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ABSTRACT
Cardiopulmonary bypass (CPB) is a common technique in cardiac surgery but is associated with 
acute kidney injury (AKI), which carries considerable morbidity and mortality. In this review, we 
explore the range and definition of CPB-associated AKI and discuss the possible impact of different 
disease recognition methods on research outcomes. Furthermore, we introduce the specialized 
equipment and procedural intricacies associated with CPB surgeries. Based on recent research, we 
discuss the potential pathogenesis of AKI that may result from CPB, including compromised 
perfusion and oxygenation, inflammatory activation, oxidative stress, coagulopathy, hemolysis, and 
endothelial damage. Finally, we explore current interventions aimed at preventing and attenuating 
renal impairment related to CPB, and presenting these measures from three perspectives: (1) 
avoiding CPB to eliminate the fundamental impact on renal function; (2) optimizing CPB by 
adjusting equipment parameters, optimizing surgical procedures, or using improved materials to 
mitigate kidney damage; (3) employing pharmacological or interventional measures targeting 
pathogenic factors.

Introduction

Acute kidney injury (AKI) is a common and severe complica-
tion after cardiac surgery, and there are more than 2 million 
cardiac surgeries performed worldwide each year [1]. The 
incidence of AKI varies from 1 to 40% due to differences in 
study populations and disease definitions [2–4], but regard-
less, even mildly elevated serum creatinine is associated with 
poor prognosis and increased mortality [5].

Clinical classification plays a prominent role in distinguish-
ing diseases [6]. An explicit diagnosis is indispensable for 
pathology analysis and enables doctors to communicate with 
peers, explore the illness, and cure the patient. Although car-
diorenal syndrome (CRS) provides a solid theoretical frame-
work, there is no consensus about the definition of cardiac 
surgery-associated AKI (CSA-AKI); many previous studies 
might use the Risk, Injury, Failure, Loss, End Stage Kidney 
Disease (RIFLE) or the AKI Network (AKIN) criteria or even 
customizable standards to define CSA-AKI, which could par-
tially contribute to the discrepancy in results [7–9].

In 2012, the Kidney Disease: Improving Global Outcomes 
(KDIGO) guidelines redefined AKI, which was then used to 
diagnose CSA-AKI and revealed noninferiority compared 

with the RIFLE and AKIN classifications [10]. Later, a large 
multicenter cohort study demonstrated the prognostic 
effectiveness of the KDIGO definition at any AKI stage after 
cardiac surgery [11], and this KDIGO definition is increas-
ingly used in classifying CSA-AKI [12]. Any patient who has 
had cardiac surgery in the past week and who fulfills the 
KDIGO criteria for AKI can be said to have CSA-AKI [13]. As 
a devastating disease, CSA-AKI not only is an immediately 
difficult complication but also has severe consequences, 
with some suggesting that the composite outcome of 
CSA-AKI includes death, new dialysis requirements, and 
worsened renal function (a 25% or greater reduction in the 
eGFR). The major adverse kidney event (MAKE) may be a 
suitable endpoint for study [14], especially since nephrolo-
gists assess the progression of chronic kidney disease (CKD) 
90 days later.

The serum creatinine concentration is a poor indicator 
of renal dysfunction [15], and urine output can be easily 
influenced during the perioperative period. The clinical 
diagnosis of CSA-AKI relies on traits intrinsic to AKI, the 
last stage of the four-phase nephron theory, which indi-
cates kidney damage and loss of function [16]. All of the 
above factors contribute to delayed diagnosis and limited 
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therapeutic efficacy; therefore, sensitive and effective bio-
markers for the early prediction of CSA-AKI have always 
been a research focus; fortunately, several of these bio-
markers have demonstrated the ability to detect renal 
injury and are likely to be applied in future clinical prac-
tice [17–19]. However, researches about biomarkers are 
out of scope in this review.

