will vary between simulations, we have observed that solutions

from multiple runs tend to have qualitatively similar gene signatures and cell weights in

permuted pattern order. For reproducibility of CoGAPS results, we recommend setting the

seed for each run and saving CoGAPS results after completion of the run as an intermediate

object before interpretation.

The convergence metrics for each NMF algorithm depends on the details

of the mathematical formulation of the model used for the factorization. In

the case of CoGAPS, this algorithm performs factorization of a transcriptional

dataset Di, j with genes (i) and cells (j), according to the Bayesian model

Di, j ∼ N(Ai, .P .,j, Σ); P(Ai, k) ∼ Γ(αi, k
A , λA); P(Pk, j) ∼ Γ(αk, j

P , λP) where N(· , ·) indicates a

univariate normal distribution, the shape parameters are modeled according to a Poisson

prior with hyperparameter α, and the additional hyperparameters are fixed to model

transcriptional data30. Implementing this model through an atomic prior16 enables Gibbs

sampling and yields a sparse NMF solution, with matrix elements able to be exactly zero in

cases where αi, k
A and αk, j

P are identically zero. For our purposes, we consider convergence to

be attained when additional iterations no longer reduce the chi-squared value, that is, when

it has stabilized (Fig. 6). Previously, we have found robust performance on scRNA-seq for

α = 0.01 and convergence after approximately 50,000 iterations for both equilibration and

sampling32. Therefore, we use this algorithm and these parameters for the examples in this

protocol (for parameter setting, please see Table 2 and Procedure 1 Step 11; Procedure 2

Step 4; Procedure 3 Step 7; Procedure 4 Step 5).

Dimensionality estimation

The solutions learned by NMF depend critically upon the dimensionality κ of the

factorization, which is equal to the number of patterns, and therefore also equal to the

number of columns in the amplitude matrix and the number of rows in the pattern matrix6.

How to estimate the optimal dimensionality remains an open question in the field of

unsupervised learning. In performing robustness analyses to estimate κ, we have found that

these statistics may also have local minima for pattern robustness at different dimensions. In

this case, greater resolution of multiple biological components often occurs at the second,

higher value of κ, for which stability is first lost. Moreover, these two dimensions at

which the local optima occur may both reflect distinct, hierarchical information about the

underlying biological system with the dataset1. For example, in a bulk genomics dataset of

head and neck tumors, we found that NMF at κ = 2 separated tumor and normal samples

whereas NMF at κ = 5 separated known head and neck cancer subtypes33.

Johnson et al. Page 7

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choosing an optimal κ for NMF is currently an unsolved problem in the field of

mathematics, with current consensus being that there is probably no one true κ for NMF,

but rather different biological features are uncovered at different dimensions34. Similar

observations have been found in genomics analysis with other unsupervised learning

techniques, including recently with autoencoders35.

On the basis of these findings, we recommend and describe dimensionality estimation based

on tests that require solving for a range of κ values (for parameter setting, please see

Table 2 and Procedure 1 Step 11; Procedure 2 Step 4; Procedure 3 Step 7; Procedure

4 Step 5). Linking solutions from multiple dimensionalities based on similarity and

gene membership can not only provide information about robustness, but also uncover

hierarchical relationships between patterns36. Additionally, the cophenetic correlation

coefficient can be used to assess the stability of sample clustering at a given dimensionality

as described in Brunet et al.1. When the clustering within a dimensionality is perfectly

stable, the cophenetic correlation coefficient equals 1. Thus, increasing the dimensionality

until the magnitude of the cophenetic correlation coefficient is >1 can determine the

maximum κ at which cluster stability is preserved.

For the workflows and datasets we present here, we chose nPatterns = 8 based on multiple

runs at a range of nPatterns from 8 to 12. We settled on 8 patterns as marker gene analysis

of the results, as using nPatterns = 10 and nPatterns = 12 showed that, from the perspective

of our analysis, patterns learned at the higher dimensionalities also represented the same

biological processes in the nPatterns = 8 results based on overrepresentation analysis of

pattern marker genes with hallmark gene sets while additional patterns were learned11. Thus,

the choice of 8 patterns was made because this is the dimensionality that captured processes

of interest that also predominated at higher dimensionality, while not diluting signal across a

larger number of patterns.

We note that regardless, κ must be far less than either dimension of the input dataset to yield

theoretically identifiable solutions from NMF. However, similarly to other machine learning

paradigms, the stability of solutions beyond this theoretical upper bound has been observed.

Thus, is it likely that NMF may also experience a double-descent phenomenon.

Analysis and visualization of inferred cellular features in the pattern matrix

Single-cell experiments can provide measurements associated with numerous features of

biological systems, including cell type, cell state, temporal transitions, cell cycle and

metabolic states, and spatial localization37. Yet the data also includes numerous technical

artifacts from features, notably batch effects between libraries, dissociation protocols and

dropout38. A critical advantage of NMF for scRNA-seq data is its ability to learn separate

patterns associated with each of the biological and technical features from a single analysis2.

Nonetheless, uncovering these features from an NMF analysis of scRNA-seq data depends

critically upon relating the weights of the matrix elements for each row of the pattern matrix

and amplitude matrix to the biological feature or technical artifact that they represent6 (Fig.

2).

Johnson et al. Page 8

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The most direct means of assessing the biological meaning of each pattern is to correlate

its values with annotations of the experimental conditions or cell type calls in the single-

cell data (Procedure 1 Step 17; Procedure 3 Step 11). However, these statistics will not

delineate the cellular heterogeneity within these conditions that incentivize the use of

single-cell data in these studies. Therefore, visualization is a critical component of this

biological interpretation of the pattern matrix (Fig. 2). Dimensionality reduction tools such

as t-distributed stochastic neighbor embedding (t-SNE) or Uniform Manifold Approximation

and Projection (UMAP) are used for visualizing single-cell analysis, and in the case of

CoGAPS, they can be used for interpreting patterns in low-dimensional space (Procedure 1

Step 15; Procedure 3 Step 10; Procedure 4 Step 10). Dynamic transitions are then apparent

from high pattern weights in intermediate states between cell types or areas of high RNA

velocity39. These dynamics will also often be apparent along pseudotime trajectories. Thus,

correlation or linear models associating pattern weights to pseudotime trajectories can be

used to quantify these relationships. A critical advantage of NMF is its ability to learn

the interrelationships between cell type and experimental conditions that are not readily

apparent from the visualizations used in a typical single-cell analysis workflow. Statistical

tests such as multivariate analyses of variance (MANOVAs), t-tests or other factor-based

tests of the pattern weights for these conditions with the experimental covariates such as

treatment, condition, age, sex, etc. can assess the significance of these learned relationships.

We provide functions in both Python PyCoGAPS and R CoGAPS to statistically assess

the ability of learned patterns to differentiate groups of cells with MANOVA (Procedure 1

Step 16; Procedure 3 Step 14; Procedure 4 Step 10). We additionally provide statistics for

assessing significance of genes as they correlate to patterns (Procedure 1 Step 18; Procedure

3 Step 12; Procedure 4 Step 10) (Fig. 2e,g).

Assessing the biological function of gene signatures from the amplitude matrix

Association of genes and pathways with the features learned from NMF analysis facilitates

annotation to inform biological interpretation and hypothesis generation (Fig. 2f). For

each row of the pattern matrix, there is a corresponding column in the amplitude matrix

containing gene weights for the learned feature that can be used for these associations6 (Fig.

1). Each feature can be associated with biological processes or pathways by performing

gene set enrichment analyses of the gene weights in each column of the amplitude matrix

with pre-annotated sets (Fig. 2h) such as those curated in MSigDB40 (Procedure 1 Step

19; Procedure 3 Step 13; Procedure 4 Step 10). In the case of Bayesian methods such as

CoGAPS, these set statistics have been developed to leverage Z-scores that account for the

posterior distribution of the amplitude matrix41.

An advantage of NMF for pathway discovery is its ability to highly weigh one gene

in multiple columns of the amplitude matrix, reflecting the natural multipurpose nature

of many genes that are active in multiple biological processes, pathways or cell types.

However, this tends to hinder the identification of unique genes associated with each of

the learned patterns. These marker genes are essential to define biomarkers of the learned

process and prioritize candidates for experimental validation. Statistics that instead quantify

the unique association of genes with each column in the amplitude matrix can be used for

this analysis42.

Johnson et al. Page 9

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For example, the patternMarker statistic in CoGAPS and PyCoGAPS (Procedure 1 Step 18;

Procedure 3 Step 12; Procedure 4 Step 10) ranks genes according to this unique association

by ranking every gene for every pattern by scaling the gene weights in the amplitude matrix

to their maximum value, and then iteratively matching genes to the pattern with the lowest

distance from the identity vector for that pattern, and returning a list of ‘marker genes’

for each pattern, which can then be used to interpret their biological significance. The

patternMarkers function has two modes designated by the threshold parameter (Box 1).

When threshold = ‘all’, each gene is designated as a marker for whichever pattern it is most

associated with, and the number of markers will equal the number of genes (each gene is a

marker of one pattern). When threshold = ‘cut’, marker genes returned will be the subset of

genes that are associated with each pattern, such that they are not more greatly associated

with another one of the patterns. We provide both options to account for cases where a user

would want statistics for every gene present, and cases when the user would want a shorter

list of summary genes most uniquely associated with that pattern. The former statistic could

be used downstream to perform enrichment analysis, and the latter could have utility for

preranked gene set analysis. We demonstrate use of these statistics and provide protocols

for their interpretation in the procedures (Procedure 1 Steps 14–19; Procedure 2 Steps 6–8;

Procedure 3 Steps 9–13; Procedure 4 Step 10).

We note that often NMF analyses yield one ‘flat’ pattern that is roughly constant across

all cells, accounting generally for highly expressed genes43. This pattern, while useful in

other ways, should be excluded from the calculation of the patternMarker statistic to avoid

falsely thresholding highly expressed genes. Creating a heat map of the input data with

genes ordered by their rank for each pattern can provide a clear visualization of the learned

patterns43.

Finding robust patterns using consensus across parallel sets

One limitation to the Bayesian structure of CoGAPS over other NMF approaches is the

computational costs of numerous iterations to estimate the distribution of the amplitude and

pattern matrices. The computational cost of these iterations increases as a function of the

size of the dataset. To overcome this computational cost, CoGAPS supports a ‘distributed’

mode of running (Procedure 1 Step 8; Procedure 2 Step 4; Procedure 3 Step 7; Procedure 4

Step 8) in which the input data is sampled into n subsets of genes across every cell (genome-

wide mode) or n subsets of cells across every gene (single-cell mode) in an highly parallel

manner30 (Fig. 3 and Box 2). Subsetting can be performed randomly, explicitly or using

weighted assignments to ensure an even distribution of cell types among sample subsets.

These supervised options are critical for users who wish to discover patterns associated

with a rare cell type. For example, a pattern representing semi-stable cell state transitions

from normal to cancer was identified in the PDAC data by selecting only epithelial cells for

analysis11.

Next, CoGAPS is run on each input matrix and these results are clustered and transformed

into a smaller set of consensus patterns, the rationale being that robust biological patterns

will manifest themselves across multiple subsets of genes or cells. For randomly sampled

independent subsets, the robustness of the learned patterns can be statistically quantified.

Johnson et al. Page 10

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The resulting consensus matrix (either A or P depending on the mode) is then given as input

to another CoGAPS run across the same subsets. This forces each thread to learn only the

nonfixed matrix, so the patterns returned from this run will all be directly comparable across

subsets (i.e., pattern 1 in subset 1 is the same as pattern 1 in subsets 2, 3 and 4). This process

enables the results to be combined into complete A and P matrices that factor the original

input matrix. By using this consensus process, not only is there a significant increase in

computational efficiency, but also an increased robustness of the final solution18.

Multi-omic methods

The protocols presented here are focused on scRNA-seq data. Still, they could be extended

to multi-omics analysis for data from different technologies. Coupled NMF methods44

that simultaneously decompose multiple datasets can reveal shared features with the

visualizations and post hoc statistics on the output matrices as described above. This can

be achieved by modifying our workflows to input concatenated datasets between data

modalities, combined along rows or columns depending on the analysis task45. While

applicable for multi-omics analysis44, the implicit assumptions of these coupled methods

may not accurately model timing differences between datasets or features unique to one.

