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Abstract

Polygenic risk scores (PRSs) summarize the genetic predisposition of a complex human trait or 

disease and may become a valuable tool for advancing precision medicine. However, PRSs that 

are developed in populations of predominantly European genetic ancestries can increase health 

disparities due to poor predictive performance in individuals of diverse and complex genetic 

ancestries. We describe genetic and modifiable risk factors that limit the transferability of PRSs 

across populations and review the strengths and weaknesses of existing PRS construction methods 

for diverse ancestries. Developing PRSs that benefit global populations in research and clinical 

settings provides an opportunity for innovation and is essential for health equity.

Introduction

Genome-wide association studies (GWAS) have discovered thousands of variants associated 

with complex human traits, illustrating the high polygenicity of many common diseases 

and emphasizing the potential of leveraging these findings for genetic prediction of health 

outcomes. Although each individual associated variant accounts for a small proportion of 

phenotypic variance, aggregating information across multiple variants into a single score 

creates a compendium of an individual’s genetic predisposition for a given complex trait 

or disease. Calculated as a sum of alleles weighted by their estimated effect sizes, these 

cumulative genetic profiles are commonly referred to as polygenic risk scores (PRSs) when 

derived for a binary disease outcome or polygenic scores when calculated for a general trait.
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PRSs have the potential to advance precision medicine by improving disease stratification 

and prioritization of high-risk individuals for appropriate interventions, enabling more 

accurate diagnoses and predicting therapeutic outcomes1. Nearly two decades of GWAS 

have provided a rich foundation of discoveries to facilitate PRS construction2. However, 

more than 85% of GWAS have been undertaken in individuals of European ancestries, 

and PRSs derived from these studies can be substantially less predictive for other genetic 

ancestries, potentially exacerbating health disparities3,4. The growing recognition of this 

issue has spurred methodological innovations to integrate data from diverse populations, 

enabling more powerful analyses of existing studies, as well as the establishment of new 

biobanks, consortia and data collection initiatives of diverse populations5.

Here, we consider the principles and methods of applying PRSs across global populations, 

complementing existing reviews on PRS methodology and clinical utility1,6-10. Specifically, 

we consider how genetic and non-genetic factors impact PRS performance, how new 

methods might improve their transferability across populations and implications for PRS 

clinical utility. We describe the technical challenges associated with the development of 

PRS predictive modelling within the context of social and environmental influences, and 

discuss the evaluation of model performance and clinical utility in populations of diverse 

ancestral backgrounds. These aspects are especially important given that many individuals 

have complex genetic ancestries shaped by recent admixture (Fig. 1). In addition to these 

challenges, we highlight emerging resources and opportunities for the development of new 

methods to enable more widespread and equitable translation of PRSs.

Genetic factors influencing PRS performance

PRSs have lower accuracy in cross-population prediction when the target sample is 

genetically distant from the discovery GWAS sample, regardless of the PRS construction 

method3,11-16 (Fig. 2a,b). This is akin to agricultural genetics, in which the accuracy 

of genomic prediction decreases as the genetic distance between the training and target 

populations increases17-20. Several genetic factors can influence the genetic architecture of 

a complex trait and may limit the transferability of PRSs across populations, including 

differences in heritability, causal allele frequencies, allelic effect sizes and linkage 

disequilibrium (LD) patterns.

Heritability, the percentage of variation in a trait attributed to genetics, can differ across 

populations. Array heritability21, the proportion of phenotypic variation that can be captured 

by the additive effects of SNPs assayed and imputed from a GWAS array, limits the 

prediction accuracy of a PRS based on common genetic variation in a given population22-26. 

As heritability measures the relative contribution of genetic factors to total inter-individual 

trait variation in a specific population or context, differences in sociocultural factors, 

environmental exposures and measurement errors between populations that affect total 

phenotypic variance can alter heritability estimates and influence the accuracy of PRSs 

(discussed further below). It has been shown that even within a relatively homogeneous 

population, heritability – and thus the predictive accuracy of PRSs – can differ by major 

demographic variables such as age, sex and socioeconomic status27,28.
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The transferability of PRSs across populations might also be impacted by differences in 

the frequency of causal variants and their allelic effect sizes (Fig. 2c). These factors 

can vary due to demographic histories (such as mutations in historical migrant groups 

followed by genetic drift or population bottlenecks) or gene by environment interactions. 

Although existing studies have shown extensive genetic overlap across ancestries for a 

range of complex traits and diseases both at the variant level and the genome-wide level 

(via cross-population genetic correlation analyses), especially between European and East 

Asian populations29-32, widespread allelic effect heterogeneity has also been observed33,34. 

Even assuming identical allelic effects, population differences in allele frequencies can 

impact the amount of phenotypic variance explained by these variants, and thus PRS 

performance. As the vast majority of GWAS have been conducted in individuals of 

European ancestries, most existing PRSs have been constructed from variants that are 

common in European populations, which may have substantially lower frequencies in other 

populations. Moreover, causal variants in non-European ancestry populations may not be 

detectable in European ancestry GWAS due to low allele frequencies in European ancestries, 

and thus limited statistical power, further reducing the generalizability of PRSs.

The marked differences in LD patterns across populations can also impact PRS 

transferability. For example, the size of LD blocks is, on average, much smaller in African 

populations than in European or East Asian populations35,36. As a result, many more 

variants are needed to capture the same level of genetic variation in African populations than 

in other populations. Many of the variants used in PRS construction are not causal but are 

merely in LD with causal variants, and many early genotyping arrays were designed based 

on European-enriched variants. Thus, differences in LD across populations can affect the 

transferability of PRSs derived from European GWAS (Fig. 2d). Taken together, the number 

of causal alleles and their allelic effect size distributions25,26 coupled with their frequencies 

and local LD patterns can have a complex impact on the performance of PRSs across 

populations. Furthermore, although most PRSs only capture additive genetic effects tagged 

by assayed or imputed variants, non-linear genetic effects including allelic heterogeneity, 

haplotype effects and gene by gene interactions can influence the genetic basis of a complex 

trait or disease37 and further complicate the transferability of PRSs.

It is important to recognize that the analysis and comparison of genetic architecture of a 

trait or disease between populations depend on how the continuum of genetic ancestry is 

operationalized into discrete categories and population labels (Box 1). However, genetic 

diversity exists even within populations with a relatively high degree of genetic similarity or 

within geographically constrained regions38. Genetic admixture presents further challenges 

to the characterization of genetic architecture and the development of PRS construction 

methods because the genomes of individuals are mosaics of their ancestors, and when 

individuals have different local genetic ancestries across the genome, the genetic effects can 

broadly vary from individual to individual.