Cardiac surgery consists of a series of operations that pri-
marily involve the cardiovascular tract and valves; since the 
first cardiopulmonary bypass (CPB) procedure was success-
fully conducted in 1953 [20], surgeries on nonbeating hearts 
have become mainstream procedures in a short period of 
time. However, exposure to an artificial bypass surface, non-
pulsatile flow, cross-clamping of the aorta, a higher dose of 
heparin, and hypothermia [21,22] are related to the inflam-
matory response, laminar flow, cold cardiac ischemia, coagu-
lation, and activation of platelets and leukocytes [23] and 
could result in consequential acute renal failure. With the 
development of surgical techniques, coronary artery bypass 
grafting (CABG) without CPB (off-pump CABG, or OPCAB) is 
becoming more sophisticated, and controversies between 
proponents of on-pump and proponents of off-pump ensue. 
Several investigations have indicated that CPB directly dam-
ages the kidney and is independently associated with post-
operative AKI [22, 24–26], while others have reported no 
additional adverse renal events when compared with those 
in the off-pump group [27–30]. However, most of these stud-
ies focused on the first 30 days and dialysis-required renal 
failure instead of the impairment of the kidney. Furthermore, 
there is no formal categorization of CPB and non-CPB proce-
dures in the context of CSA-AKI, and some studies fail to 
provide explicit descriptions of CPB conditions among car-
diac surgery populations. In summary, there are still many 
issues to be clarified about CSA-AKI, and in this review, we 
mainly discuss the unique role and pathological mechanisms 
of CPB in the clinical course of AKI and propose targeted 
preventive measures for CPB-associated AKI based on recent 
studies.

Cardiopulmonary bypass

The purposes of extracorporeal circulation is to provide a 
bloodless area within the cardiac chambers [31] and also 
stop the beating heart to facilitate definitive surgery. Unlike 
usual surgical procedures, CPB involves cardiac arrest, blood 
suction device, nonbiological surface circuits, pumps, altered 
pulsatile blood flow, extracorporeal oxygenation, activation 
of inflammation, anticoagulation, and the external thermo-
regulation, which induces a series of physiological and 
pathological changes. In addition, compared with non-CPB 
surgery, CPB requires excellent coordination among surgeons, 
perfusionists, and anesthesiologists and exhibits a more pro-
nounced correlation between the volume of surgeries in 
medical institution and surgical outcomes [32]. The following 
table provides a brief comparison of on-pump and off-pump 
procedures, which helps to distinguish the unique factors of 
CPB (Table 1).

Pathology mechanism

Hypoperfusion and hypoxia

How to balance the blood flow of the pump has always been 
a difficult decision in extracorporeal circulation. Guyton 
explained the infinite feedback gain property of the renal 
fluid mechanism: theoretically, prior to functional change, the 
kidney can sustain the stabilization of arterial pressure by 
regulating urine output [37]. However, it seems that cardiac 
arrest terminates this circulatory mechanism. During the CPB 
process, systemic blood pressure and renal blood flow are 
closely correlated with pump flow [38,39], which means that 
low flow will directly lead to inadequate organ perfusion. In 
contrast, the load caused by high flow rates, as well as fluid 
resuscitation therapy, can cause sodium retention problems.

Water-sodium retention caused by heart failure or fluid 
resuscitation is common during cardiac surgery with CPB; 
thus, central venous pressure (CVP) is easily influenced, and 
a notable increase in renal venous pressure could signifi-
cantly affect peritubular capillary blood flow and the glomer-
ular ultrafiltration gradient [40,41]. In turn, impaired kidney 
function following hypoperfusion aggravates liquid retention, 
yielding a vicious cycle. Researchers have demonstrated that 
a high CVP is independently associated with AKI after cardiac 
surgery with CPB [42–44], and portal flow pulsatility and 
intrarenal flow patterns are good predictive indicators [42]; 
more importantly, compared with measuring CVP, these 
ultrasound features are noninvasive and can be assessed at 
the bedside rapidly and repeatedly. In addition, a high CVP 
hampers venous return and increases capillary hydrostatic 
pressure, which could promote renal interstitium oedema [41].