As an alternative, transfer learning methods that project the gene weights from the amplitude

matrix learned in one source dataset onto the other datasets to compare the use of features

in this new dataset. This would be accomplished by applying our protocols described

below to learn patterns in a single reference dataset, and then subsequently applying our

projectR method for transfer learning to the new query dataset46. We have found that

only biological features, not technical, successfully transfer between related datasets and

enable comparison between data platforms, species, tissues and molecular modalities26. This

transfer learning approach can be used to annotate features in the original input source

dataset based on information from the new target dataset. For example, our NMF analysis

of scRNA-seq data from epithelial cell state transitions resulting from fibroblast interactions

were preserved in co-culture scRNA-seq data from an in vitro organoid model11. In the

context of cancer immunotherapy, this approach also enables the discovery of preserved

cell state transitions from therapy that are shared between preclinical models and human

tumors47. Likewise, this transfer learning approach can enable integration with spatial

single-cell data or high-resolution imaging data to enable mapping of non-spatially resolved

single-cell data48. CoGAPS has complete support for analysis of spatial transcriptomics

data in the new package SpaceMarkers49 and can also be readily extended to spatial and

non-spatial single-cell proteomics data.

Limitations

While we focus on NMF analysis of scRNA-seq data with CoGAPS in this protocol, we

note that many of the visualization and interpretation steps are also applicable to results

obtained with alternative factorization methods and that there is no universal consensus as to

the most robust factorization method for single-cell data. We selected CoGAPS due to the

sparse and robust nature of its solution, found previously to enhance biological interpretation

over other methods5. A limitation of CoGAPS is its long runtime, due to the sequential

MCMC approach employed to estimate the posterior distribution according to an adaptive

Johnson et al. Page 11

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

sparse prior distribution9. Future work will address this limitation through the development

of a graphics processing unit implementation, as has been developed for alternative Bayesian

NMF models31.

The unsupervised nature of NMF can limit the interpretation of features to prior knowledge

or annotations of the biological system measured with the single-cell data. New techniques

for independent assessment of biological robustness and interpretation are essential for

biological discovery. Although beyond the scope of this protocol, NMF analyses comparing

multiple datasets enable assessment of the robustness of learned features and discover new

relationships between distinct biological contexts28.

Another limitation inherent in this approach is the strict requirement for a choice of κ,

the number of patterns to learn. This is an absolute requirement because the base matrices

must be initialized at their final and only size, and dimensions must be such that matrix

multiplication will yield a matrix of the same dimension as the input data. (m by κ) × (κ by

p) = (m by p), where m = number of gene features (or equivalent), p = number of cells (or

equivalent). We note that matrix factorization can be valid for any κ, as long as κ < m, p
and for a large number of those cases, but certainly not all, a coherent factorization can and

will be reached by CoGAPS. The existence of a theoretical ‘optimal κ for a given dataset,

or in this case, a ‘true’ number of patterns present in the input data, is currently an open

question in the field of mathematics, with some recent work showing that there can be no

single optimal κ34.

Materials

Data

All four procedures are demonstrated with publicly available data which we preprocessed

and made available for convenience.

ModSim is a small, simulated dataset that will be used to ensure proper setup and run of

PyCoGAPS/CoGAPS in each procedure.

• (Required) ModSim simulated dataset and a reference NMF result live in

CoGAPS/pycogaps github repositories in the data/directories.

– Name: ModSimData.txt (25 ‘genes’ × 20 ‘cells’, simulated data)

– Reference result: ModSimResult.h5ad (anndata result object)

The single-cell protocol is demonstrated using preprocessed and harmonized

scRNA-seq data of 25,422 pancreatic epithelial cells from two studies of PDAC.

In the Python vignette, this is retrieved from inputdata.h5ad, and in R, it can be

loaded as a Seurat object from inputdata. Rds. We note that this is the same data

in two different formats necessitated by the different languages of the APIs.

• (Optional) scRNA-seq PDAC dataset

Johnson et al. Page 12

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

– We encourage the user to download the appropriate annotated and

prepared .h5ad (for Python) r .Rds (for R) files available at https://

zenodo.org/record/7709664.

The necessary data files may be automatically included in pycogaps,

but they will not be automatically included in a fresh R CoGAPS

installation.

– Reference dataset: inputdata.h5ad (Python) inputdata.Rds (R)

(dimension: 15,219 genes × 25,422 cells)

– Reference result: cogapsresult.h5ad (Python) cogapsresult.Rds (R)

(dimension: 15,219 genes × 25,422 cells)

All code and data needed to reproduce the results of these workflows can be

found hosted on Zenodo50 at https://zenodo.org/record/7709664.

Software

 CRITICAL For a comprehensive overview of all available CoGAPS software, tutorials

and links to source code, please visit the CoGAPS website:

Software specifications

• Operating system: MacOS, Linux, Windows or the Ubuntu subsystem for

Windows (https://docs.microsoft.com/en-us/windows/wsl/install)

If following Procedure 1, PyCoGAPS with Python scripts

• Python v3.8 or later (https://www.python.org/downloads/release/python-380/)

• C++ compiler (Box 3)

• Python integrated development environment (IDE) software such as VS Code,

PyCharm or Jupyter

If following Procedure 2, PyCoGAPS with Docker

• Docker (https://docs.docker.com/get-docker/)

• For Windows users only:

– Ensure hyper V and virtualization is enabled

– Install linux to get WSL2, with default Ubuntu

If following Procedure 3, R CoGAPS

• R (recommended v4 or later; known to be stable for R 4.2.1)

• RStudio (https://www.rstudio.com/products/rstudio/download/)

If following Procedure 4, GenePattern Notebook:

• No software is needed

Johnson et al. Page 13

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/7709664
https://zenodo.org/record/7709664
https://zenodo.org/record/7709664
https://docs.microsoft.com/en-us/windows/wsl/install
https://www.python.org/downloads/release/python-380/
https://docs.docker.com/get-docker/
https://www.rstudio.com/products/rstudio/download/

Hardware

CoGAPS can be run on most laptops and compute clusters. Due to the nature of the

CoGAPS algorithm, memory and random access memory requirements will scale with the

size of data being analyzed, number of patterns requested, number of threads and number of

iterations.

Procedure 1: running PyCoGAPS: user startup guide for the Python

CoGAPS API

Software setup

● TIMING 5–10 min

1. To download PyCoGAPS from GitHub with all data included (~2 GB memory),

run the following command:

git clone https://github.com/FertigLab/pycogaps.git —recursive

The expected output is shown in Supplementary Note 1. Alternatively,

to download PyCoGAPS without the large files (inputresult.h5ad and

cogapsresult.h5ad), run the following command:

GIT_LFS_SKIP_SMUDGE=1 git clone https://github.com/FertigLab/

pycogaps.git --recursive

Please note that the files (inputresult.h5ad and cogapsresulth5ad) are also

available for download from Zenodo: https://zenodo.org/record/7709664.

◆ TROUBLESHOOTING

2. Install the required package dependencies. Users may wish to install these

dependencies in an Anaconda51 environment (Box 4):

cd pycogaps

pip install -r requirements.txt

3. Now run the setup script to install the C++ core CoGAPS library.

python3 setup.py install

When PyCoGAPS has installed and built correctly, you should see this message,

indicating PyCoGAPS is ready to use:

Finished processing dependencies for pycogaps==0.0.1

Johnson et al. Page 14

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/FertigLab/pycogaps.git
https://github.com/FertigLab/pycogaps.git
https://github.com/FertigLab/pycogaps.git
https://zenodo.org/record/7709664

◆ TROUBLESHOOTING

Running PyCoGAPS on simulated data

● TIMING 3–5 min

 CRITICAL This code be found in the reference file modsimvignette.py.

4. Import libraries. In the python script, import the PyCoGAPS functions with the

following lines:

from PyCoGAPS.parameters import *

from PyCoGAPS.pycogaps_main import CoGAPS

import scanpy as sc

5. Load sample data from data directory.

modsimpath = “data/ModSimData.txt”

modsim = sc.read_text(modsimpath)

The new modsim object in the python console is an anndata object of dimension

25 × 20.

modsim

AnnData object with n_obs × n_vars = 25 × 20

6. Next, set the run parameters to be used by PyCoGAPS. First, create a CoParams

object. printParams() displays all parameters currently set for the parameter

object. Since this object was just generated using the constructor, all default

parameters are currently set.

params = CoParams(path=modsimpath)

params.printParams()

-- Standard Parameters --

nPatterns: 3

nIterations: 1000

seed: 0 sparseOptimization: False

-- Sparsity Parameters -- alpha: 0.01

maxGibbsMass: 100.0

Then, set parameters by calling the setParams function. As we recommend

simulating a full-length run on this very small matrix, change nIterations. Many

parameters can be changed at once using this dictionary syntax:

Johnson et al. Page 15

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

setParams(params, {

‘nIterations’: 50000,

‘seed’: 42,

‘nPatterns’: 3

})

For now, only modify the ‘nIterations’, ‘seed’ and ‘nPatterns’ parameters. Setting

the seed fixes the random number generator so that the stochastic, MCMC

algorithm used to solve for the A and P matrices in CoGAPS provides identical

solutions between runs.

Verify nIterations was updated as anticipated:

params.printParams()

-- Standard Parameters -- nPatterns: 3

nIterations: 50000

seed: 42 sparseOptimization: False

-- Sparsity Parameters -- alpha: 0.01

maxGibbsMass: 100.0

More description of the parameters and parameter tuning can be found in Table

2.

7. As parameters and data are now ready, start the PyCoGAPS run. As a best

practice, we recommend always timing CoGAPS runs for your own records.

start = time.time()

modsimresult = CoGAPS(modsim, params) print(“TIME:”, end - start)

Since modsim is a small, toy dataset, the expected runtime is only ~3 s. Verify

that the following output appears as in Supplementary Note 2. Also inspect the

result object (Supplementary Note 3), to ensure that there are two resulting base

matrices filled with plausible values. If PyCoGAPS has been set up and run

correctly, proceed to analyzing experimental single-cell data.

Running PyCoGAPS on single-cell data

● TIMING 5 min to 2 d (depending on whether user runs NMF or uses precomputed result)

 CRITICAL This code be found in the reference file pdacvignette.py

8. Import necessary libraries, wrapped in check:

if __name__ == “__main__”:

Johnson et al. Page 16

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

from PyCoGAPS.parameters import *

from PyCoGAPS.pycogaps_main import CoGAPS

import scanpy as sc

 CRITICAL STEP Whenever distributed (i.e., multithreaded) options are

used, all calling code must be wrapped in a check like this so it will only be

called by the parent process. Missing this line will send calling code into infinite

recursion. All subsequent calling code, not just the imports, must fall under this

check such that it will only be executed when the check succeeds. Note that

single-threaded CoGAPS, such as the run demonstrated above with ModSim

data, does not require this check. It is a perfectly valid and correct way to run

CoGAPS. We show distributed-friendly code here because it will be relevant

to most single-cell analysis users, who stand to gain both in performance and

robustness of solution.

9. A single-cell dataset has been provided for this vignette. If it is not already

located in the ‘data’ folder when we cloned the repository, please download it

from https://zenodo.org/record/7709664 and place it there. Read in the data as an

anndata object.

path = “data/inputdata.h5ad”

adata = sc.read_h5ad(path)

While CoGAPS can handle multiple data formats, we strongly recommend

converting your data to anndata format using the anndata package52 or another

utility designed for translating between data structures. The returned object will

be in anndata format.