Recent theoretical and empirical studies have attempted to separate the contributions of 

the different genetic factors discussed above to the transferability of PRSs across diverse 

populations. These studies support the view that allelic effects of causal variants are similar 

across ancestries, and the attenuation of PRS accuracies can be primarily attributed to 
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differences in allele frequencies and LD structure, although none of the factors can fully 

explain the power loss23,32,39,40. In addition, improving PRS accuracy in African-ancestry 

populations can be especially challenging due to the existence of a much larger number 

of genetic variants in these groups41. Although these findings are promising to facilitate 

the dissection of cross-population genetic architecture and inform the development of PRS 

construction methods, our current understanding of the genetic basis of complex traits and 

common diseases is still hindered by small sample sizes for under-represented populations. 

A full accounting of the genetic architecture across the phenotypic spectrum and diverse 

ancestries, and its impact on the transferability of PRSs, requires continued expansion of 

non-European genomic resources and a comprehensive catalogue of global genetic and 

phenotypic variation.

Social and environmental factors influencing PRS performance

Many complex diseases arise from both genetic and environmental risk factors, which 

may together impact PRS performance across populations. Environmental factors include 

individual-level exposures (such as cigarette smoking, diet or physical activity), and macro-

environmental factors (such as health policies or neighbourhood characteristics including 

degree of urbanization, green space, available facilities, environmental noise and air 

pollution, and so on). Risk factors and health outcomes may be shaped by the broader 

conditions in which populations live, work and age, referred to as social determinants of 

health (SDOH) (Fig. 3a). SDOH relate to an individual’s place in society, including access 

to healthcare resources, and capture experiences of social exclusion, such as racism and 

discrimination. For disease-specific PRS development and evaluation, there is a need to 

create a conceptual framework that specifies relationships between PRSs, genetic ancestry 

and specific social and environmental risk factors.

SDOH encompass a wide array of factors, each of which may act differently in relation to 

PRSs, as an effect modifier, a confounder or a partial mediator of the observed PRS effects 

(Fig. 3b,c). To understand and account for the influence of SDOH, these factors must first 

be accurately measured and operationalized. For instance, if the contribution of important 

environmental risk factors is lower in the training versus testing populations, the proportion 

of variance in the trait explained by the PRS may appear lower in the target population. 

Using structured approaches such as directed acyclic graphs42,43 to clarify assumptions 

and inform appropriate analytic strategies, for example covariate adjustment for population 

structure44, may help interpret differences in PRS accuracy. As an example, directed 

acyclic graphs can identify scenarios in which PRS effects may be partially mediated 

by genetically inferred ancestry, leading to a different interpretation of adjusted estimates 

of PRS performance compared with a case in which ancestry acts as a confounder45,46. 

Furthermore, as PRS performance is context-dependent, identifying and characterizing 

gene–environment interactions may inform PRS implementation efforts by identifying 

groups of individuals who may experience a greater or smaller degree of risk stratification 

benefits from PRS. For example, previous studies have reported a synergistic interaction 

effect between PRSs and childhood trauma on depression, suggesting that individuals with 

both high PRSs and exposure to childhood trauma are particularly at risk for developing 

depression and could form a target group for interventions47. However, efforts to replicate 
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this effect have led to mixed results48, and evidence supporting robust PRSs by environment 

interactions in general has been limited to date7.

It is important to assess the potential impact of PRS implementation on health disparities 

and recognize that genetic factors do not capture the full understanding of an individual’s 

health. The contribution of heritable factors can vary depending on how a disparity is 

quantified. In the United States, individuals identified as African American or Black, 

Hispanic or Latino and Native American are disproportionately affected by numerous 

conditions, such as hypertension49, chronic kidney disease50,51 and certain cancers52-55, 

compared with those identified as white. Trends in the incidence of such conditions that are 

not easily attributed to diagnostic biases or differences in risk factor profiles may offer clues 

to a potential role of genetic factors. Disparities in mortality are largely driven by inequities 

in healthcare access, although for certain cancers, germ-line genetic factors have been 

shown to underlie differences in the prevalence of actionable tumour mutations between 

populations55,56. In this context, race poses a unique confounding challenge because it 

is correlated with measures of SDOH and genetic ancestry, hence setting the stage for 

confounding of PRS associations when considering trait predictions.

If disease susceptibility varies across ancestral groups, the degree of admixture and the 

extent to which SDOH and other modifiable factors correlate with genetic ancestry will 

affect PRS performance. If differences in disease risk between two ancestral populations 

arise partly due to differences in the frequencies of risk alleles, we would expect to 

observe an enrichment of one ancestry in cases compared with controls at specific loci 

in the genome (Fig. 3d). Admixture mapping can be used to identify genetic loci that 

contribute to differences in disease risk, while controlling for global ancestral differences 

as well as confounding due to non-genetic factors that differ between populations, thus 

providing insights into the genetic causes of health disparities in recently admixed 

populations. To date, admixture mapping has refined important risk loci for prostate 

cancer57, breast cancer58, asthma59, multiple sclerosis60 and coronary heart disease61, which 

may complement PRS development efforts by uncovering ancestry-specific causal variants.

Methods to improve PRS transferability across populations

Recent shifts in GWAS towards increasing the diversity of populations included33,34,62,63, in 

parallel with rapid advances in methods that leverage these more diverse studies as well as 

existing Eurocentric GWAS, aim to improve the transferability of PRSs across populations. 

These methods can be broadly grouped into approaches that combine or jointly model 

population-specific summary statistics (Table 1).

One approach combines GWAS from multiple ancestry groups using fixed-effect meta-

analysis and constructs PRSs using the meta-GWAS and a single-population PRS method. 

This approach is widely used in many large-scale multi-ancestry GWAS and can improve 

the transferability of PRSs relative to population-specific PRSs34,62,63. However, it can 

require potentially difficult parsing of mixed LD patterns in the meta-GWAS and makes 

strong assumptions of homogeneous allelic effects across ancestries, which may limit 

the accuracy of the resulting PRSs. Restricting the meta-analysis to variants that are 

Kachuri et al. Page 6

Nat Rev Genet. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



common across all populations will further limit PRS transferability. More flexible meta-

analysis methods, such as ShaPRS64 that incorporates heterogeneity of SNP effects 

across GWAS coupled with an appropriate LD reference panel for the derived summary 

statistics, might improve downstream PRS performance. Alternatively, another approach 

linearly combines PRSs constructed from each population-specific discovery GWAS using 

clumping and P-value thresholding (C + T)65,66; this method improved risk prediction in 

recently admixed individuals67. Subsequent work in combining PRSs across populations 

has replaced C + T with more sophisticated polygenic prediction methods to further 

improve prediction68,69. However, this method cannot fully exploit cross-population models 

of genetic architecture that incorporate heritability, genetic correlation and polygenicity to 

inform PRS construction.