Hypoxia ensues due to inadequate renal perfusion. The 
oxygen tissue partial pressure of the kidney outer medulla is 
widely acknowledged to be 10–20 mmHg under normal con-
ditions, one-fifth of that of the cortex [45], increasing sensi-
tivity to hypoxia and increasing vulnerability during surgery. 
The application of CPB in particular exacerbates this situa-
tion; both mathematical [46,47] and animal [48,49] models 
have illustrated this point.

Table 1.  On-pump surgery versus off-pump surgery [33–36].

ON-PUMP OFF-PUMP

PUMP YES NO
PERFUSION YES NO
HEMOLYSIS YES NO†

NON-BIOLOGICAL SURFACES 
CIRCUIT

YES NO

AORTIC CROSS-CLAMPING YES (ABOUT 1H) NO
CARDIAC ARREST YES NO
HEPARIN HIGHER DOSE* LOWER DOSE 

MOSTLY**
PROTAMINE YES OCCASIONALLY
HYPOTHERMIA YES NO
MICROEMBOLI  YES NO†

NEGATIVE PRESSURE OF 
SUCTION

YES NO

HAEMODILUTION YES NO
CONTRAST AGENT NO YES
†No conclusive evidence available.
*Target activated clotting time (ACT) more than 480s.
**The majority dose of heparin < 300 IU/kg.



Renal Failure 3

Kidney oxygen utilization mainly consists of sodium 
resorption and basal oxygen consumption, and renal oxygen-
ation can be described as the extraction of O2 (O2Ex), which 
is equal to the ratio of renal oxygen consumption (RVO2) to 
renal oxygen delivery (RDO2), and elevated O2Ex levels sug-
gest kidney impairment. Under normal conditions, O2Ex can 
remain stable during a wide range of kidney blood flow 
changes by regulating oxygen consumption through sodium 
reabsorption and the glomerular filtration rate (GFR) [45]. 
According to this theory, a decrease in the GFR in AKI 
patients could minimize the workload of tubular reabsorp-
tion and prevent further aggravation of ischemia; however, 
after the CBP procedure, the RVO2 was not proportionally 
reduced compared with the GFR and sodium resorption in 
the AKI and non-AKI groups [50], which indicates that addi-
tional factors might be involved in the increase in RVO2 
among AKI patients; a similar result can be found in ischemic 
rat models [51]. During CPB, even with a certain pump flow 
rate and no significant difference in renal perfusion, com-
pared with pre-CPB, DVO2 decreases markedly, while RVO2 
and sodium reabsorption change inconspicuously, possibly 
through the redistribution of kidney blood flow and haemo-
dilution [52]. All the above findings imply that complications 
are not confined to the extracorporeal flow period but also 
compensatory function impairment after weaning from CPB.

Inflammation

The Chenoweth team was the first to confirm complement 
activation during extracorporeal procedures [53], and the 
understanding of the inflammatory reactions associated with 
CPB has improved with the discovery of inflammatory medi-
ators [54,55]. During the progression of CPB, contact with 
nonendothelialized surfaces of the extracorporeal circuit 
could activate an alternate complement pathway in addition 
to triggering factor XII. Factor XII could generate inflamma-
tory mediators, such as bradykinin, which are involved in 
coagulation dysfunction, and further products could trigger 
the classical complement pathway; moreover, the loss of pul-
satile blood flow is also associated with the activation of 
inflammation [53, 56–58]. Additionally, to reverse the func-
tion of heparin at the end of CPB, the administration of pro-
tamine is necessary, but research shows that protamine-heparin 
complexes could aggravate the inflammatory response 
[59,60].