10. The data matrix is stored in sparse compressed row format, and it is strongly

recommended to normalize data before running PyCoGAPS. Decompress

and normalize the data matrix, using the scanpy package53 to perform log

normalization.

adata.X = adata.X.todense()

sc.pp.log1p(adata)

CoGAPS expects genes in .obs and cells in .var, which is the opposite of

scanpy’s convention. Therefore, after normalizing, transpose the matrix into

CoGAPS expected format.

adata = adata.T

Examine adata:

Johnson et al. Page 17

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/7709664

adata

AnnData object with n_obs × n_vars = 15219 × 25442

obs: ‘gene_ensembl_ID’, ‘gene_short_name’, ‘feature_in_nCells’ var:

‘barcode_raw’, ‘celltype’, ‘sample_ID’, ‘sample_ID_celltype’,

‘TN’, ‘TN_manuscript’, ‘manuscript’, ‘nCount_RNA’, ‘nFeature_RNA’,

‘percent.mt’, ‘Size_Factor’, ‘TN_cluster_resolution_5’,

‘TN_assigned_

cell_type’, ‘TN_assigned_cell_type_immune’, ‘TN_assigned_cell_

type_immune_specific’, ‘TN_assigned_cell_type_immune_broad’, ‘cc’,

‘ccstage’, ‘Classifier_T_duct’, ‘Classifier_T_Fibroblast_only’,

‘Classifier_T_Fibroblast_Stellate’

uns: ‘log1p’

varm: ‘X_aligned’, ‘X_pca’, ‘X_umap’

This is an anndata object consisting of scRNA-seq data from 25,422 pancreatic

epithelial cells, with reads from 15,219 genes. The .obs and .var matrices contain

metadata such as gene names, cell annotations and clustering results.

 CRITICAL STEP Any transformation or scaling you choose to perform

on your count matrix must result in all non-negative values due to the core

constraint of NMF.

11. Next, create a parameters object that stores run options in a dictionary format.

Note that the easiest way to decrease runtime is to run for fewer iterations, and

you may want to set nIterations = 1,000 for a test run before starting a complete

CoGAPS run on your data.

params = CoParams(adata=adata) setParams(params, {

‘nIterations’: 50000,

‘seed’: 42,

‘nPatterns’: 8,

‘useSparseOptimization’: True,

‘distributed’: “genome-wide”

})

We recommend running distributed for most cases to decrease runtimes. If doing

so, you must run this line, where you can specify how many sets will be created

and parallelized across, as well as specify cutoffs for how stringently a consensus

matrix is determined.

params.setDistributedParams(nSets=7)

Johnson et al. Page 18

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Please refer to Box 2 for further details on running distributed PyCoGAPS.

A description and guide for setting key PyCoGAPS parameters can be found

in Table 2. To view the parameter values that have been set, we include a

printParams function (Box 5). There are many more additional parameters that

can be set depending on your goals, which we invite the reader to explore in our

GitHub documentation.

12. With all parameters set, a PyCoGAPS run can be started with the following

command:

start = time.time()

result = CoGAPS(adata, params)

end = time.time()

print(“TIME:”, end - start)

While CoGAPS is running, you will see periodic status messages, described in

Box 6, and when the run is finished, CoGAPS will print a message like the one

shown in Box 7. Please note that this is the most time-consuming step of the

procedure. Timing can take several hours and scales nlog(n) based on dataset

size (see the ‘Timing’ section below), as well as the parameter values set for

‘nPatterns’ and ‘nIterations’. Time is increased when learning more patterns,

when running more iterations and when running a larger dataset, with iterations

having the largest variable impact on the runtime of the NMF function. As this

step has a long runtime, users who want to load an already-complete NMF run

and proceed to the analysis portion of this vignette can skip to Step 14.

◆ TROUBLESHOOTING

13. When CoGAPS has finished running, write the NMF result to disk. We strongly

recommend saving your result object as soon as it returns. This can be done by

directly saving the anndata object (for more details about the CoGAPS output

data format, please see Box 8):

result.write(“data/my_pdac_result.h5ad”)

To save as a .csv file, use the following line:

result.write_csvs(dirname=‘./’, skip_data=True, sep=‘,’)

 PAUSE POINT Now we have successfully generated and saved a CoGAPS

result. The procedure may be paused.

Analyzing the PyCoGAPS result

(Reference code can be found in the file analyzepdac.py)

● TIMING 20–30 min

Johnson et al. Page 19

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 CRITICAL This section demonstrates a basic analysis of both the A and P matrix

(gene and sample associated pattern weights), describing how to analyze and visualize the

generated saved data result. These helper functions are a starting point for interpreting

single-cell NMF patterns, but most users will almost certainly wish to export their NMF

result and incorporate it into their existing single-cell pipeline.

14. Load the saved result file, which can be your own NMF result generated

from the previous step, or the precomputed one, cogapsresult.h5ad from https://

zenodo.org/record/7709664 or supplied in our repository. Enter the following

command to use the precomputed result, or to use your own object, simply

replace the path with your own:

import anndata

import pandas as pd

import scanpy as sc

cogapsresult = anndata.read_h5ad(“data/cogapsresult.h5ad”)

Inspect the object:

» cogapsresult

AnnData object with n_obs × n_vars = 15176 × 25442

obs: ‘Pattern_1’, ‘Pattern_2’, ‘Pattern_3’, ‘Pattern_4’,

‘Pattern_5’,

‘Pattern_6’, ‘Pattern_7’, ‘Pattern_8’

var: ‘Pattern_1’, ‘Pattern_2’, ‘Pattern_3’, ‘Pattern_4’,

‘Pattern_5’,

‘Pattern_6’, ‘Pattern_7’, ‘Pattern_8’, ‘cell_type’

Built-in PyCoGAPS functions can now be called to analyze and visualize the

data. Please see the ‘Anticipated results’ section for more discussion of the result

object.

15. We recommended immediately visualizing pattern weights on a UMAP as this

will immediately show whether there is a strong signal and whether the patterns

make sense. We provide instructions to visualize patterns and compare them

with clusters and annotations using UMAP and the scanpy package https://

scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html. First import the analysis

functions module (decoupled from NMF module) with the following command

(please note, if you are at this step following Procedure 2, you should have

already imported analysis_functions, and do not need to include the line above,

i.e., you do not need to install the PyCoGAPS dependency):

from PyCoGAPS.analysis_functions import *

Johnson et al. Page 20

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/7709664
https://zenodo.org/record/7709664
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html

We provide a wrapper function to perform basic clustering workflow in scanpy

(all default parameters) and produce a plot of each pattern’s intensity displayed

on the data’s UMAP embedding. Call wrapper function:

plotPatternUMAP(cogapsresult)

Expected results are shown in Fig. 7. Expected output to the python console is

shown in Supplementary Note 4.

16. To generate statistics on the association between certain sample groups

and patterns, we provide a wrapper function around statsmodels’ MANOVA

function54. This allows users to explore whether the patterns we have discovered

lend to statistically significant differences in the sample groups. First, load in the

original data if it is no longer in your environment.

orig = anndata.read_h5ad(“data/inputdata.h5ad”).T

Our original data contains many sample groups; however, to explore the

associations of a subset of the groups with biological relevance, in this case

‘celltype’ and ‘TN_assigned_cell_type’:

interested_vars = [‘celltype’, ‘TN_assigned_cell_type’]

manova_result = MANOVA(cogapsresult, orig, interested_vars)

The function will print out the MANOVA results for each pattern learned based

on the variables of interest.

17. Violin plots can be used to visualize associations between patterns and annotated

cell types.

pattern_names = [col for col in cogapsresult.var.columns if col.

startswith(‘Pattern’)] # gather pattern names

sc.pl.stacked_violin(cogapsresult.T, pattern_names,

groupby=‘cell_type’)

Expected results are shown in Fig. 8.

18. Next, find the markers of each pattern using PyCoGAPS’ patternMarkers

function. Identifying genes that are strongly correlated with each learned pattern

allows users to begin to decipher what biological processes or states it may

represent. The command below uses the default threshold parameter, but this can

be modified as described in Box 1.

Johnson et al. Page 21

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

pm = patternMarkers(cogapsresult, threshold=“cut”)

To view marker genes for a pattern, access it as follows:

pm[“PatternMarkers”][“Pattern_7”]

[‘SPEF2’, ‘PAH’, ‘FAM117B’, ‘SFTPA2’, ‘PDLIM4’, ‘ZNF503’, ‘CITED2’,

‘GTPBP4’, ‘ZSWIM8’, ‘CHD5’, ‘TNFRSF9’, ‘CD3EAP’, ‘AMIGO2’, ‘STX3’,

‘CAMK2G’, ‘RACGAP1’, ‘SOWAHB’, ‘ABRACL’, ‘LTBP2’, ‘CDK11B’,

‘MFAP1’,

‘UNK’, ‘PLEKHH3’, ‘C1orf115’, ‘SATB1’, ‘BBOX1’, ‘SPN’, ‘UHRF1BP1’,

‘PVR’, ‘NLRP4’, ‘CAMK4’, ‘ZNF324’, ‘WWTR1’, ‘DYDC2’, ‘SHANK2’,

‘GBF1’,

‘HSPH1’, ‘VDAC2’, ‘FAM229A’, ‘COG3’, ‘RFTN1’, ‘KRT81’, ‘GLP2R’,

‘NR3C1’, ‘BNIP1’, ‘SLFN13’, ‘RABL3’, ‘TNKS’, ‘RAB30’, ‘ARHGAP21’,

‘ABTB2’, ‘ETNK1’, ‘DUS4L’, ‘PDK4’, ‘SLC35A3’, ‘ABCC5’, ‘NRK’,

‘ZNF439’,

‘TYSND1’, ‘SYAP1’, ‘GAR1’, ‘NOS3’, ‘POLR2M’, ‘SERPINI1’]

19. Perform gene set enrichment analysis (GSEA) on lists of marker genes for each

pattern in order to annotate the molecular processes in the learned patterns. This

is accomplish this using a wrapper around the GSEApy library55. First, run the

following commands:

gsea_res = patternGSEA(cogapsresult, patternmarkers=None,

verbose=True, gene_sets = [‘MSigDB_Hallmark_2020’],

organism=“human”)

To see all patterns for which GSEA was computed:

gsea_res.keys()

dict_keys([‘Pattern1’, ‘Pattern2’, ‘Pattern3’, ‘Pattern4’,

‘Pattern5’,

‘Pattern6’, ‘Pattern7’, ‘Pattern8’])

To demonstrate the utility of this gene set analysis, we focus on Pattern 7. To

view a pattern’s GSEA result:

gsea_res[“Pattern7”]

Johnson et al. Page 22

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To generate a simple histogram summarizing the statistically significant enriched

terms for a given pattern, use the wrapper provided around scanpy’s box plot

function (Fig. 9).

plotPatternGSEA(gsea_res, whichPattern = 7)

Expected results are shown in Fig. 9. The plotPatternMarkers function will also

generate a plot colored by every column in the adata.var matrix. However, for

single-cell data analysis, this is probably too large of a matrix to be useful by

visual inspection.

Procedure 2: running PyCoGAPS using Docker

Software Setup

● TIMING 5 min

1. Pull the PyCoGAPS Docker container and set up the working directory.

• For Mac users, copy the commands and paste in terminal:

docker pull fertiglab/pycogaps

 mkdir PyCoGAPS

cd PyCoGAPS

curl -O

https://raw.githubusercontent.com/FertigLab/pycogaps/master/

params.yaml

mkdir data cd data curl -O

https://raw.githubusercontent.com/FertigLab/pycogaps/master/data/

ModSimData.txt

cd.

• For Windows (Ubuntu) users, copy the commands and paste in

terminal:

docker pull fertiglab/pycogaps

mkdir PyCoGAPS

cd PyCoGAPS

curl.exe -o index.html https://raw.githubusercontent.com/

FertigLab/pycogaps/master/params.yamlmkdir data

Johnson et al. Page 23

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://raw.githubusercontent.com/FertigLab/pycogaps/master/params.yaml
https://raw.githubusercontent.com/FertigLab/pycogaps/master/params.yaml
https://raw.githubusercontent.com/FertigLab/pycogaps/master/data/ModSimData.txt
https://raw.githubusercontent.com/FertigLab/pycogaps/master/data/ModSimData.txt
https://raw.githubusercontent.com/FertigLab/pycogaps/master/params.yamlmkdir
https://raw.githubusercontent.com/FertigLab/pycogaps/master/params.yamlmkdir

cd data

curl.exe -o index.html https://raw.githubusercontent.com/

FertigLab/pycogaps/master/data/GIST.csv cd ..