Another approach uses one large-scale GWAS – often conducted in European populations 

and termed the ‘auxiliary GWAS’ – to improve prediction in a target non-European 

population where there are smaller GWAS. This method leverages the observation that 

many causal signals are shared among populations29 and cross-ancestry genetic correlations 

for human complex traits and diseases are often moderate to high30,31,70. For example, 

XP-BLUP71 builds PRSs using a two-component linear mixed-effects model, with one 

component including variants that show associations in the auxiliary GWAS and the other 

component including all available variants in the target data set to capture the polygenic 

background. XPASS(+)72 uses a bivariate linear mixed-effects model with a multivariate 

normal prior to jointly model SNP effect sizes from the auxiliary and non-European 

GWAS. BridgePRS73 fits a Bayesian ridge regression to the auxiliary GWAS and uses 

the posterior SNP effect size estimates as the prior when fitting a second Bayesian ridge 

regression to the GWAS in the target non-European population. TL-Multi74 transfers the 

SNP weights estimated by Lassosum75 in the auxiliary GWAS to the target population, with 

an assumption that effect sizes across populations are largely similar. SDPRX76 models 

the auxiliary and non-European GWAS using a hierarchical non-parametric Bayesian model 

with a prior that characterizes the joint effect size distribution of each variant in the two 

populations to be null, population-specific or shared with correlation.

Recent work has also allowed for the modelling of GWAS summary statistics from 

more than two populations. For example, CT-SLEB41 expanded the C + T algorithm 

to the multi-ancestry setting for SNP selection, and uses an empirical Bayes algorithm 

for computationally efficient SNP effect size estimation. TL-PRS77 fine-tunes effect sizes 

estimated from large-scale training GWAS to the target population using transfer learning 

and a gradient descent algorithm. PROSPER78 uses a combination of LASSO (L1) 

and Ridge (L2) penalties to regularize SNP effect sizes, encouraging a sparse genetic 

architecture within populations and similar genetic effects across populations. ME-Bayes 

SL79 performs Bayesian hierarchical modelling of SNP effect size distributions under 

a multivariate spike-and-slab prior and integrates information across different tuning 

parameter settings and ancestry groups using ensemble learning. Lastly, PRS-CSx68 

extended the single-population polygenic prediction method, PRS-CS80, to jointly model 

GWAS summary statistics from an arbitrary number of populations, using Bayesian 

regression and a continuous shrinkage prior on SNP effect sizes that is coupled across 

populations.
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Although these methods have different variant selection procedures or make different 

assumptions about the prior distribution of SNP effect sizes, they all aim to account 

for different degrees of polygenicity of the underlying SNP effect size distribution, 

integrate GWAS summary statistics from two or more populations in a principled statistical 

framework that accounts for allele frequency and LD differences, and leverage cross-

ancestry genetic correlation to borrow information from well-powered European GWAS 

to improve PRS performance in non-European populations.

Other work has incorporated information beyond GWAS for the trait of interest into PRS 

construction algorithms. For example, XPXP81 extends XPASS to enable joint modelling 

of multiple genetically correlated traits in both auxiliary and target populations. X-Wing82 

expands the modelling framework of PRS-CSx to allow for annotation-dependent priors and 

uses trans-ancestry local genetic correlation to up-weight variants whose effect sizes are 

more concordant across populations. PolyPred-S+/PolyPred-P+69 uses functionally informed 

statistical fine-mapping to identify and prioritize functional variants, whose effects are often 

more portable than tagging variants due to assumed shared mechanisms of biology83 and 

minimal impact of differential LD patterns across populations. The fine-mapping informed 

PRSs can then be combined with population-specific genome-wide PRSs to capture signals 

at polygenic loci that are difficult to fine-map.

Considerations of PRS methods for diverse populations

Although methodological developments can help improve PRS transferability, several 

limitations merit consideration. First, many of the methods require a validation data set 

with individual-level phenotypes and genotypes to tune an algorithm’s hyper-parameters. 

Although this can maximize the accuracy of PRSs for specific populations, it also 

increases the risk of overfitting. In addition, there may not exist a sufficiently large 

independent validation data set in the target non-European population, especially when the 

hyper-parameter space is large. Fully Bayesian models84, pseudo-validation methods74,75 

and repeated learning techniques82,85 that can automatically learn model parameters from 

summary-level data may facilitate cross-population PRS development.

Second, many methods require categorizing individuals into a genetic ancestry group before 

a PRS can be optimized and applied (Box 1). However, this poses challenges when 

implementing the PRS in clinical settings, where admixed individuals can be difficult to 

assign to a discrete population cluster, and genetically inferred ancestry can differ from 

self-reported race or ethnicity.

A third consideration is that existing methods need to balance trade-offs between prediction 

accuracy and computational complexity. For example, the infinitesimal model, which 

assumes that prior SNP effect sizes are independent and normally distributed, has a 

closed-form posterior distribution and is highly scalable41,72,73,81. However, this approach 

shrinks the effects of all variants towards zero at the same constant rate, and is thus less 

adaptive to varying genetic architectures. More sophisticated Bayesian methods assume 

that the prior distribution is a mixture of two or more normals76,86,87, which allows for 

flexible modelling of the genetic architecture but makes model fitting challenging and 
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potentially unstable. Continuous shrinkage priors68,80 can balance modelling flexibility 

and computational efficiency, but full posterior inference remains infeasible to scale to all 

common variants across the genome. As a result, most Bayesian methods use HapMap3 

variants to construct PRSs. Although they might have provided a good balance between 

computational cost and genetic variation captured within European populations, HapMap3 

variants do not tag genetic variation in non-European populations equally well and can 

miss population-specific signals. This coupled with unequal imputation accuracy across 

populations can limit the transferability of PRSs.

Fourth, although it has been shown that the polygenic background can modify the 

penetrance of monogenic variants88,89, studies and methods that explore the integration 

of genome-wide rare and common variants for prediction are limited90-93. The prediction 

accuracy of rare and low-frequency variants across populations has not been systematically 

assessed, although a recent study suggests that rare coding variants will likely contribute 

only modestly to population risk stratification94. Whether rare variants provide value for the 

prediction of complex traits depends on the number of rare causal variants and their effect 

sizes, which will likely be trait-specific. Although the contribution of rare high-penetrance 

variants to overall trait variation may be small relative to common-variant PRSs, they can be 

valuable to identify high-risk individuals.