Interleukin (IL)-6 is a critical cytokine in AKI that has both 
proinflammatory and anti-inflammatory effects [61], and an 
ischemic mouse model validates the compensatory 
anti-inflammatory response effect of IL-10, which predomi-
nantly occurs in the spleen and is regulated by IL-6 [62]. In a 
large-scale cardiac surgery population that underwent CPB, 
the perioperative levels of serum IL-6 and IL-10 were ele-
vated, particularly in the AKI group, and the temporal profiles 
of the two biomarkers confirmed previous findings [63]. In 
addition to inflammatory factors, the coagulation cascade, 
endothelial cell damage and platelet activation [64] also 
involve systematic responses and might be involved in the 

early and late phases [65]. Many novel inflammatory bio-
markers, such as CXC chemokine ligands and endothelin, are 
elevated after pediatric heart surgery [66], and currently, tis-
sue hormones, such as subfatin, maresin-1, asprosin, and ala-
mandine, were first discovered to be related to CPB and 
might be prospective therapeutic targets [67].

The proinflammatory role of CPB has been demonstrated 
in multiple studies, which revealed a positive correlation 
between CPB and aortic cross-clamping time [68,69]. During 
surgery and the early postoperative period, the peak level of 
proinflammatory mediators is significantly greater in patients 
with CPB than in patients without CPB, and the difference in 
inflammatory status subsides and eventually offsets during 
the ensuing postoperative period [70]. However, when CPB is 
avoided, there is evidence that inflammation still occurs, with 
a slight delay compared to extracorporeal circulation [57].

New multi-gene expression analysis approaches such as 
the microarray technique [71] overcomes the limitations of 
single-gene approaches in assessing complex pathophysio-
logical networks, and investigators have shown that CPB trig-
gers a short-lasting inflammatory reaction; cytokines; and 
chemokines, such as IL-8, IL-10, and monocyte chemoattrac-
tant protein-1 (MCP-1); moreover, macrophage inflammatory 
protein 1β (MIP-1β) is indeed associated with the initiation of 
CPB. Although some proinflammatory gene products are 
induced to a similar extent during off-pump surgery, the 
time course of induction is strikingly different [34]. However, 
limited by the surgical procedure itself, even though the 
baseline conditions of both groups were comparable, more 
coronary artery disease-affected vessels and more prolonged 
mechanical ventilation time were observed in the 
on-pump group.

In addition to the CPB-associated systemic inflammatory 
response syndrome, the postoperative anti-inflammatory 
response has also been a research hotspot in recent years. 
Immunoparalysis represents impaired immune defence, 
which is regarded as the outcome of an exaggerated or pro-
longed anti-inflammatory response after CPB and is consid-
ered relevant to the IL-10 genotype [72,73], and 
peroxiredoxin-1, a cytosolic antioxidant released during CPB, 
can induce phagocytes to produce IL-10 via Toll-like receptor 
(TLR) 4 [74]. The latest study showed that increased mono-
cytic myeloid-derived suppressor cells and insufficient 
L-arginine might also be responsible for postoperative immu-
noparalysis [75], and cell population data, consisting of leu-
kocyte size, granularity, and fluorescence intensity, are 
strongly associated with CPB and might be suitable for mon-
itoring the activation of immunity [76].

Interestingly, the piglet model revealed the correlation 
between CPB and the derangement of the intestinal microbi-
ome, which might account for systematic inflammation [77] 
and provide us with a new direction for treatment.