◆ TROUBLESHOOTING

Running PyCoGAPS on simulated toy data

● TIMING 2 min

3. To ensure PyCoGAPS is running properly on your computer, first perform a

setup and run on the ModSim dataset (running PyCoGAPS on the single-cell

data will be performed later in Step 3). The dataset has already been downloaded

in Step 1. Run the following commands in terminal:

docker run -v $PWD:$PWD fertiglab/pycogaps $PWD/params.yaml

For users with an M1 processing chip, please add the following flag to the above

command:

--platform linux/amd64

This produces a CoGAPS run on a simple dataset with default parameters.

The expected PyCoGAPS Docker Output is shown in Supplementary Note 5.

When CoGAPS has successfully completed running, the result file is saved

as result.pkl in a created output/ folder. The working directory is the

PyCoGAPS folder with the following structure and files:

Running PyCoGAPS on single-cell data

● TIMING 5 min to 2 d (depending on whether user runs NMF or uses precomputed result)

Johnson et al. Page 24

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://raw.githubusercontent.com/FertigLab/pycogaps/master/data/GIST.csv
https://raw.githubusercontent.com/FertigLab/pycogaps/master/data/GIST.csv

4. Having confirmed that PyCoGAPS has been set up and run correctly, proceed

to analyzing experimental single-cell data. Navigate to the ‘data’ folder created

earlier, and run the following command:

cd data curl -O

https://raw.githubusercontent.com/FertigLab/pycogaps/master/data/

inputdata.h5ad

 CRITICAL STEP Always make sure to move the data you seek to analyze

into the created ‘data’ folder.

5. Modify the default parameters before running PyCoGAPS. All parameter values

can be modified directly in the params.yaml file already downloaded in Step 1.

To do this, first open params.yaml with any text or code editor. Then, modify the

following line to:

path: ‘data/inputdata.h5ad’

Then, modify any additional desired parameters and save the file (as described

in Box 9). A description and guide for setting key PyCoGAPS parameters can

be found in Table 2. There are many more additional parameters that can be

set depending on your goals, which we invite the reader to explore in our

GitHub documentation. Note the ‘distributed’ parameter enables parallelization

to decrease runtimes, which we recommended for most cases. Please refer to Box

10 for how to run distributed PyCoGAPS. For distributed PyCoGAPS, once all

worker threads have started running their iterations, you will see periodic output

as shown in Box 8.

6. Now that all parameters are set, run PyCoGAPS with the following command in

terminal:

docker run -v $PWD:$PWD fertiglab/pycogaps $PWD/params.yaml

The result object will automatically save in the ‘output’ folder, with the name

given by the ‘result_file’ parameter. Please note that this is the most time-

consuming step of the procedure. Timing can take several hours and scales

nlog(n) based on dataset size (see the ‘Timing’ section below), as well as the

parameter values set for ‘nPatterns’ and ‘nIterations’. Time is increased when

learning more patterns, when running more iterations, and when running a larger

dataset, with iterations having the largest variable impact on the runtime of the

NMF function.

 PAUSE POINT Now we have successfully generated and saved a CoGAPS

result. The procedure may be paused.

Johnson et al. Page 25

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://raw.githubusercontent.com/FertigLab/pycogaps/master/data/inputdata.h5ad
https://raw.githubusercontent.com/FertigLab/pycogaps/master/data/inputdata.h5ad

Analyzing the PyCoGAPS result

● TIMING 20–30 min

7. Download the analysis functions and requirements files with the following

command:

curl -O https://raw.githubusercontent.com/FertigLab/pycogaps/

master/

PyCoGAPS/analysis_functions.py

curl -O https://raw.githubusercontent.com/FertigLab/pycogaps/

master/

PyCoGAPS/requirements_analysis.txt

8. Install the analysis functions dependencies with the following command:

pip install -r analysis_requirements.txt

9. Open a new Python file (in any preferred IDE, see the ‘Software’ section above)

and include the following line:

from analysis_functions import *

◆ TROUBLESHOOTING

10. Follow the ‘Analyzing the PyCoGAPS result’ in Procedure 1 Step 14 to continue

following the analysis and visualization workflow.

Procedure 3: running CoGAPS—user startup guide for the R CoGAPS API

Software Setup

● TIMING 1–5 min

1. Install CoGAPS directly from the FertigLab Github repository using R devtools:

devtools::install_github(“FertigLab/CoGAPS”)

When CoGAPS has installed correctly, you will see this message:

** installing vignettes

** testing if installed package can be loaded from temporary

location

** checking absolute paths in shared objects and dynamic libraries

** testing if installed package can be loaded from final location

Johnson et al. Page 26

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://raw.githubusercontent.com/FertigLab/pycogaps/master
https://raw.githubusercontent.com/FertigLab/pycogaps/master
https://raw.githubusercontent.com/FertigLab/pycogaps/master/
https://raw.githubusercontent.com/FertigLab/pycogaps/master/

** testing if installed package keeps a record of temporary

installation path

* DONE (CoGAPS)

R script setup

● TIMING 1 min

2. Import the CoGAPS library with the following command:

library(CoGAPS)

Running CoGAPS on simulated toy data

● TIMING 3–5 min

3. To ensure CoGAPS is working properly, first load in the simulated toy data for a

test run.

Single-cell data will be loaded later in step 6.

modsimdata <- read.table(“./data/ModSimData.txt”)

modsimdata

head(modsimdata, c(5L, 5L))

V1V2V3V4V5

1 0.0777640.94742 4.2487 7.0608 4.8730

2 0.0814670.99253 4.4507 7.3906 5.0387

3 0.0851701.03760 4.6527 7.7204 5.2044

4 0.0888731.08270 4.8547 8.0502 5.3700

5 0.0925761.12790 5.0567 8.3800 5.5357

dim(modsimdata)

[1] 25 20

4. Next, set the parameters to be used by CoGAPS. First, create a CogapsParams

object, then set parameters with the setParam function.

create new parameters object params <- new(“CogapsParams”)

view all parameters params

-- Standard Parameters -- nPatterns 7

nIterations 50000

seed 718

sparseOptimization FALSE

-- Sparsity Parameters -- alpha 0.01

maxGibbsMass 100

get the value for a specific parameter getParam(params,

“nPatterns”)

Johnson et al. Page 27

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[1] 7

set the value for a specific parameter params <-

setParam(params, “nPatterns”, 3)

getParam(params, “nPatterns”)

[1] 3

5. Run CoGAPS on the ModSim data. Since this is a small dataset, the expected

runtime is only ~5–10 s.

cogapsresult <- CoGAPS(modsimdata, params, outputFrequency = 10000)

The expected output is shown in Supplementary Note 6. This output means that

the underlying C++ library has run correctly, and everything is installed how

it should be. Examine the result object (Supplementary Note 7). If both matrices

—sampleFactors and featureLoadings—have reasonable values, users can be

confident that CoGAPS is working as expected and can proceed with single-cell

analysis.

Running CoGAPS on single-cell data

● TIMING 5 min to 2 d (depending on whether user runs NMF or uses precomputed result)

6. Read in the single-cell dataset, which we demonstrate with the provided input

file, which is available at https://zenodo.org/record/7709664.

pdac_data <- readRDS(“inputdata.rds”)

pdac_data

An object of class Seurat

15184 features across 25442 samples within 2 assays

Active assay: originalexp (15176 features, 2000 variable features)

1 other assay present: CoGAPS

5 dimensional reductions calculated: PCA, Aligned, UMAP, pca, umap

Extract and normalize the transcript counts matrix to provide directly to

CoGAPS.

pdac_epi_counts <- as.matrix(pdac_data@assays$originalexp@counts)

norm_pdac_epi_counts <- log1p(pdac_epi_counts)

7. Most of the time some parameters are set before running CoGAPS. Parameters

are managed with a CogapsParams object. This object will store all parameters

needed to run CoGAPS and provides a simple interface for viewing and setting

the parameter values. Set parameters using the following command:

Johnson et al. Page 28

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/7709664

pdac_params <- CogapsParams(nIterations=100, # run for 100

iterations

seed=42, # for consistency across stochastic runs

nPatterns=8, # each thread will learn 8 patterns

sparseOptimization=TRUE, # optimize for sparse data

distributed=“genome-wide”) # parallelize across sets

To run distributed CoGAPS, which is recommended to improve the

computational efficiency for most large datasets, call the setDistributedParams

function. For a complete description of the parallelization strategy used in

distributed CoGAPS, please refer to the Introduction section titled ‘Finding

robust patterns using consensus across parallel sets’, as well as Fig. 3 and Box 2.

pdac_params <- setDistributedParams(pdac_params, nSets=7)

setting distributed parameters - call this again if you change

nPatterns

Follow Box 11 to view all parameters that have been set and their values.

8. With all parameters set, run CoGAPS with the following command:

startTime <- Sys.time()

pdac_epi_result <- CoGAPS(pdac_epi_counts, pdac_params)

endTime <- Sys.time()

saveRDS(pdac_epi_result, “./data/pdac_epi_cogaps_result.Rds”)

To also save the result in .csv, format use the following line:

saveCSV(pdac_epi_result, “path/to/location/pdac_epi_result.csv”)

While CoGAPS is running, it periodically prints status messages (Box 8). Please

note that this is the most time-consuming step of the procedure. Timing can

take several hours and scales nlog(n) based on dataset size (Fig. 6 and Table

3), as well as the parameter values set for ‘nPatterns’ and ‘nIterations’. Time is

increased when learning more patterns, when running more iterations and when

running a larger dataset, with iterations having the largest variable impact on the

runtime of the NMF function. As this step has a long runtime, users who want

to load an already-complete NMF run and proceed to the analysis portion of this

vignette can skip to Step 9.

◆ TROUBLESHOOTING

Johnson et al. Page 29

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Analyzing the CoGAPS result

● TIMING 20–30 min

9. Now that the CoGAPS run is complete, learned patterns can be investigated. Due

to the stochastic nature of the MCMC sampling in CoGAPS and long runtime,

it is generally a good idea to immediately save your CoGAPS result object to a

file (as instructed in Step 8), then read it in for downstream analysis. A detailed

description of the CoGAPS result object can be found in Box 12. If you wish

to use the precomputed result, please download cogapsresult. Rds from https://

zenodo.org/record/7709664.

1. Load and examine a precomputed result object with the following

command:

cogapsresult <- readRDS(“data/cogapsresult.Rds”)

cogapsresult

[1] “CogapsResult object with 15176 features and 25442

samples”

[1] “8 patterns were learned”

2. Load your own result, by simply editing the file path as follows:

cogapsresult <- readRDS(“./data/pdac_epi_cogaps_result.Rds”)

 PAUSE POINT Now we have successfully generated and saved a

CoGAPS result. The procedure may be paused.

10. We recommendimmediately visualizing pattern weights on a UMAP as this will

immediately show whether there is a strong signal and whether the patterns make

sense. Since pattern weights are all continuous and nonnegative, they can be used

to color a UMAP in the same way as one would color by gene expression. The

sampleFactors matrix is essentially just nPatterns different annotations for each

cell, and featureLoadings is likewise just nPatterns annotations for each gene.

This makes it very simple to incorporate pattern data into any data structure and

workflow. Use the following commands to store CoGAPS patterns as an assay

within a Seurat object (recommended):

make sure pattern matrix is in same order as the input data

patterns_in_order <-

t(cogapsresult@sampleFactors[colnames(pdac_data),])

add CoGAPS patterns as an assay

pdac_data[[“CoGAPS”]] <- CreateAssayObject(counts =

patterns_in_order)

Johnson et al. Page 30

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/7709664
https://zenodo.org/record/7709664

With the help of Seurat’s FeaturePlot function, generate a UMAP embedding of

the cells colored by the intensity of each pattern.

DefaultAssay(inputdata) <- “CoGAPS”

pattern_names = rownames(inputdata@assays$CoGAPS)

library(viridis)

color_palette <- viridis(n=10)

FeaturePlot(inputdata, pattern_names, cols=color_palette,

reduction = “umap”) & NoLegend()

The expected output is shown in Fig. 10.

11. Compare pattern weight between annotated cell groups. Make another UMAP,

this time color each cell based on a biologist’s annotations11 stored in the object

metadata.