Finally, the methods described above primarily use GWAS summary statistics from 

relatively homogeneous populations as input and only model allele frequency and LD 

differences at the continental level. Much work remains to develop best practices to integrate 

GWAS from admixed or under-represented populations (such as the PAGE study33) with 

large genomic diversity and heterogeneous LD patterns. As noted above, mismatch between 

the LD structure of the GWAS discovery sample and the reference panel is likely an 

important contributing factor to the loss in PRS prediction accuracy. Moreover, when the 

target sample is admixed, most methods weight population-specific PRSs globally without 

modelling local ancestry and individual-level proportions of admixture. Initial attempts to 

infer local ancestry tracts, estimate local ancestry-specific effect sizes95 and build local 

ancestry-aware PRSs40,96 have shown increased power for loci discovery and improved 

prediction accuracy in admixed populations. A recently developed method, GAUDI97, 

explicitly models local ancestry using a fused LASSO framework that encourages similar 

effects across ancestries but allows for population-specific effects. These methods, however, 

have only been evaluated in two-way recently admixed populations, and the predictive 

performance of PRSs has not been fully benchmarked against other cross-ancestry polygenic 

prediction methods.

Benchmarking PRS methods may require a reference-standardized set-up98, whereby a 

common set of variants and individuals are used to build reference panels and assess the 

accuracy of PRSs. However, the optimal prediction method might depend on a range of 

factors including the genetic architecture, the diversity and sample size of the discovery 

GWAS, and the ancestry composition of the target sample99. For example, clumping 

and fine-mapping based methods may work well for traits that have a handful of large-

effect causal variants but not as well when predicting highly polygenic traits. In contrast, 

genome-wide PRS approaches may capture signals that do not reach statistical significance, 
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but they may also include a large number of non-informative variants when the genetic 

architecture is sparse and the power of GWAS is limited. Future methodological efforts 

that focus on integrating multiple data modalities (such as variants across the allele 

frequency spectrum, functional annotations and cross-ancestry fine-mapping results100,101) 

from diverse resources and better local and global ancestry modelling in a computationally 

efficient and robust framework, coupled with increasing size of non-European genomic 

resources, hold promise to improve the accuracy and generalizability of PRSs.

Evaluation of PRS clinical utility

Demonstrating the clinical utility of PRSs across diverse populations requires careful 

consideration of suitable performance metrics, which depend on the intended use of the 

PRS in a specific clinical context. The area under the receiver operating characteristic curve 

(AUC) for binary health outcomes and the C-index, an analogous measure of concordance 

for time to event outcomes102, are widely used to report discriminatory abilities of PRSs. 

The AUC can take values between 0.5 and 1.0, ranging from completely random, clinically 

useless predictions to perfect classification. In practice, the AUC of a PRS has an upper 

bound based on disease heritability and is thus always less than 1. For many common 

complex diseases, such as breast cancer103-106, coronary heart disease107,108 and type 2 

diabetes mellitus84,107, the best-performing PRS has achieved AUC values in the range 

of 0.6–0.7 across different populations, demonstrating moderate discriminatory abilities. 

However, the AUC and related measures do not account for disease rates in the underlying 

population, and therefore cannot be translated directly into the predictive value of PRSs at 

the individual level and provide little insight regarding clinical utility109.

Many studies use rank-based risk classifications to identify high-risk individuals and 

report, for example, an odds ratio that compares individuals in the top decile of the 

PRS distribution with those around the median. These measures, however, depend on the 

reference population for the PRS distribution. Metrics of PRS utility are also affected by 

operationalization of the PRS. For instance, when a PRS cut-off is used for classifying 

individuals as high risk, it is important to select an optimal threshold that maximizes 

discrimination. This requires calibration of the PRS distributions across populations, which 

can have different mean values and spread (Fig. 4). Existing studies express polygenic risk 

on the same scale across ancestrally diverse individuals by removing gross cross-population 

differences in the mean and variance of the PRS distribution that can be captured by genetic 

principal components84,110-112; however, these methods could remove real risk differences 

explainable by genetic and non-genetic risk factors that are correlated with population 

structure, reducing the predictive power of PRSs.

In general, relative risk estimates (such as those based on the odds ratio) do not provide 

information that can be readily translated to risk thresholds for clinical action, such 

as diagnostic and treatment decisions. Instead, these typically require estimates on the 

absolute risk scale. Positive and negative predictive values, which represent the proportions 

of individuals who test positive (or negative) who will (or will not) have the disease, 

respectively, give absolute risk estimates and are more clinically relevant metrics. For 

diseases that have clinical guidelines based on absolute risk thresholds (for example, breast 
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cancer and coronary heart disease), absolute risk models with and without the PRS can be 

compared to quantify the expected increase in individuals who now meet this threshold. 

Additionally, we can examine the increase in disease cases detected among the high-risk 

individuals identified using the PRS108,113. Measures of net reclassification indices114 – 

which summarize the net number of cases and controls who move into higher and lower risk 

categories, respectively, according to a new model compared with an existing model – can 

be used to evaluate the added value of PRSs in relation to existing clinical risk factors115. 

However, net reclassification indices, similar to the AUC, do not take into account disease 

rates in the underlying population and do not directly quantify clinical utility. In addition, 

caution is needed for inappropriate use of such measures in the absence of predefined 

risk categories116. When specific risk thresholds are not available, one can also carry out 

decision curve analysis117 to evaluate the net benefit associated with decision-making at 

different absolute risk thresholds under alternative models118. An important consideration, 

when evaluating the added value of PRSs in diverse populations, is whether existing 

risk-threshold guidelines themselves are universally suitable across groups that may have 

different loss–benefit balances for underlying decisions.

For diseases that do not have established absolute risk models, absolute risk can be 

estimated by combining overall or relative risk estimates with disease incidence rates 

observed internally in cohort studies or approximated by external information on population 

incidence rates119,120. Studies evaluating absolute risk have shown that PRSs for some 

common diseases, even with their modest discriminatory performance, can now identify 

a substantial fraction of the population who would be considered as high risk to warrant 

drug therapy, or invasive and potentially costly interventions not appropriate for the general 

population108. However, as rates of many diseases as well as SDOH are typically estimated 

with stratification by self-identified race or ethnicity, and are known to vary widely by racial 

groups, it is particularly important to incorporate absolute risk considerations when the 

utility of PRSs is being evaluated across diverse populations. Future research is merited to 

explore the ability of genetic ancestry to explain known variations in disease incidence rates 

across population groups121. Furthermore, as the severity, prognosis and financial burdens of 

diseases can vary widely by socioeconomic status, it will be important to demonstrate the 

utility of PRSs considering the risk of different types of adverse outcomes.