Oxidative stress

Reactive oxygen species (ROS) can increase abnormally under 
hypoxia and reperfusion conditions and lead to the 
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modification of lipids (especially arachidonic acid), proteins 
(including nitration, chlorination, and bromination, all of 
which are associated with inflammation), and deoxyribonu-
cleic acid (DNA), which causes variations in protein expres-
sion [78]. To eliminate the disturbance of varying oxygen 
concentrations during CPB, a clinical trial measured two 
kinds of oxidative stress indicators, F2-isoprostanes and isofu-
rans, and confirmed oxidative damage in both peripheral tis-
sues and the kidney itself, which might be attributed to 
hemolysis and rhabdomyolysis [79]. In addition to the end 
products of arachidonic acid, lipid peroxidation generates 
assorted metabolites; recently, malondialdehyde has been 
demonstrated to be a promising biomarker of oxidative 
stress and remains high after two days of CPB [80]. The non-
enzymatic antioxidants vitamin C and vitamin E also decrease 
sharply and remain low postoperatively [81], but the blood 
concentration of glutathione (GSH) shows a progressive 
increase and reaches culmination at the end of CPB [82], 
which might indicate a compensatory mechanism. As a pro-
moter of fatty acid metabolism, peroxisome proliferator- 
activated receptor-gamma coactivator-1α (PGC-1α) is 
decreased in diabetic patients undergoing CPB and impedes 
mitochondrial function and leads to oxidative injury in car-
diac tissue [83], while PGC-1α does not change significantly 
in another mixed group with an approximate 50% incidence 
of diabetes. Investigators have shown that mitochondrial 
DNA damage and mitophagy occur during CPB through 
biopsy experiments of the right atrial appendage [84]. 
However, these pathological processes in the kidney still 
need to be described in the future.

Iron metabolism is essential for oxidative stress and induces 
assorted damage to the tubular epithelium. There is growing 
evidence that iron metabolism plays an important role in 
CPB-related AKI and is regarded as a form of renal sideropathy 
[85]. Owing to haemodilution and exposure to the nonbiolog-
ical surface during CPB, chelatable iron can be released from 
extracorporeally circulated blood [86], which might induce iron 
deficiency. However, recently, a small sample study revealed 
no difference in the serum iron concentration between AKI 
patients and non-AKI patients despite the transient decreasing 
trend; in contrast, the levels of copper, zinc, and selenium 
decreased markedly within a short time after CPB in AKI 
patients and are likely to interfere with the capacity against 
oxidative stress [87]. A retrospective study of the nonanaemia 
population suggested that the incidence of postoperative AKI 
is not significantly affected by iron deficiency [88]. Although 
intravenous treatment of ferric carboxymaltose within 2 days 
before cardiac surgery results in iron storage in anemic 
patients [89], the renoprotective role of maintaining iron 
homeostasis in CPB patients still needs to be clarified.

Metabolomic research on animals has shown that both 
tryptophan and purine metabolism are influenced during 
CPB and that the level of metabolites changes significantly in 
AKI patients [90], which is consistent with clinical observa-
tions [91,92]; however, less is known about the pathogenic 
process involved. The antioxidant system of preterm infants 
is immature [93], and these infants are exposed to more 

severe oxidative stress during CPB than is currently known 
[94]; thus, consideration of age is indispensable when devel-
oping preventive therapies.

Coagulation and hemolysis

As mentioned above, CPB involves extracorporeal piping, 
which can lead to activation of the coagulation pathway 
when blood cells contact the artificial material [95–97]. 
Although the generation of thrombin was also observed in 
OPCAB patients, it occurred later and more gradually than in 
CPB patients and without platelet activation [98]; however, 
these results differ from those of another study in which 
tranexamic acid was used perioperatively [99]. Surprisingly, a 
recent study revealed that a high level of the thrombin–anti-
thrombin complex is related to AKI after CPB in a group of 
toddler patients but not in infants [100]. Moreover, CPB can 
cause platelet dysfunction and increased haemorrhage [101], 
resulting in a growing demand for blood transfusions [102].