DimPlot(pdac_data, reduction = “umap”,

group.by=“TN_assigned_cell_type_immune_broad”)

Directly visualize correlations between patterns and annotated cell groups with a

dot plot.

DotPlot(pdac_data, features = pattern_names) + RotatedAxis()

Expected output shown in Fig. 11.

12. To assess pattern marker genes, we provide a patternMarkers() CoGAPS function

to find genes associated with each pattern and returns a dictionary of information

containing lists of marker genes, their ranking, and their ‘score’ for each pattern.

Run this function with the follow command:

pm = patternMarkers(cogapsresult)

This is vital because genes are often associated with multiple patterns. For a

complete discussion of the patternMarkers statistic, please refer to Box 1.

13. The PatternHallmarks function provides a wrapper around the fgsea56

fora method and associates each pattern with msigDB57 hallmark pathway

annotations using the list of marker genes attained from the patternMarkers

statistic. To perform gene set analysis on pattern markers, create a list of data

frames ‘hallmarks’, each containing hallmark overrepresentation statistics

corresponding to one pattern:

Johnson et al. Page 31

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

hallmarks <- PatternHallmarks(cogapsresult)

To generate a histogram of the most significant hallmarks for any given pattern,

run:

pl_pattern7 <- plotPatternHallmarks(hallmarks, whichpattern = 7)

pl_pattern7

The expected output is shown in Fig. 12.

14. To generate statistics on the association between certain sample groups and

patterns, we provide a wrapper function, called runMANOVA. This allows

users to explore whether the patterns discovered lend to statistically significant

differences in the sample groups. First load in the original data (if not already

done earlier):

pdac_data <- readRDS(“inputdata.rds”)

Then, create a new matrix called ‘interestedVariables’ consisting of the

metadata variables of interest in conducting analysis on.

interestedVariables <- cbind(pdac_data@meta.data[[“celltype”]],

pdac_data@meta.data[[“TN_assigned_cell_type”]])

Last, call the wrapper function, passing in the result object as well.

manovaResult <- MANOVA(interestedVariables, cogapsresult)

The function will print the MANOVA results for each pattern in the CoGAPS

result object based on the chosen variables.

Procedure 4: running GenePattern Notebook—user startup guide for the

web-based CoGAPS API

Notebook Setup

● TIMING 5 min

1. Log in to the GenePattern Notebook workspace, http://notebook.genepattern.org.

If you do not have an account, click the ‘Register a new GenePattern

Account’ button, provide the registration information and log in. Registration

for GenePattern Notebook is free.

Johnson et al. Page 32

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://notebook.genepattern.org/

2. Scroll to ‘Public Library’. You will see a list of available public project

notebooks.

3. In the ‘Search Library’ box, search ‘PyCoGAPS’.

Running PyCoGAPS on simulated toy data

● TIMING 8–10 min

4. Select the ‘Single-Cell Workflow with PyCoGAPS’ project notebook by clicking

anywhere in its description and selecting ‘Run Notebook’. A copy of the project

notebook will be saved in your account.

5. Open the file called ‘Single-cell Analysis with PyCoGAPS.ipynb’, which

describes each step in this protocol and contains cells that will allow you

to input datasets and set parameters. In the first cell, log in to your account

(Supplementary Fig. 1).

6. Follow the instructions in each blue panel, providing information where

requested (Supplementary Fig. 2). You will need to input the ‘input_file’

parameter, which in this simulated toy data case, is the ‘ModSimData.txt’ file

in the project folder. ‘num patterns’ and ‘num iterations’ are the most important

parameters, but all parameter descriptions can be explored in the cell, or in

Table 2 for guidance on setting these and other key parameters. Click run once

you have set desired parameters (Supplementary Fig. 2). Please note that once

a run has been submitted, the status in the cell will change from ‘Pending’ to

‘Running’ to ‘Completed’.

◆ TROUBLESHOOTING

7. As described in the notebook instructions, ensure that the result file is saved

locally first, then re-upload it to the project notebook (Supplementary Fig. 4).

Running PyCoGAPS on single-cell data

● TIMING 5 min to 2 d (depending on whether user runs NMF or uses precomputed result)

8. Click the ‘+’ button of the PyCoGAPS cell to display the parameter inputs again.

You may reset the parameters by selecting the settings icon. To run PyCoGAPS,

on the provided PDAC dataset, the link to the file can be found here and directly

passed into the ‘input_file’ cell (there is no need to download the data and

re-upload it to the project folder): https://datasets.genepattern.org/?prefix=data/

module_support_files/PyCoGAPS/inputdata.h5ad.

Once desired parameters have been set, run the cell to submit the job.

Analyzing the PyCoGAPS result

● TIMING 20–30 min

9. Follow and run the cells to perform analysis of your output PyCoGAPS results.

These cells will call the various functions described in other procedures of this

Johnson et al. Page 33

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://datasets.genepattern.org/?prefix=data/module_support_files/PyCoGAPS/inputdata.h5ad
https://datasets.genepattern.org/?prefix=data/module_support_files/PyCoGAPS/inputdata.h5ad

manuscript to allow you to visualize and interpret your data. Screenshots are

shown in Supplementary Figs. 5–8.

Troubleshooting

Advice for troubleshooting can be found in Table 4.

Timing

Procedure 1

Steps 1–3, software setup: 5–10 min

Steps 4–7, running PyCoGAPS on simulated data: 3–5 min

Steps 8–13, running PyCoGAPS on single-cell data: 5 min to 2 d

Steps 14–19, analyzing the PyCoGAPS result: 20–30 min

Procedure 2

Step 1, software setup: 5 min

Step 2, running PyCoGAPS on simulated data: 2 min

Steps 3–5, running PyCoGAPS on single-cell data: 5 min to 2 d

Steps 6–9, analyzing the PyCoGAPS result: 20–30 min

Procedure 3

Step 1, software setup: 1–5 min

Step 2, R script setup: 1 min

Steps 3–5, running CoGAPS on simulated data: 3–5 min

Steps 6–8, running CoGAPS on single-cell data: 5 min to 2 d

Steps 9–14, analyzing the CoGAPS result: 20–30 min

Procedure 4

Steps 1–3, notebook setup: 5–10 min

Steps 4–7, running PyCoGAPS on simulated data: 8–10 min

Steps 8, running PyCoGAPS on single-cell data: 5 min to 2 d

Step 9, analyzing the PyCoGAPS result: 20–30 min

Johnson et al. Page 34

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Anticipated results

The output you should obtain from a PyCoGAPS run (procedures 1, 2 or 4) is an anndata

object, stored as an .h5ad file. In the anndata object, the lower dimensional representation of

the samples (P matrix) is stored in the .var slot and the weight of the features (A matrix) is

stored in the .obs slot. For an m by p dimension gene expression input, the P matrix or .var

slot should have dimension m by κ, and the A matrix or .obs slot should have dimension κ
by p, where k is the number of patterns.

Further metrics are stored in the .uns slot of the result object. This includes standard

deviations across the sample points for both the P and A matrix stored in ‘psd’ and ‘asd’,

respectively, the mean chi-squared value stored in ‘meanchisq’, the total running time stored

in ‘totalRunningTime’ and more. An example output including all metadata can be found in

Box 7.

The output you should obtain from an R CoGAPS run (Procedure 3) is an .Rds file.

In this object, the lower dimensional representation of the samples (P matrix) is stored

in the ‘featureLoadings’ slot and the weight of the features (A matrix) is stored in the

‘sampleFactors’ slot. For an m by p dimension gene expression input, the P matrix should

have dimension m by κ, and the A matrix should have dimension κ by p, where κ is the

number of patterns. Standard deviation matrices are stored in the slots ‘factorStdDev’ and

‘loadingStdDev’, corresponding to sampleFactors and featureLoadings.

Additionally, metadata contains information for the run such as how it was parallelized

stored in ‘subsets’, the mean chi-squared value during the run stored in ‘meanChiSq’, and

the parameters used in the run stored in ‘params’. Other information may be present in the

metadata depending on your run options shown in Box 13.

CoGAPS has a theoretical scaling of mlog(m) + plog(p). As illustrated in benchmarking

on the ModSim and PDAC epithelial datasets in Fig. 6 and Table 3, runtime scales with

the input dimensions and the number of iterations. It is also apparent that Python and R

perform similarly on lower-dimension data, while Python has an advantage of speed for

higher-dimension data. This may be due to differences in memory handling between the two

programming languages, with Python being better suited to tasks requiring large matrices to

be accessed and modified at each step.

We will now focus on the results of analyzing the PDAC epithelial datasets to illustrate the

sorts of biological inferences that can be made using CoGAPS. In the analysis we observe

each pattern is enriched in a different part of the UMAP embedding, and all patterns seem

to have a signal (Figs. 7 and 10). This is a sign that the number of patterns we selected is

sufficient to distinguish signals present in our dataset.

By visual inspection it is apparent that pattern 5 seems to associate only with those epithelial

cells annotated as ‘normal’. Pattern 2, pattern 4, pattern 6 and pattern 8 appear to light

up specific, distinct groupings of epithelial cells annotated as ‘cancer’ (Figs. 8 and 11).

Patterns 1, 3 and 7, however, show signal in both classes of epithelial cells. We note that the

epithelial normal cluster is mixed between cells from true normal samples and normal cells

Johnson et al. Page 35

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that are tumor adjacent. This leads to hypotheses about which patterns might represent gene

programs that distinguish, or co-occur, in malignant epithelial cells or related to signaling

associated with field carcinization or unannotated precancer neoplastic cells in the sample.

We note that pattern 7 was found to be associated with cancer cells and matched normal

epithelial cells from adjacent tissue, but not in normal epithelial cells from true healthy

control samples. Looking at the set of genes that are positively associated with pattern 7,

we obtain these statistics and see the Hallmark set for inflammatory response and allograft

rejection (Figs. 9 and 12). We hypothesized this inflammatory process resulting from a

transition during carcinogenesis resulting from interactions between epithelial cells and

other cells in the microenvironment. We observed a high correlation of this pattern with the

presence of fibroblasts, and have tested this hypothesis with experimental validation using

co-culture organoid experiments11.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by U24CA248457/US Department of Health & Human Services, National Institutes
of Health and National Institutes of Health U24 CA220341 (J.P.M.), the Chan-Zuckerberg Initiative DAF
(2018-183445 to L.A.G. and 2018-183444 to E.J.F.); the Johns Hopkins University Catalyst (E.J.F. and L.A.G.); an
Allegheny Health Network grant (to E.J.F.), U01CA212007 (to E.J.F.), U01CA253403 (to E.J.F.), P01CA247886
(to E.J.F. and E.M.J.); a Pilot Award from P50CA062924 (to E.J.F.) from the National Cancer Institute; the JHU
School of Medicine Synergy Award (to E.J.F. and L.A.G.); 640183 from the Emerson Collective (to E.J.F. and
E.M.J.); a Kavli Neurodiscovery Institute Distinguished Postdoctoral fellowship (G.L.S.-O.): a Johns Hopkins
Provost Award (G.L.S.-O.); and K99NS122085 from the BRAIN Initiative in partnership with the National Institute
of Neurological Disorders (G.L.S.-O.)

Data availability

The data analyzed in these examples is freely available under accession code GSA:

CRA001160, and from the Genome Sequence Archive, where it has the ID: PRJCA001063.

Related links

Key references using this protocol

Stein-O’Brien, G. L. et al. Cell Syst. 8, 395–411.e8 (2019): https://doi.org/10.1016/

j.cels.2019.04.004

Clark, B. S. et al. Neuron 102, 1111–1126.e5 (2019): https://doi.org/10.1016/

j.neuron.2019.04.010

References

1. Brunet J-P, Tamayo P, Golub TR & Mesirov JP Metagenes and molecular pattern discovery using
matrix factorization. Proc. Natl Acad. Sci. USA 101, 4164–4169 (2004). [PubMed: 15016911]

2. Stein-O’Brien GL et al. Decomposing cell identity for transfer learning across cellular
measurements, platforms, tissues, and species. Cell Syst. 8, 395–411.e8 (2019). [PubMed:
31121116]

Johnson et al. Page 36

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1016/j.cels.2019.04.004
https://doi.org/10.1016/j.cels.2019.04.004
https://doi.org/10.1016/j.neuron.2019.04.010
https://doi.org/10.1016/j.neuron.2019.04.010

3. Cleary B, Cong L, Cheung A, Lander ES & Regev A Efficient generation of transcriptomic profiles
by random composite measurements. Cell 171, 1424–1436.e18 (2017). [PubMed: 29153835]

4. Gaujoux R & Seoighe C A flexible R package for nonnegative matrix factorization. BMC
Bioinform. 11, 367 (2010).

5. Ochs MF & Fertig EJ Matrix factorization for transcriptional regulatory network inference. IEEE
Symp. Comput. Intell. Bioinform. Comput. Biol. Proc. 2012, 387–396 (2012).