Another dimension of PRS performance that is not commonly assessed is the uncertainty 

in relative and absolute risks derived from the PRS and the stability of PRS-based risk 

classifications across different PRS modelling approaches and choice of LD reference 

panels. Recent work has demonstrated substantial variability in individual-specific PRS 

estimates for 13 complex traits122. As an example, for high-density lipoprotein (HDL) PRSs, 

the 95% credible interval for an individual at the 90th PRS percentile spans widely between 

the 41st and 99th percentiles. There are multiple sources of uncertainty in PRSs, including 

error in estimates of SNP weights, and this is likely to be higher for non-European ancestry 

populations because of the smaller sample sizes used to create PRSs. Quantifying the impact 

of this uncertainty on clinical decisions will be important for PRS implementation across 

diverse populations.
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The appropriate choice of clinical utility metrics must also be considered in the development 

stage of PRSs in diverse ancestry settings. Current multi-ancestry methods allow the 

development of improved population-specific PRSs by borrowing data across diverse multi-

ancestry populations. Although these approaches have the advantage of being able to 

generate the best possible PRS for a given ancestry group using all existing data, in a 

country such as the United States where there are many diverse groups, and many admixed 

sub-groups, delivery of optimized PRSs for each distinct group is not practical. Additionally, 

optimizing PRSs for each ancestry group separately might still exacerbate inequity in their 

performance across groups because of differences in sample sizes and genetic architecture 

of traits across groups. Therefore, an alternative goal may be to develop more universal 

PRSs that can be applied across populations by using suitable loss functions that take into 

account fairness constraints so that prediction performance is not driven by a majority 

group. Although there is an emerging body of literature in machine learning theory to 

incorporate different types of fairness constraints123-126, considerations of such a framework 

are currently lacking in PRS development. An additional challenge relates to defining 

what fairness means in the context of PRSs and prioritizing trade-offs, as simultaneously 

satisfying all constraints may not be feasible127.

Remaining challenges and future directions

As we strive towards creating and improving PRSs across diverse populations, several 

challenges lie ahead. First, in the shift away from the use of race and ethnicity in 

biomedical research and clinical practice, genetic ancestry is often put forth as a suitable 

replacement128. Although this has numerous advantages, the use of discrete population 

categories, including groups derived from genetic ancestry or genetic similarity, is also 

problematic129. Global ancestry cut-offs used to create more homogeneous groups are 

often arbitrary, study-specific and primarily driven by considerations of statistical power. 

Sensitivity analyses at different ancestry thresholds are typically not performed or reported. 

The most fundamental consideration for PRS accuracy is the genetic distance between the 

PRS training population, such as the source GWAS sample, and the target population where 

the PRS is intended to be applied15. Gauging expected PRS performance using genetic 

distance does not require forming discrete population clusters, and the development of 

robust PRSs in the future will benefit from this approach.

Although race, a socially defined construct, is not an acceptable proxy for genetic ancestry 

or patterns of admixture, it remains extensively used in administrative databases, disease 

surveillance systems and healthcare records in the United States, and thus has been used 

in the design and analysis of GWAS. Participants are sampled or enrolled based on race 

and/or ethnicity rather than genetic ancestry, which can induce systematic differences in 

ascertainment, phenotyping and measurement of potential confounders or effect modifiers, 

especially for SDOH. In some GWAS, samples have been genotyped using different 

arrays depending on participants’ race (self-reported or assigned by healthcare providers), 

which has implications for imputation quality and downstream analyses130. Ignoring race/

ethnicity, especially when it is a study design feature, can bias estimates of PRS accuracy 

when considering continuous measures of genetic diversity. Differences in study design 

are a major source of heterogeneity in GWAS meta-analyses, and this heterogeneity 
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can disproportionately affect studies conducted in admixed and non-European ancestry 

populations. Together with the smaller GWAS sample sizes in these populations, this may 

further reduce the signal-to-noise ratio in data used to construct PRSs and limit PRS 

transferability and generalizability.

Another challenge in transitioning to continuous genetic ancestry relates to operationalizing 

analyses that require additional inputs, such as incidence or mortality rates. This issue 

applies not only to integration of PRSs with population-level health indicators but also 

to more basic analyses, such as converting heritability estimates from the observed to the 

liability scale using lifetime risks131. Although tracking disease morbidity and mortality by 

race or ethnicity is suboptimal, these metrics are not collected alongside genetic ancestry, 

and outside the United States, surveillance systems such as disease registries are often 

agnostic to any metrics of race, ethnicity or ancestry. In developing countries and low-

resource settings, surveillance systems may be extremely limited, leading to sparse or non-

existent data on disease burden and non-genetic risk factors. Further, as observed variations 

in disease incidence, outcomes and mortality rates by race, ethnicity and other categorical 

descriptors (such as immigration status) could be due to life experiences and environmental 

exposures unrelated to genetics, removing such proxy information prematurely can hinder 

contextualizing clinical utility of PRSs in the absolute risk scale.

This leads to a broader but related challenge for PRS translation. Once a PRS 

demonstrating acceptable within-population and cross-population predictive performance 

has been developed, an appropriate statistical framework for integrating the PRS with other 

clinical predictors and established risk assessment tools must be established. For conditions 

with existing risk calculators, the simplest approach is to multiply risk estimates generated 

by the PRS and the clinical model. However, this assumes that PRSs are independent of 

other predictors, which may not be valid for all health outcomes, especially if the PRS 

captures indirect genetic effects partly mediated by clinical or modifiable risk factors. 

Furthermore, most existing models were not developed and validated in ancestrally diverse 

populations. For instance, pooled cohort equations, QRISK and Framingham scores for 

atherosclerotic cardiovascular disease have shown worse performance in African Americans, 

African Caribbeans and South Asians based on studies in the United States and the United 

Kingdom132,133. Lung cancer screening criteria from the US Preventive Services Task Force 

have been shown to significantly underestimate screening eligibility in African Americans 

compared with white Americans134. This disparity was attenuated, but not eliminated, with 

the PLCOm2012 model135. Therefore, even if PRS-based risk estimates are well calibrated, 

the accuracy of the overall risk prediction model may suffer due to poor performance of the 

non-genetic components.