The fibrinolytic system is activated during the initial 
period of CPB, accompanied by a notable increase in 
tissue-type plasminogen activator [99, 103]; however, the 
antithrombotic effect is soon offset by the release of plas-
minogen activator inhibitor-1 (PAI-1), which can be promoted 
through angiotensin II [103], and PAI has recently been 
shown to participate in acute lung injury after CPB by induc-
ing endothelial cell-derived extracellular vesicles [104]. Thus, 
angiotensin-converting enzyme inhibitors (ACEis) might 
reduce PAI-1 levels and alleviate organ injury, but consider-
ing the increase in bradykinin, a stimulator of IL-6 expression 
[105], the comprehensive role of ACEis in cardiac surgery 
patients still needs to be clarified. Furthermore, macro- and 
microembolism gases and particulates are frequently gener-
ated during CPB [106] and aggravate coagulation disorders.

Hemolysis can also be attributed to CPB, as the turbu-
lence, cavitation, and osmotic stresses during CPB result in 
red blood cell membrane injury and haemolysis [107]; more-
over, negative pressure applied during CPB suction of blood 
and contact with the air surface could also induce and exac-
erbate haemolysis [108,109]. The level of free hemoglobin 
(Hb), a product of erythrocyte destruction, is markedly ele-
vated in patients undergoing on-pump surgery compared 
with patients undergoing OPCAB [110], and free Hb is asso-
ciated with increased consumption of nitric oxide (NO) and 
aggravated intrarenal oxidative reactions [111].

To reduce the risk of bleeding and blood cell transfusion, 
tranexamic acid is often administered during CPB, but there 
is no consensus on the optimal dosage [112]; recently, a 
large-scale randomized trial verified that no obvious differ-
ence exists between high and low doses of tranexamic acid 
in hemostatic effects and renal dysfunction [113].

Others

Endothelial cells regulate vasopermeability, vascular tension, 
inflammatory, and coagulation responses, and structural or 
functional breakdown can lead to AKI [114]. Growing 
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evidence suggests that the endothelial structure is destroyed 
during cardiac surgery, and ANP is the most likely initiating 
mediator [115–117]; moreover, the serum levels of glycocalyx 
components (syndecan-1 and hyaluronan) were greater in 
the CPB group than in the OPCAB group, indicating that 
more severe endothelial damage existed in the extracorpo-
real cycle [116]. Recent investigations have suggested that 
endothelial dysfunction might cause hyperpermeability to 
impair microcirculatory perfusion [118]; therefore, successful 
endothelial protection could be treated as renal protection, 
and an animal model revealed the endothelial protective 
effect of imatinib and moderated fluid leakage and subse-
quent kidney damage [119], despite the use of the 
beating-heart CPB model.

Particulate, gaseous, and lipid microemboli (LMEs) are side 
effects of CPB surgery, and manual manipulation of the car-
diovascular region and the components of the extracorporeal 
circuit are the primary sources of microemboli [120–122]. 
These effects might lead to endothelial dysfunction and vas-
cular blockage [123] and decrease the quality of blood flow 
and capillary oxygen delivery [124].

In animal studies, elevated levels of LME were found in 
the kidney after the CPB procedure and induced renal dam-
age [120]; in a subsequent cardiac surgery patient cohort, 
filtration of LME was considered renoprotective [125]. Some 
optimization strategies for surgical methods (such as mini-
mally invasive extracorporeal circulation (MiECC) [126] and 
hematic antegrade repriming127] and modified devices [124] 
are both effective at reducing microemboli.

However, current studies have focused mainly on postop-
erative neurocognitive disorders, and the impact of 
CPB-related microemboli activity on the kidney has yet to be 
determined.

Prevention

Avert CPB

Valvular heart disease
The field of minimally invasive interventional treatment for 
structural heart disease is rapidly advancing, with an increas-
ing number of heart valve interventions each year. 
Techniques such as transcatheter aortic valve replacement 
(TAVR) [128] and transcatheter edge-to-edge repair (TEER) 
[129] are increasingly recommended for patients with an 
expected lifespan of more than one year who are at high 
surgical risk due to advanced age. Although these approaches 
fundamentally eliminate the impact of CPB, they require 
precise anatomical suitability and carry the potential for 
requiring unplanned extracorporeal circulation support.