6. Stein-O’Brien GL et al. Enter the matrix: factorization uncovers knowledge from omics. Trends
Genet. 34, 790–805 (2018). [PubMed: 30143323]

7. Fertig EJ, Ding J, Favorov AV, Parmigiani G & Ochs MF CoGAPS: an R/C++ package to identify
patterns and biological process activity in transcriptomic data. Bioinformatics 26, 2792–2793
(2010). [PubMed: 20810601]

8. Clark BS et al. Single-cell RNA-seq analysis of retinal development identifies NFI factors
as regulating mitotic exit and late-born cell specification. Neuron 102, 1111–1126. e5 (2019).
[PubMed: 31128945]

9. Sherman TD, Gao T & Fertig EJ CoGAPS 3: Bayesian non-negative matrix factorization for
single-cell analysis with asynchronous updates and sparse data structures. BMC Bioinform. 21, 453
(2020).

10. Peng J et al. Author correction: single-cell RNA-seq highlights intra-tumoral heterogeneity and
malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 777 (2019). [PubMed:
31409908]

11. Kinny-Köster B et al. Inflammatory signaling in pancreatic cancer transfers between a single-cell
RNA sequencing atlas and co-culture. Preprint at bioRxiv 10.1101/2022.07.14.500096 (2022).

12. Reich M et al. The genepattern notebook environment. Cell Syst. 5, 149–151.e1 (2017). [PubMed:
28822753]

13. Lee DD & Seung HS Learning the parts of objects by non-negative matrix factorization. Nature
401, 788–791 (1999). [PubMed: 10548103]

14. Ochs MF, Stoyanova RS, Arias-Mendoza F & Brown TR A new method for spectral
decomposition using a bilinear Bayesian approach. J. Magn. Reson. 137, 161–176 (1999).
[PubMed: 10053145]

15. Wang G, Kossenkov AV & Ochs MF LS-NMF: a modified non-negative matrix factorization
algorithm utilizing uncertainty estimates. BMC Bioinform. 7, 175 (2006).

16. Sibisi S & Skilling J Prior distributions on measure space. J. R. Stat. Soc. B 59, 217–235 (1997).

17. Woo J, Aliferis C & Wang J ccfindR: single-cell RNA-seq analysis using Bayesian
non-negative matrix factorization. https://www.bioconductor.org/packages/devel/bioc/vignettes/
ccfindR/inst/doc/ccfindR.html (2022).

18. Kotliar D et al. Identifying gene expression programs of cell-type identity and cellular activity with
single-cell RNA-Seq. eLife 8, e43803 (2019). [PubMed: 31282856]

19. Cemgil AT Bayesian inference for nonnegative matrix factorisation models. Comput. Intell.
Neurosci. 2009, 785152 (2009). [PubMed: 19536273]

20. Palla G & Ferrero E Latent factor modeling of scRNA-seq data uncovers dysregulated pathways in
autoimmune disease patients. iScience 23, 101451 (2020). [PubMed: 32853994]

21. Shao C & Höfer T Robust classification of single-cell transcriptome data by nonnegative matrix
factorization. Bioinformatics 33, 235–242 (2017). [PubMed: 27663498]

22. Xie F, Zhou M & Xu Y BayCount: a Bayesian decomposition method for inferring tumor
heterogeneity using RNA-seq counts. Preprint at bioRxiv 10.1101/218511

23. Hou W, Ji Z, Ji H & Hicks SC A systematic evaluation of single-cell RNA-sequencing imputation
methods. Genome Biol. 21, 218 (2020). [PubMed: 32854757]

24. Elyanow R, Dumitrascu B, Engelhardt BE & Raphael BJ netNMF-sc: leveraging gene–gene
interactions for imputation and dimensionality reduction in single-cell expression analysis.
Genome Res. 30, 195–204 (2020). [PubMed: 31992614]

25. Hicks SC, Townes FW, Teng M & Irizarry RA Missing data and technical variability in single-cell
RNA-sequencing experiments. Biostatistics 19, 562–578 (2018). [PubMed: 29121214]

Johnson et al. Page 37

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.bioconductor.org/packages/devel/bioc/vignettes/ccfindR/inst/doc/ccfindR.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/ccfindR/inst/doc/ccfindR.html

26. Korsunsky I et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat.
Methods 16, 1289–1296 (2019). [PubMed: 31740819]

27. Zhang Y, Parmigiani G & Johnson WE ComBat-seq: batch effect adjustment for RNA-seq count
data. NAR Genom. Bioinform. 2, lqaa078 (2020). [PubMed: 33015620]

28. Wu Y, Tamayo P & Zhang K Visualizing and interpreting single-cell gene expression datasets
with similarity weighted nonnegative embedding. Cell Syst. 7, 656–666.e4 (2018). [PubMed:
30528274]

29. Luecken MD & Theis FJ Current best practices in single-cell RNA-seq analysis: a tutorial. Mol.
Syst. Biol. 15, e8746 (2019). [PubMed: 31217225]

30. Stein-O’Brien GL et al. PatternMarkers & GWCoGAPS for novel data-driven biomarkers via
whole transcriptome NMF. Bioinformatics 33, 1892–1894 (2017). [PubMed: 28174896]

31. Taylor-weiner A et al. Scaling computational genomics to millions of individuals with GPUs.
Genome Biol. 20, 228 (2019). [PubMed: 31675989]

32. Stein-O’Brien GL et al. Decomposing cell identity for transfer learning across cellular
measurements, platforms, tissues, and species. Cell Syst. 8, 395–411 (2019). [PubMed: 31121116]

33. Fertig EJ et al. Preferential activation of the hedgehog pathway by epigenetic modulations in HPV
negative HNSCC identified with meta-pathway analysis. PLoS ONE 8, e78127 (2013). [PubMed:
24223768]

34. Way GP, Zietz M, Rubinetti V, Himmelstein DS & Greene CS Compressing gene expression
data using multiple latent space dimensionalities learns complementary biological representations.
Genome Biol. 21, 109 (2020). [PubMed: 32393369]

35. Way GP & Greene CS Extracting a biologically relevant latent space from cancer transcriptomes
with variational autoencoders. Pac. Symp. Biocomput. 23, 80–91 (2018). [PubMed: 29218871]

36. Bidaut G & Ochs MF ClutrFree: cluster tree visualization and interpretation. Bioinformatics 20,
2869–2871 (2004). [PubMed: 15145813]

37. Wagner A, Regev A & Yosef N Revealing the vectors of cellular identity with single-cell
genomics. Nat. Biotechnol. 34, 1145–1160 (2016). [PubMed: 27824854]

38. Davis-Marcisak EF et al. From bench to bedside: single-cell analysis for cancer immunotherapy.
Cancer Cell 39, 1062–1080 (2021). [PubMed: 34329587]

39. Gojo J et al. Single-Cell RNA-seq reveals cellular hierarchies and impaired developmental
trajectories in pediatric ependymoma. Cancer Cell 38, 44–59.e9 (2020). [PubMed: 32663469]

40. Subramanian A et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). [PubMed:
16199517]

41. Moloshok TD et al. Application of Bayesian decomposition for analysing microarray data.
Bioinformatics 18, 566–575 (2002). [PubMed: 12016054]

42. Zhu X, Ching T, Pan X, Weissman SM & Garmire L Detecting heterogeneity in single-cell
RNA-Seq data by non-negative matrix factorization. PeerJ 5, e2888 (2017). [PubMed: 28133571]

43. Stein-O’Brien G et al. Integrated time course omics analysis distinguishes immediate therapeutic
response from acquired resistance. Genome Med. 10, 37 (2018). [PubMed: 29792227]

44. Liu J et al. Jointly defining cell types from multiple single-cell datasets using LIGER. Nat. Protoc.
15, 3632–3662 (2020). [PubMed: 33046898]

45. Lê Cao K-A et al. Community-wide hackathons to identify central themes in single-cell multi-
omics. Genome Biol. 22, 220 (2021). [PubMed: 34353350]

46. Sharma G, Colantuoni C, Goff LA, Fertig EJ & Stein-O’Brien G projectR: an R/Bioconductor
package for transfer learning via PCA, NMF, correlation and clustering. Bioinformatics 36, 3592–
3593 (2020). [PubMed: 32167521]

47. Davis-Marcisak EF et al. Transfer learning between preclinical models and human tumors
identifies a conserved NK cell activation signature in anti-CTLA-4 responsive tumors. Genome
Med. 13, 129 (2021). [PubMed: 34376232]

48. Rodriques SG et al. Slide-seq: a scalable technology for measuring genome-wide expression at
high spatial resolution. Science 363, 1463–1467 (2019). [PubMed: 30923225]

Johnson et al. Page 38

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

49. Deshpande A et al. Uncovering the spatial landscape of molecular interactions within the tumor
microenvironment through latent spaces. Cell Syst. 4, 285–301 (2022).

50. zenodo: Research. Shared. (CERN and GitHub, 2023).

51. Anaconda v22.9.0 (Anaconda Software Distribution, 2021).

52. Virshup I, Rybakov S, Theis FJ, Angerer P & Alexander Wolf F anndata: Annotated data. Preprint
at bioRxiv 10.1101/2021.12.16.473007 (2021).

53. Wolf FA, Angerer P & Theis FJ SCANPY: large-scale single-cell gene expression data analysis.
Genome Biol. 19, 15 (2018). [PubMed: 29409532]

54. Seabold S & Perktold J Statsmodels: Econometric and Statistical Modeling with Python. In Proc.
9th Python in Science Conference (SciPy) 10.25080/majora-92bf1922-011 (2010).

55. Fang Z, Liu X & Peltz G GSEApy: a comprehensive package for performing gene set enrichment
analysis in Python. Bioinformatics 39, btac757 (2023). [PubMed: 36426870]

56. Korotkevich G et al. Fast gene set enrichment analysis. Preprint at bioRxiv. 10.1101/060012
(2016).

57. Liberzon A et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell
Syst. 1, 417–425 (2015). [PubMed: 26771021]

Johnson et al. Page 39

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 1

PatternMarkers ‘threshold’ parameter

The patternMarkers() CoGAPS function finds genes associated with each pattern and

returns a dictionary of information containing lists of marker genes, their ranking, and

their ‘score’ for each pattern. This is vital because genes are often associated with

multiple patterns.

The three components of the returned dictionary pm are:

• PatternMarkers

– a list of marker genes for each pattern

– Can be determined using two threshold metrics, see below, and

the ‘Assessing the biological function of gene signatures from the

amplitude matrix’ section of the Introduction.

• PatternMarkerRank

– each gene ranked by association for each pattern

– Whole natural numbers, assigning each marker gene a place in the

rank for each pattern

– Lower rank indicates higher association and vice versa

• PatternMarkerScores

– scores describing how strongly a gene is associated with a pattern.

– A lower score value indicates the gene is more associated with the

pattern, and vice versa

– Scores have nonnegative values mostly falling between 0 and 2

If threshold = ‘all’, each gene is treated as a marker of one pattern (whichever it is most

strongly associated with). The number of marker genes will always equal the number of

input genes. If threshold = ‘cut’, a gene is considered a marker of a pattern if and only if

it is less significant to at least one other pattern. Counterintuitively, this results in much

shorter lists of patternMarkers and is a more convenient statistic to use when functionally

annotating patterns.