Simultaneously combining data on all relevant risk factors, including family history136,137 

and relevant pre-existing conditions, into a framework that returns a single estimate of 

absolute risk would accelerate the uptake of PRSs into clinical practice. Currently, few such 

models exist, and they have been validated only in individuals of European ancestries138. For 

instance, the BOADICEA model for breast and ovarian cancer has successfully integrated 

modifiable risk factors with rare, high-penetrance mutations and PRSs139,140. A PRS for 

coronary heart disease was shown to be largely uncorrelated with pooled cohort equations 
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and QRISK, suggesting that incorporating PRSs may further improve these models if they 

are transferable across ancestries141. Given the population differences in performance that 

exist for both genetic and non-genetic predictors, developing reliable risk prediction tools 

will likely require fitting and validating new ancestry-aware models that incorporate joint 

effects of PRSs and other risk factors. To achieve this, large cohorts would be needed to 

measure the calibration of the joint model. The All of US Research Program142 is one such 

promising cohort. In addition, multiple medical centres have created their own biobanks. 

Forming a network of these types of cohorts would provide additional avenues to evaluate 

whether the developed models offer accurate predictions in terms of calibration.

Generating new data in under-represented populations will undoubtedly have the largest 

impact on precision medicine efforts by providing the information necessary to develop 

effective, evidence-based tools, including PRSs. For instance, African populations have 

the greatest genetic diversity, the largest number of population-specific alleles and the 

smallest LD blocks, providing a wealth of information to enable globally relevant 

genetic discoveries143,144. However, until systems are in place to support large-scale 

collection of genetic, clinical and epidemiologic data in Africa and globally144, and 

until such data collection efforts mature, utilizing existing resources remains important. 

Furthermore, the success of new data collection efforts will require a commitment 

to transparency and community engagement in order to build trust with populations 

who have been historically under-represented and exploited in biomedical research. To 

improve participation and ensure ethical translation of genetic discoveries, concerns 

regarding potential for misinterpretation, stigma and discrimination, conflicts of interest, 

data sovereignty and premature commercialization of PRSs must be understood and 

addressed145,146.

Data aggregation and pooling efforts are crucial for advancing genetic research in under-

represented populations, and must be supported by the development of best practices for 

phenotyping and data harmonization. Use of external controls may be an effective way of 

leveraging limited resources, particularly for studies of rare conditions using whole-genome 

sequencing; however, matching closely on genetic ancestry is critical for avoiding bias and 

this may be more challenging for admixed populations147. Imputation with more diverse 

reference panels, such as TOPMed148, will improve the utility of existing genetic data, 

but this will not fully compensate for the bias in genotyping arrays that were optimized 

for European LD structure towards alleles that segregate at intermediate frequencies in non-

African populations149-152. Until whole-genome sequencing data are more widely available, 

choice of genotyping arrays and imputation panels will continue to limit PRS transferability 

and accuracy, especially for highly polymorphic and complex regions, such as HLA152,153.

Understanding the primary drivers of health disparities is critical for contextualizing 

PRS performance and informing appropriate public health interventions. In addition to 

comprehensively measuring different dimensions of SDOH, methods are needed to account 

for complex confounding structures and population stratification that may arise. Detailed 

information on social constructs, environmental exposures and behavioural factors is often 

absent from genomic studies, and these variables are less amenable to pooling across studies 

due to differences in data collection and exposure assessment. Careful consideration of 
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non-genetic risk factors is important both for PRS evaluation and for covariate adjustment 

in GWAS used to generate summary statistics for PRS development44. Some variables or 

underlying constructs may only be applicable to specific countries or communities. For 

instance, although race or ethnicity is an imperfect surrogate for the effects of discrimination 

and access to health care, for studies conducted in the United States it might be the 

only available measure of these constructs154. Methods are thus needed for reconciling 

risk information captured by genetic ancestry and other population descriptors, and PRS 

evaluations will continue to need to account for disparities that cannot be explained by 

genetic ancestry alone. Although GWAS have historically prioritized achieving large sample 

sizes by including the minimal set of covariates available across the largest number of 

individuals or studies, smaller studies with deep phenotyping and more comprehensive risk 

factor assessment will be equally important for PRS development.

Conclusions

Although progress has been made towards the improvement of PRS prediction accuracy 

in non-European populations, substantial efforts are needed to improve PRS transferability, 

integrate PRSs into routine health care and equitably deliver PRS to global populations. 

In addition to further narrowing the gap in the prediction and stratification capabilities of 

PRSs between European and non-European populations, novel statistical and computational 

methods are needed to construct, validate and optimize PRSs that can be applied to 

any individual along the continuum of genetic ancestry. Admixture-aware and clinically 

informative metrics are also needed to assess the accuracy, calibration, uncertainty 

and stability of PRS prediction in ancestrally diverse samples. These methodological 

development efforts must be coupled with data generation initiatives to diversify samples 

in genomic research as well as to collect and harmonize measures for SDOH across 

studies. Release of ancestry-specific GWAS summary statistics155 in addition to multi-

ancestry meta-analysis results is critical to the characterization of the comparative genetic 

architectures between populations and will facilitate the development of more flexible and 

accurate PRS construction methods (as shown in Table 1). A comprehensive catalogue of 

genetic, phenotypic, environmental and behavioural variation in diverse populations will not 

only inform and facilitate the development of more accurate and generalizable PRSs but 

also help disentangle the genetic and non-genetic contributions to disease burden and health 

disparities between populations, and characterize the relationships between PRSs and social 

and environmental factors.

Finally, future work is critically needed to contextualize PRS performance in real-world 

healthcare settings, and to develop integrative clinical models that combine PRSs with 

established risk factors into reliable and unbiased absolute risk assessment tools for patients 

of diverse ancestral and sociocultural backgrounds. Importantly, all PRS development, 

evaluation and implementation efforts should adhere to the latest reporting standards156 

and promote data sharing and transparency to facilitate reproducibility, replication and 

benchmarking157.