Macroangiopathy
Intraluminal techniques are also being applied in major vas-
cular surgeries [130], such as hybrid aortic arch repair (HAR) 
and endovascular aortic arch repair (EAR), to effectively avoid 
circulatory arrest and cross-clamping; these techniques have 
become minimally invasive surgical options for treating 

complex aortic arch diseases and are particularly suitable for 
patients at greater surgical risk. However, current research 
has not yet confirmed the clinical efficacy of these methods 
compared with open surgery [131,132]. Additionally, morpho-
logic suitability remains the most crucial criterion in deciding 
between endovascular and open surgical treatments [133].

Coronary artery disease
With the improvements in methods for coronary artery stabi-
lization and exposure, beating heart surgery, such as OPCAB, 
has attracted increased interest [107], but the benefits and 
risks of an off-pump versus on-pump approach have been 
debated. Patients in certain patient subgroups, including 
older patients, females, those with a history of stroke, renal 
impairment, and pulmonary disease, are considered to bene-
fit more from OPCAB surgery than are other patients [134]. 
Numerous studies have confirmed the effectiveness of 
off-pump surgery compared to on-pump surgery in reducing 
postoperative renal dysfunction [30, 135–137], and renal 
function might be a factor influencing the choice of revascu-
larization strategy. However, there were no significant differ-
ences in long-term renal outcomes [135,136].

In addition, some studies have shown that, compared 
with patients who underwent CPB, patients who underwent 
OPCAB had a greater risk of recurrent angina and revascular-
ization within the first postoperative year, as well as 3-year 
all-cause mortality [138]. However, there was no significant 
difference in the incidence of renal failure between the two 
groups. Interestingly, in the ROOBY trial, there was no differ-
ence in the incidence of short-term renal failure requiring 
dialysis, whereas at the one- and five-year follow-ups [28, 
139], all-cause mortality was found to be greater in the 
on-pump CABG group. When the follow-up period extended 
to ten years, no significant difference in terms of death or 
revascularization was observed [140]; thus, in the absence of 
contraindications, CPB could not be replaced yet.

In summary, the decision to apply CPB is primarily deter-
mined by the suitability of the disease and surgery. 
Interventional treatments are recommended for populations 
at advanced age, long expected lifespan, and high surgical 
risk. Whether patients at high risk for AKI should be included 
in the indications for interventional treatment requires fur-
ther exploration. Additionally, the importance of long-term 
follow-up outcomes should not be overlooked.

Optimized CPB

Flow rate
Based on clinical guidelines, the target blood flow during 
CPB depends on the body surface area and temperature and 
is usually 2.2 to 2.8 L/min/m2 under nondeep hypothermia 
conditions [141]. However, there has always been debate 
regarding the optimal setting of flow rates.

The aforementioned discussion established a correlation 
between DO2 and postoperative AKI outcomes. Since DO2 
during CPB is a modifiable factor, achievable through 
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adjusting pump flow rates, goal-directed perfusion manage-
ment (GDP) is a theoretically viable approach [142]. 
Investigators confirmed that maintenance of oxygen deliv-
ery over 300 mL O2/min/m2 driven by a higher pump flow 
rate contributed to a lower incidence of AKI than that of 
matched historical patient records according to their algo-
rithm [143], while the threshold might be greater in neo-
nates due to an increased metabolic rate [144]. Later, a 
randomized controlled trial also indicated that a higher flow 
rate can improve renal O2Ex [145], although only ten min-
utes of observation and no renal blood flow (RBF) measure-
ments were performed. While these findings are promising, 
mastering the extracorporeal pump requires strictly skilled 
perfusionists, and large-scale experimental validation is 
indispensable. Further investigations are needed to clarify 
the relationship between perfusion and renal oxygen during 
the CPB period.