Johnson et al. Page 40

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 2

Running Distributed CoGAPS

If you wish to run distributed CoGAPS, which we recommend for most cases, set

the ‘distributed’ parameter to ‘genome-wide’ (parallelize across genes), or ‘single-cell’

(parallelize across cells). Please see Fig. 3 for a full explanation of the mechanism.

cut, minNS and maxNS control the process of matching patterns across subsets and in

general should not be changed from defaults. More information about these parameters

can be found in the original papers.

nSets controls how many subsets are run in parallel when using the distributed version

of the algorithm. Setting nSets requires balancing available hardware and runtime

against the size of your data. In general, nSets should be less than or equal to the

number of nodes/cores that are available. If that is true, then the more subsets you create,

the faster CoGAPS will run; however, some robustness can be lost when the subsets get

too small. The general rule of thumb is to set nSets so that each subset has between

1,000 and 5,000 genes or cells to give robust results, but ideally, we would want as many

cells per set as possible. More information on these parameters can be found in Table 2.

If explicitSets are not provided, the data will be randomly fragmented into the

number of sets specified by nSets parameter, with the default being 4. Subsets can also

be chosen randomly, but weighted according to a user-provided annotation in parameters

samplingAnnotation and samplingWeight.

Johnson et al. Page 41

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 3

C++ Compiler Information

Linux: C++ compiler comes standard with most if not all distributions

MacOS: ensure XCode is installed on your machine. If using the M1 chip, we

recommend updating your software to at least MacOS Monterey 12.2.1 as it fixes a

crucial issue with compiler linkages.

Windows: you may need to install Microsoft Build Tools. If you experience significant

issues during compilation, we recommend building CoGAPS on the Ubuntu subsystem,

which is available on the Windows application store.

Johnson et al. Page 42

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 4

Anaconda environment

Install Anaconda from here: https://docs.anaconda.com/anaconda/install/

Instructions for setting up a conda environment can be found here: https://conda.io/

projects/conda/en/latest/user-guide/getting-started.html

Users may wish to create a conda environment and install all requirements and run code

from within here. We note that conda is not a required dependency of CoGAPS and its

use is down to preference.

Johnson et al. Page 43

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://docs.anaconda.com/anaconda/install/
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html

Box 5

Viewing all Parameters in PyCoGAPS

To see all parameters that have been set, call:

params.printParams()

Expected output:

running genome-wide. if you wish to perform single-cell distributed

cogaps, please run setParams(params, “distributed”, “single-cell”)

setting distributed parameters - call this again if you change nPatterns

-- Standard Parameters --

nPatterns: 8

nIterations: 50000

seed: 42

sparseOptimization: True

-- Sparsity Parameters --

alpha: 0.01

maxGibbsMass: 100.0

-- Distributed Parameters --

cut:8

nSets:7

minNS:4

maxNS:11

Johnson et al. Page 44

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 6

CoGAPS status messages

While CoGAPS is running, you will see periodic status messages in the format of the

example below reporting how many iterations have been completed, the current ChiSq

value and how much time has elapsed out of the estimated total runtime. When running

multithreaded, each thread may output progress messages to the console separately. For n
threads, you will see each message repeated n times.

20000 of 25000, Atoms: 2932(80), ChiSq: 9728, time: 00:00:29 /00:01:19

This message tells us that CoGAPS is at iteration 20,000 out of 25,000 for this phase and

that 29 s out of an estimated 1 min 19 s have passed. It also tells us the size of the atomic

domain, which is a core component of the algorithm but can be ignored for now. Finally,

the ChiSq value tells us how closely the A and P matrices reconstruct the original data.

In general, this value should go down, but it is not a perfect measurement of how well

CoGAPS is finding the biological processes contained in the data. CoGAPS also prints

a message indicating which phase is currently happening. There are two phases to the

algorithm: Equilibration and Sampling.

Johnson et al. Page 45

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 7

PyCoGAPS anndata result and metadata

The PyCoGAPS result is returned in anndata format, with observation and variable

annotation Matrices containing the returned amplitude and pattern matrices. Additional

information about The run can be found the the unstructured annotation component of the

anndata object.

AnnData object with n_obs × n_vars = 15219 × 25442

obs: ‘Pattern1’, ‘Pattern2’, ‘Pattern3’, ‘Pattern4’, ‘Pattern5’,

‘Pattern6’, ‘Pattern7’, ‘Pattern8’

var: ‘Pattern1’, ‘Pattern2’, ‘Pattern3’, ‘Pattern4’, ‘Pattern5’,

‘Pattern6’, ‘Pattern7’, ‘Pattern8’

uns: ‘asd’, ‘atomhistoryA’, ‘atomhistoryP’, ‘averageQueueLengthA’,

‘averageQueueLengthP’, ‘chisqHistory’, ‘equilibrationSnapshotsA’,

‘equilibrationSnapshotsP’, ‘meanChiSq’, ‘meanPatternAssignment’, ‘psd’,

‘pumpMatrix’, ‘samplingSnapshotsA’, ‘samplingSnapshotsP’, ‘seed’,

‘totalRunningTime’, ‘totalUpdates’

varm: ‘X_aligned’, ‘X_pca’, ‘X_umap’

Johnson et al. Page 46

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 8

The PyCoGAPS result object

The CoGAPS result is returned in anndata format. CoGAPS stores the lower-dimensional

representation of the samples (P matrix) in the .var slot and the weight of the features

(A matrix) in the .obs slot. If you transpose the matrix before running CoGAPS,

the opposite will be true. Running single cell is equivalent in every way to transposing

the data matrix and running single cell. The standard deviation across sample points

for each matrix as well as additional metrics are stored in the .uns slots. Please refer

to https://github.com/FertigLab/pycogaps#readme for complete documentation of output

metrics.

Johnson et al. Page 47

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/FertigLab/pycogaps#readme

Box 9

Example snippet of params.yaml

The params.yaml file holds all parameters that can be inputted to PyCoGAPS. A

snippet of params. yaml is shown below, where we have changed some default

parameter values to our own specified example values.

This file holds all parameters to be passed into PyCoGAPS.

To modify default parameters, simply replace parameter values below

with user-specified values, and save file.

RELATIVE path to data -- make sure to move your data into the created

data/ folder

path: data/ModSimData.txt

result output file name result_file: ModSimResult.h5ad

standard_params:

number of patterns CoGAPS will learn nPatterns: 10

number of iterations for each phase of the algorithm nIterations: 5000

random number generator seed seed: 0

speeds up performance with sparse data (roughly >80% of data

is zero), note this can only be used with the default uncertainty

useSparseOptimization: True

…

A complete list of input options and their descriptions can be found as comments in

params.yaml and guide to setting key parameters in Table 2.

Johnson et al. Page 48

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 10

Distributed PyCoGAPS in Docker

A snippet of params.yaml is shown below where distributed_params parameters

are modified.

This file holds all parameters to be passed into PyCoGAPS.

…

distributed_params:

either null or genome-wide distributed: genome-wide

number of sets to break data into nSets: 4

number of branches at which to cut dendrogram used in pattern matching

cut: null

minimum of individual set contributions a cluster must contain minNS:

null

maximum of individual set contributions a cluster can contain maxNS:

null

Johnson et al. Page 49

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 11

Viewing all parameters in CoGAPS

Run the following to view all parameters that have been set, and their values:

pdac_params

-- Standard Parameters --

nPatterns 8

nIterations 100

seed 42

sparseOptimization TRUE

distributed genome-wide

-- Sparsity Parameters --

alpha 0.01

maxGibbsMass 100

-- Distributed CoGAPS Parameters

nSets 7

cut 8

minNS 8

maxNS 23

Johnson et al. Page 50

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 12

The CoGAPS result object

A and P matrices learned by CoGAPS. In this package, the A matrix of sample weights is

called ‘sampleFactors’ and the P matrix of gene weights is called ‘featureLoadings’.

Standard deviation matrices factorStdDev and loadingStdDev corresponding to

sampleFactors and featureLoadings.

Metadata, which contains information for the run such as how it was parallelized

(subsets), the mean ChiSq value during the run (meanChiSq) and the parameters used

in the run (params). Since the run parameters are attached to the result object, it can keep

track of the provenance of your CoGAPS results.

Other information may be present in the metadata depending on your run options.

Johnson et al. Page 51

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Box 13

CoGAPS Metadata

Run statistics and more information can be found in the metadata portion of the CoGAPS

object.

cogapsresult

[1] “CogapsResult object with 15176 features and 25442 samples”

[1] “8 patterns were learned”

names(cogapsresult@metadata)

[1] “meanChiSq” “firstPass” “unmatchedPatterns” “clusteredPatterns”

[5] “CorrToMeanPattern” “subsets” “params” “version”

[9] “logStreamName”

Johnson et al. Page 52

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Key points

• This protocol describes procedures for learning cellular and molecular

processes from single-cell RNA-sequencing data using the non-negative

matrix factorization algorithm Coordinated Gene Activity across Pattern

Subsets. This is implemented and demonstrated in Python and R, with

additional vignettes covering how to run Coordinated Gene Activity across

Pattern Subsets via Docker deployment and GenePattern Notebook.

• This protocol presents an end-to-end, optimized workflow that is usable,

flexible, totally optimized for contemporary single-cell data formats,

accessible and intuitive for computational biologists.

Johnson et al. Page 53

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1 |. NMF learns signal in input data.
NMF factorizes expression data into lower-dimensional amplitude (A) gene weights matrix

and pattern (P) sample weights matrix whose product approximates the input.

Johnson et al. Page 54

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2 |. A generalized workflow for performing NMF on single-cell data.
a, NMF algorithms take as input a list of parameters and a data matrix. For scRNA-seq

data, the counts matrix should be log-normalized. b, NMF yields an amplitude matrix (A)

and a pattern matrix (P), which approximately factorize the input data. c, NMF results

can supplement a dimension reduction analysis pipeline and can easily be visualized on

a UMAP. 2D, two-dimensional. d, An NMF result typically consists of A and P matrices

along with metadata about the run. e, To visualize the pattern weight in each cell, the P

matrix can be used to color a UMAP or other dimension-reduction plot. f, The P matrix can

Johnson et al. Page 55

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

also be used to compare pattern weights across cell types or experimental conditions. g,h,

The A matrix can be used to find marker genes for each pattern (g), which can then be useful

in GSEA (h), identifying biological processes and terms associated with each pattern. FDR,

false discovery rate. Note that all specific genes, cell types and biological process terms

referenced in this figure are merely examples and do not represent real data.

Johnson et al. Page 56

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3 |. Distributed CoGAPS finds robust patterns across randomized gene or sample subsets.
a, Subsetting is performed to break the input matrices into smaller components that can

each be handed off to a worker process for NMF. b, Subsetting for parallelization can be

performed across either matrix dimension. c, Each data subset yields its own NMF result.

d, To identify the patterns that manifest themselves consistently across all NMF results,

clustering is performed across all patterns returned by every thread, and a consensus matrix

is generated from a process of matching cognate patterns. e, NMF is now run again on the

same data subsets, this time with the consensus matrix provided as a ground truth from

which the other matrix can be learned. This run is significantly faster than the first. f, Now

Johnson et al. Page 57

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that all threads have been forced to learn the same patterns, the portion of the NMF result

that was not fixed can be stitched together to yield the final solution.

Johnson et al. Page 58

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4 |. Decision tree for selecting the most appropriate PyCoGAPS or CoGAPS procedure to
follow.
We provide four independent procedures (Procedures 1–4) for NMF analysis. Procedure

1 demonstrates PyCoGAPS with Python scripts, Procedure 2 demonstrates how to

use PyCoGAPS with Docker, Procedure 3 demonstrates R CoGAPS and Procedure 4

demonstrates using PyCoGAPS within GenePattern Notebook.

Johnson et al. Page 59

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5 |. Graphical comparison of the procedures.
All four procedures in this protocol follow the same general steps, but each has its own

technical requirements. a–d, Each procedure contains instructions to set up a CoGAPS

workspace (a), a data loading step (b), parameter specification and run setup (c) and

suggestions for analyzing and interpreting the CoGAPS result object (d).

Johnson et al. Page 60

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6 |. Comparison of runtimes of R CoGAPS versus PyCoGAPS.
a, Benchmarking on a small dataset showed a startup cost associated with multiprocessing in

distributed PyCoGAPS. b, In this small dataset, meanChiSq converges after a small number

of iterations. meanChiSq values may differ slightly between distributed and single-threaded

CoGAPS runs due to differing input matrix dimension. c, Benchmarking on a large single-

cell dataset yielded these estimated runtimes, with Python slightly outperforming R.