Encouragingly, the field is rapidly advancing on all fronts, including method development, 

data generation and clinical implementation. For example, the National Institutes of Heath 
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(NIH)-funded Polygenic Risk Methods in Diverse Populations (PRIMED) Consortium 

(https://primedconsortium.org) is developing methods and pooling genomic and phenotypic 

information to improve the use of PRSs for disease prediction in diverse populations. The 

growth of global biobanks and national health registries5 has substantially expanded sample 

diversity, accelerated genomic discovery and already informed PRS construction, evaluation 

and interpretation158. The emerging data sets from medical systems linked to electronic 

health records and a range of physical measurements and questionnaires on lifestyle, family 

history, socioeconomic factors and environment, such as the All of Us Research Program142 

(https://allofus.nih.gov), the BioMe Biobank, the Mayo Clinic Biobank, the Vanderbilt’s 

BioVU resource, the Mass General Brigham Biobank and the UCLA Precision Health 

Biobank, will substantially expand data from groups that are historically under-represented 

in biomedical research and provide unprecedented opportunities to contextualize PRSs 

of specific diseases in real-world clinical settings. The NIH-initiated Electronic Medical 

Records and Genomics (eMERGE) IV study (https://emerge-network.org) has pioneered 

the return and communication of PRS results along with monogenic risks, family history 

and clinical risk assessments via a genome-informed risk assessment report to participants 

and their healthcare providers across ten conditions159,160, and will assess the uptake of 

care recommendations after the return of results. By combining new PRS construction 

methods, evaluation metrics, data resources and clinical implementation efforts that focus on 

diverse populations, the PRS may be well suited to realize its potential to advance precision 

medicine that benefits global populations.
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Glossary

Absolute risk
The probability that a person or group of individuals who are free of a certain disease at a 

given point in time will develop that disease over a certain time period. Absolute risks are 

typically expressed as proportions from 0 to 100%.

Admixture
The process by which two or more previously separated populations come into contact, 

often through migration, generating a descendant population with a mixed mosaic of genetic 

material.

Admixture mapping
An approach that consists of inferring local genetic ancestry and testing for association 

between local ancestry segments derived from different ancestral populations and the 

phenotype.

Area under the receiver operating characteristic curve
(AUC). The ability of a model to discriminate between diseased and disease-free individuals 

is calculated as the AUC, which compares the true positive rate (sensitivity) with the false 

positive rate (1 – specificity). An AUC of 0.50 indicates that the classification accuracy of a 

model is equal to chance; an AUC of 1.0 indicates perfect discrimination.

Clumping
A procedure that iteratively selects the variant with the lowest P-value within a specified 

window from genome-wide association study (GWAS) results and removes nearby variants 

that are correlated with the selected variants above a specific linkage disequilibrium (LD) 

threshold.

Genetic architecture
The genetic basis of a trait described by the number, frequency and magnitude of effect size 

of genetic variants contributing to its heritability.

Genetic correlation
The correlation between the genetic influences on two traits, or the proportion of variance 

that two traits share due to genetics.

Haplotype
A cluster of polymorphisms or alleles that typically reside near each other on a chromosome 

and tend to be inherited together.
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Linkage disequilibrium
(LD). Non-random association of alleles at different genetic loci, often measured as the 

square of the correlation coefficient between two alleles. LD is, on average, lower in African 

populations compared with European and Asian populations.

Meta-analysis
Statistical analysis that combines results from multiple studies.

Net reclassification indices
Metrics that measure the extent to which a new model improves classification as compared 

with an old model, calculated as the difference between the proportion of individuals who 

are correctly reclassified and the proportion of individuals who are incorrectly reclassified.

P-value thresholding
A procedure that selects the genetic variants whose P-value is below a threshold in a 

genome-wide association study (GWAS).

Polygenic risk scores
(PRSs; also known as genetic risk scores). Single values that quantify an individual’s genetic 

predisposition to a discrete health outcome, calculated as a sum of alleles weighted by effect 

sizes corresponding to a relative magnitude of association.

Polygenic scores
Single values that quantify an individual’s genetic predisposition calculated as a sum of 

trait-associated alleles weighted by their additive, per-allele effect sizes, typically derived 

from genome-wide association studies (GWAS).

Population structure
The presence of multiple genetically distinct subpopulations that differ in their allele 

frequencies and mean phenotypic values. Not accounting for this structure can lead to 

spurious associations in genome-wide association studies (GWAS) and polygenic risk score 

(PRS) analyses.

Relative risk
The probability that a certain health outcome will occur in a person or group of individuals 

relative to the probability that this event will occur in a reference population. Relative risks 

are typically expressed as ratios, with 1.0 indicating no difference between the comparison 

groups.

Risk stratification
The process of classifying and ordering individuals according to their specific risk estimates.
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Box 1

Population descriptors and concepts

Historically, most genetic association studies have involved assigning participants to 

discrete clusters to facilitate statistical analyses. Variability in criteria for defining such 

clusters and inconsistent use of labels for the resulting populations not only creates 

challenges for analysis and interpretation but might also contribute to harmful misuse 

of findings from genome-wide association studies (GWAS) and polygenic risk scores 

(PRSs). Here, we provide a brief overview of common population descriptors and discuss 

distinct, but related, concepts of ancestry161 that are relevant for genetic association 

studies.

Race, ethnicity and ancestry

Both race and ethnicity have a history of being used as a misleading shorthand for 

groups of individuals with shared genetic ancestry. Race is a socially constructed system 

for classifying humans based on erroneous beliefs about innate biological differences, 

often proxied by physical features (such as skin colour) and sociocultural characteristics. 

Ethnicity is a sociopolitical identity that is assumed by or assigned to a group of 

individuals, typically in a contiguous geographic area, based on shared heritage and 

cultural similarities, such as language, religion or beliefs. Individuals of the same 

ethnicity often share genetic or genealogical heritage, but as this system varies globally, 

in certain regions ethnicity may be primarily a sociocultural identity. Ancestry is a 

complex and context-dependent term that encompasses both the biological and social 

components of an individual’s or population’s descent. In the western world, it has an 

aspect of both sociocultural and continental origin, whereas in the eastern and southern 

hemispheres there is an aspect of either shared genealogical or genetic heritage, or both, 

on a smaller regional scale. Race and/or ethnicity should not be conflated with ancestry 

or used as synonyms for population genetic differences.

Different types of ancestry

Unlike race or ethnicity, which are subjective constructs, genetic ancestry is a fixed 

characteristic of the genome. Genealogical ancestry describes an individual’s lineage 

based on family trees of known ancestors that have been traced back over multiple 

generations. Genealogical ancestry is inferred using oral and written historical records, 

and, more recently, genetic information. Genetic ancestry refers to segments of an 

individual’s genome that have been inherited through a subset of realized paths from 

their ancestors, and unlike genealogical ancestry does not require reconstructing a family 

pedigree. The complete record of coalescent and recombination events (that is, the 

convergence of two lineages into a single population and the process of shuffling of 

alleles on the chromosome to produce novel combinations of alleles, respectively) in 

the history of an individual’s genetic lineage is called an ancestral recombination graph, 

which is the fundamental representation of genetic ancestry. Genetic similarity is a 

quantitative measure of genetic sharing between individuals or populations. Most studies 

that develop and evaluate PRSs approximate genetic ancestry from measures of genetic 

similarity, typically with respect to reference ancestral populations. We note that these 
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types of ancestry are rarely distinguished in the literature and the research community 

frequently uses genetic ancestry as a catch-all term for all dimensions of ancestry. 

Throughout our review of PRS methods we refer to genetically inferred ancestry, unless 

otherwise specified. When describing findings from the literature, we use the same 

terminology, including population labels, as the original publication(s).

Measuring genetic ancestry

Coalescent models provide a statistical framework for reconstructing evolutionary history 

to determine how alleles sampled from a group of individuals link to a common ancestor. 

Quantitative models for ancestry inference incorporate patterns of linkage disequilibrium 

(LD) and allele frequencies, which are also fundamental features for describing the 

genetic architecture of complex traits. Global (genome-wide) genetic ancestry is the 

proportion of contributions of different assumed proxy ancestral populations to an 

individual or a group of individuals’ overall genetic make-up. Global ancestry can be 

inferred using both model-based162 and data-driven methods163,164. Local ancestry is 

the genetic ancestry of an individual at a particular location in a chromosomal segment. 

Local ancestry can be inferred by computational approaches, often using discriminative 

modelling165 or generative hidden Markov models166 with modifications to improve on 

efficiency, accuracy and the number of ancestral populations considered167-169.

Admixture

Populations from which an individual or group of individuals have inherited their genome 

are referred to as ancestral populations. Admixture is the process that brings together 

individuals from two or more ancestral populations that were previously isolated for 

a period of evolutionary time, allowing distinct haplotypes to be combined in a gene 

pool. Although admixture is a pervasive phenomenon, the term ‘admixed’ typically refers 

to individuals with recent admixture (<100 generations). For much of human history, 

admixture has occurred through mass migration, colonization or forced displacement. 

However, in today’s increasingly globalized and interconnected society, novel patterns of 

recent admixture are emerging and shaping the ancestry of modern human populations 

(Fig. 1). Genetic ancestry in admixed populations varies between individuals and along 

haplotypes. The proportion of populations contributing to an individual’s genome can be 

represented on global and local levels that both attempt to determine the ancestral origin 

of polymorphisms or chromosomal segments in the admixed individual.
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Fig. 1 ∣. Complex genetic ancestries and admixture using data from UCLA-ATLAS.
a, Comparison between genetically inferred ancestry and self-identified race and ethnicity 

(SIRE): Hispanic/Latino (HL), non-Hispanic/Latino (NH), Pacific Islander (PI), Native 

American (NatAm) and African/African American (Afr). Genetically inferred ancestry 

labels are assigned based on proximity to 1000 Genomes reference populations in principal 

component (PC) space using the k-nearest neighbour algorithm. SIRE is a composite label 

based on separate entries in the ‘Race’ and ‘Ethnicity’ fields extracted from medical 

records. b, First two PCs of the genetic data. Each dot represents an individual, with 

colours corresponding to their assigned genetically inferred ancestry cluster. A non-trivial 

percentage of individuals could not be categorized into a ‘homogeneous’ or ‘continental’ 

population. c, Unsupervised clustering of the genetic data. Each column represents the 

proportion of the global genetic ancestry of an individual with respect to 1000 Genomes 

reference populations.
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Fig. 2 ∣. Genetic factors that can influence PRS performance.
a, First two principal components (PCs) of the genetic data. Each dot represents an 

individual. Individuals are assigned discrete population labels by applying arbitrary cut-

offs to the genetic ancestry continuum. Different colours represent different population 

labels. Grey dots represent individuals who are unclassified. A genetic distance (d) can be 

calculated between each individual and the centre of the discovery genome-wide association 

study (GWAS) samples in the PC space. b, Prediction accuracy of the polygenic risk score 

(PRS) shows individual to individual variation and decreases along the genetic ancestry 

continuum when the genetic distance between the training and target samples increases. 

c, Differences in causal allelic effect size between the discovery (upper graph) and target 

(lower graph) samples can influence the accuracy of PRS across populations. d, Differences 

in linkage disequilibrium (LD) patterns between the discovery (upper graph) and target 

(lower graph) samples can influence the accuracy of PRS across populations. In panels c 
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and d, each dot represents the marginal association strength of a genetic variant. The lead 

(most associated) variant in yellow represents the causal variant and the grey bar represents 

its effect size. Other variants are coloured by descending degrees of LD with the causal 

variant (ordered red, orange, green and blue dots). Diamond represents the variant (which 

may be a tagging variant) used in PRS construction. Dashed line represents genome-wide 

significance.
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Fig. 3 ∣. Interplay between social, environmental and genetic determinants of health.
a, Complex interrelationship among different risk factors for ill health and poor disease 

outcomes. These include living and working conditions (such as environmental exposures 

and social determinants of health (SDOH)) and genomic factors. b, Race and/or ethnicity 

can confound polygenic risk score (PRS) associations with health outcomes if a correlation 

exists with genetic ancestry (dotted line). In this case, correction for population structure 

using methods such as principal component analysis (PCA) that captures similarity in allele 

frequencies and linkage disequilibrium (LD) structure that arises due to shared demographic 

histories between populations can mitigate the confounding effect. c, Residual confounding 

may bias PRS associations when genetic ancestry is correlated with environmental and/or 

social factors due to shared demographic histories. For instance, when asthma is the health 

outcome and exposure to air pollution is the non-genetic risk factor, standard methods such 
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as PCA may under-correct for population structure. d, Admixture mapping detects disease-

associated loci and patterns of excess local ancestry that help disentangle the contribution of 

genetic factors to observed disparities in risk.
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Fig. 4 ∣. Considerations for the assessment of PRS clinical utility.
a, Visual representation of the difference between risk prediction and risk stratification. b, 

An example of model calibration, that is, the agreement between observed and estimated 

disease risk. Accurate estimation of absolute risks requires well-calibrated models. For 

instance, risks are systematically overestimated for Population B compared with Population 

A. c, Cross-population calibration of the polygenic risk score (PRS) distributions, which 

can have different mean and spread. Differences in calibration between populations arise 

due to a combination of the genetic and clinical risk factors. Cross-population calibration is 

important when selecting a single cut-off to identify individuals as high risk across samples 

with diverse ancestral and sociocultural backgrounds.
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