Johnson et al. Page 61

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7 |. UMAP of patterns learned by PyCoGAPS.
Each dot represents one cell in the input data and is colored according to its expression of

each pattern.

Johnson et al. Page 62

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8 |. Comparing statistical overlap between a biologist’s single-cell annotations and the
learned CoGAPS to associate patterns with biological processes.
a,b, Patterns are visualized on a UMAP (a) and then compared between conditions (b).

Johnson et al. Page 63

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9 |. Python hallmark GSEA.
This histogram shows negative log quotient (degree of association) of pattern 7 in the

PyCoGAPS analysis, with statistically significant MSigDB Hallmark terms (FDR-corrected

P-value reported by gseapy <0.05).

Johnson et al. Page 64

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10 |. UMAP of patterns learned by CoGAPS.
Each dot represents one cell in the input data and is colored according to its expression of

each pattern.

Johnson et al. Page 65

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11 |. Pattern amplitude by cell group.
a,b, Here, we examine how all patterns vary between cell groups selected by a biologist, first

visualizing these groupings on a UMAP (a) and then noting which patterns associate with

healthier or diseased cells, and which associate with both or neither (b).

Johnson et al. Page 66

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12 |. R CoGAPS hallmark GSEA.
This shows negative log quotient (degree of association) of the pattern’s gene set with

statistically significant MSigDB Hallmark terms (FDR-corrected P-value reported by fgsea

<0.05, threshold indicated by vertical dotted line).

Johnson et al. Page 67

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson et al. Page 68

Table 1 |

Workflow comparison for running Procedure 1: PyCoGAPS, Procedure 2: PyCoGAPS deployed through

Docker, Procedure 3: R CoGAPS or Procedure 4: GenePattern Notebook

Procedure Choice PyCoGAPS CoGAPS: Procedure
3

GenePattern Notebook:
Procedure 4:

Procedure 1 Procedure 2

Overview Using the CoGAPS
Python package

Plug in parameters and
run CoGAPS in a
prepared Docker container

Using the CoGAPS R
package

Run CoGAPS using prewritten
code cells in a web browser
environment

Preferred programming
language

Python Python/no preference R Python/no preference

Recommended
programming experience

Experienced Little to none Experienced Little to none

Install dependencies? Yes No Yes No

Customization flexibility High Limited High Limited

Parameter handling Call functions Easy plug-in Call functions Easy plug-in

Run location Locally or own server Locally or own server Locally or own server Remotely using Amazon Web
Services

Users are recommended to choose the appropriate procedure based on factors including programming experience or preference.

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson et al. Page 69

Table 2 |

Key parameters for CoGAPS/PyCoGAPS and guidance on setting their values

Parameter Description Guide to Setting

path Path to data Make sure data is log-normalized if providing a path rather than a data object

result_file Name of result .h5ad file to
output

Give this a descriptive name based on your data and run, such as
PDACresult_50kiterations.h5ad

Standard parameters

nPatterns Number of patterns CoGAPS
will learn

The optimal number of patterns to learn will vary based on your data and may require
several runs of varying values to observe learned features. We recommend starting
off with selecting a value that represents the number of experimental conditions,
cell types and/or biological processes expected from your data, as well as technical
batches present

nIterations Number of iterations of each
phase of the algorithm

Higher iterations (i.e., 50,000 iterations) is recommended as it will lead to better
convergence. However, higher iterations greatly increases runtime, so we invite the
user to play around with values to observe the tradeoff and determine the appropriate
value

useSparseOptimiz
ation

Speeds up performance with
sparse data

Set to true if using sparse data, i.e., if roughly >80% of data is zero

Run parameters

nThreads Maximum number of threads
to run on. Allows the
underlying algorithm to run
on multiple threads and has
no effect on the mathematics
of the algorithm

The precise number of threads to use depends on many factors such as hardware
and data size. The best approach is to play around with different values and see
how it affects the estimated time. This is separate from the distributed CoGAPS
parallelization mechanism, which sets up multithreaded computing in a different way.

transposeData Whether to transpose data Whether to transpose the data matrix before running CoGAPS. Set to true if data is
stored as samples × genes format (CoGAPS defaults to genes × samples format)

Distributed parameters

distributed Whether to run distributed Recommended in most cases for single-cell analysis. Set to ‘genome-wide’ for
parallelization across genes, or ‘single-cell’ for parallelization across cells

nSets Number of sets to break data
into

For distributed with ‘genome-wide’, do not set value to below 2,000 genes per set. For
distributed with ‘single-cell’, make sure this value captures sufficient representation
of all cell types in the data

minNS Minimum number of
individual set contributions a
cluster must contain

Be cautious in setting this value too high as increasing robustness may also cause
misses in rare phenomenon or cells

maxNS Maximum number of
individual set contributions a
cLuster can contain

Modifying this parameter is only important for highly correlated processes

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson et al. Page 70

Table 3 |

Timing of PyCoGAPS (Python time) versus CoGAPS (R time) on a small dataset with varying input

parameters

Dataset Size dim 1 dim 2 nPatterns nIterations API Runtime meanChiSq

modsim 3.6 KB 25 20 3 100 R 0.05178118 7718.748

modsim 3.6 KB 25 20 3 500 R 0.05663395 295.1525

modsim 3.6 KB 25 20 3 1,000 R 0.08855605 36.23537

modsim 3.6 KB 25 20 3 5,000 R 0.223259 36.62024

modsim 3.6 KB 25 20 3 10,000 R 0.40043 35.13767

modsim 3.6 KB 25 20 3 20,000 R 0.7454391 36.69391

modsim 3.6 KB 25 20 3 30,000 R 1.093563 35.25447

modsim 3.6 KB 25 20 3 50,000 R 1.773327 12.74943

modsim 3.6 KB 25 20 3 100 Python 0.005910873413 7718.747559

modsim 3.6 KB 25 20 3 500 Python 0.01748609543 295.1524963

modsim 3.6 KB 25 20 3 1,000 Python 0.033478260 04 36.23537064

modsim 3.6 KB 25 20 3 5,000 Python 0.149089098 36.62024307

modsim 3.6 KB 25 20 3 10,000 Python 0.2985670567 35.13766861

modsim 3.6 KB 25 20 3 20,000 Python 0.5989601612 36.69391251

modsim 3.6 KB 25 20 3 30,000 Python 0.8996288776 35.25447464

modsim 3.6 KB 25 20 3 50,000 Python 1.547122955 12.74942684

modsim 3.6 KB 25 20 3 100 R_distributed 0.3206151 4052.322

modsim 3.6 KB 25 20 3 500 R_distributed 0.3453848 842.0198

modsim 3.6 KB 25 20 3 1,000 R_distributed 0.4187911 28.01583

modsim 3.6 KB 25 20 3 5,000 R_distributed 0.4270132 28.74847

modsim 3.6 KB 25 20 3 10,000 R_distributed 0.6068029 471.4499

modsim 3.6 KB 25 20 3 20,000 R_distributed 0.809824 184.6889

modsim 3.6 KB 25 20 3 30,000 R_distributed 1.019847 18.10658

modsim 3.6 KB 25 20 3 50,000 R_distributed 1.543682 15.68454

modsim 3.6 KB 25 20 3 100 Python_distributed 3.292124032 828.8723755

modsim 3.6 KB 25 20 3 500 Python_distributed 3.428723812 116.0221786

modsim 3.6 KB 25 20 3 1,000 Python_distributed 3.451946974 28.20919037

modsim 3.6 KB 25 20 3 5,000 Python_distributed 3.451797009 11.72956944

modsim 3.6 KB 25 20 3 10,000 Python_distributed 3.622226954 49.45440674

modsim 3.6 KB 25 20 3 20,000 Python_distributed 3.667319775 52.24369431

modsim 3.6 KB 25 20 3 30,000 Python_distributed 3.986222982 9.30820179

modsim 3.6 KB 25 20 3 50,000 Python_distributed 4.204113007 18.50210381

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson et al. Page 71

Table 4 |

Troubleshooting table

Step Problem Possible reason Solution

Procedure 1,
Step 1

Error with cloning repository due
to large files (inputdata.h5ad,
cogapsresult.h5ad)

Git large file storage (LFS) is
not installed

Run the following command: brew install git-
lfs or disable git-lfs and instead download files
from https://zenodo.org/record/7709664

Procedure 1,
Step 3

Upon running setup.py, receive the
error message: No module named
pybind11

pybind11 was not successfully
installed

pip install pybind11. If using conda, run: conda
install -c conda-forge pybind11

Upon running setup.py, a ‘file not
found’ error for a CoGAPS header file
is displayed

CoGAPS library was not
downloaded

Make sure you use --recursive flag when
cloning pycogaps

Procedure 1,
Step 12

Runtime is prohibitively long, given
reasonable scales of data (typical
timing is as given in n*log(n))

If runtimes are prohibitive
within reasonable scales of
data, this may result from
algorithm overfitting zeros

We recommend filtering the data only to genes
that are reasonably expressed or filtering to a
limited subset of genes (e.g., high variance)

Procedure 2,
Step 1

Cannot connect to the Docker daemon
at unix:///var/run/docker.sock. Is the
docker daemon running?

Docker is not started up/
running

Open the Docker application or run the
following command: docker run -d -p 80:80
docker/getting-started

Procedure 2,
Step 8

ModuleNotFoundError: no module
named ‘analysis_functions’

analysis_function s.py file is
not in the same directory as
your new Python file

Make sure analysis_functions.py and your new
Python file for calling the functions are in the
same directory

Procedure 3,
Step 8

Runtime is prohibitively long, given
reasonable scales of data (typical
timing is as given in n*log(n))

If runtimes are prohibitive
within reasonable scales of
data, this may result from
algorithm overfitting zeros

We recommend filtering the data only to genes
that are reasonably expressed or filtering to a
limited subset of genes (e.g., high variance)

Procedure 4,
Step 6

FileNotFoundError Data file not uploaded to
project folder

Go to the project folder, and click ‘Upload’ to
upload your file to the data folder

Error after running the PyCoGAPS cell Path parameter not updated Make sure to replace the default path
parameter with the ‘Upload’ button to upload
your data

Nat Protoc. Author manuscript; available in PMC 2024 March 25.

https://zenodo.org/record/7709664

	Abstract
	Introduction
	Key components and considerations for NMF analysis
	Overview of NMF analysis
	Data preprocessing and input
	Iterative assessment of optimality of solutions
	Dimensionality estimation
	Analysis and visualization of inferred cellular features in the pattern matrix
	Assessing the biological function of gene signatures from the amplitude matrix
	Finding robust patterns using consensus across parallel sets
	Multi-omic methods
	Limitations

	Materials
	Data
	Software
	Hardware

	Procedure 1: running PyCoGAPS: user startup guide for the Python CoGAPS API
	Software setup
	Running PyCoGAPS on simulated data
	Running PyCoGAPS on single-cell data
	Analyzing the PyCoGAPS result

	Procedure 2: running PyCoGAPS using Docker
	Software Setup
	Running PyCoGAPS on simulated toy data
	Running PyCoGAPS on single-cell data
	Analyzing the PyCoGAPS result

	Procedure 3: running CoGAPS—user startup guide for the R CoGAPS API
	Software Setup
	R script setup
	Running CoGAPS on simulated toy data
	Running CoGAPS on single-cell data
	Analyzing the CoGAPS result

	Procedure 4: running GenePattern Notebook—user startup guide for the web-based CoGAPS API
	Notebook Setup
	Running PyCoGAPS on simulated toy data
	Running PyCoGAPS on single-cell data
	Analyzing the PyCoGAPS result

	Troubleshooting
	Timing
	Procedure 1
	Procedure 2
	Procedure 3
	Procedure 4

	Anticipated results
	Related links
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |
	Fig. 7 |
	Fig. 8 |
	Fig. 9 |
	Fig. 10 |
	Fig. 11 |
	Fig. 12 |
	Table 1 |
	Table 2 |
	Table 3 |
	Table 4 |