Retrospective studies have shown that mini-CPB was asso-
ciated with a decreased risk of AKI [146,147], and although 
the mean cardiopulmonary bypass pump flow was signifi-
cantly lower with mini-CPB, less haemodilution compensated 
for this reduction and resulted in a similar calculated DO2 
compared with that of normal CPB. However, the causal rela-
tionship between mini-CPB and AKI events could not be 
assessed by retrospective analysis alone. Randomized trials 
are needed to determine the clinical benefit of these treat-
ments because the majority of patients in clinical trials had 
normal renal function. The benefit of related initiatives in 
patients with preoperative renal insufficiency still needs to 
be investigated [143].

Haemodilution
A lower hematocrit is thought to be correlated with better 
microcirculation during CPB, but currently, evidence suggests 
that haemodilution is more likely to result in adverse out-
comes, including renal failure [148,149].

Retrograde autologous priming (RAP) is a strategy used to 
limit haemodilution and transfusion requirements and has 
been found to be effective in clinical trials [150]. In a 
small-size study, the combination of low-prime perfusion and 
autologous prime perfusion reduced the incidence of low 
hematocrit (<20%) and promoted kidney outcomes [151]. 
However, the benefit for renal function could not be con-
firmed in the present study [152,153] or in the meta- 
analysis [154].

Red blood cell transfusion can also alleviate haemodilu-
tion but is strongly associated with ischemic postoperative 
morbidity in patients undergoing cardiac surgery [155]. 
However, both a high-quality randomized controlled trial 
(RCT) [156] and a meta-analysis [157] demonstrated that 
there was no significant difference between the restrictive 
transfusion strategy and the liberal strategy in terms of 
morbidity due to postoperative AKI. In addition, we found 
that transfusion practices varied due to the absence of a 
uniform indication of hematocrit for blood transfusion, 
which may have resulted in heterogeneity among the 
studies.

Biocompatibility
Attempts have been made to apply diverse materials for sur-
face coating of circuit components, aiming to improve bio-
compatibility and substantially reduce inflammation and 
thrombogenesis.

Heparin-bonded circuits, which utilize covalent bonding, 
have been shown to reduce inflammation and platelet  
activation, thereby decreasing bleeding and the need for 
transfusions [158,159]. Some newer coatings, including bio-
compatible ions, poly-2-methoxyethylacrylate, phosphoryl-
choline, and trillium, have also shown satisfactory and similar 
results, and the clinical benefits of one type of coating over 
another remain controversial [160,161].

The efficacy of biocompatible CPB circuits in alleviating 
postoperative renal damage is still a subject of debate [162]. 
Additionally, it remains uncertain whether these observed 
differences are attributable to design variables or the specific 
types of coatings employed. Moreover, the integral effects of 
material-independent blood activation (blood–air interface, 
cardiotomy suction, hemolysis, etc.) may eventually blunt the 
total effect of biocompatible surfaces [163].

Recently, the fully magnetically levitated, continuous-flow 
blood pump in the left ventricular assist system has been 
shown to enhance haemocompatibility and reduce shear 
stress on blood components [164] and is hopefully applied in 
CPB surgery to reduce intraprocedural hemolysis.

Pump
The roller pump and centrifugal pump are two types of CPB 
pump with different physical designs and physiological 
effects [33], and in an RCT meta-analysis, there were no sig-
nificant differences in haematological variables, postoperative 
blood loss, blood transfusion, neurological outcomes, or mor-
tality between the two pump types [165].

According to the results of single-centre experiments, 
roller pumps are more prone to thrombotic complications 
because of the increased aggregation of platelets [166], and 
centrifugal pumps might reduce the generation of tissue fac-
tors [167] and the inflammatory response [168].

Guidelines recommend considering the use of centrifugal 
pumps for longer durations of anticipated CPB. Although 
clinical data about renal outcomes are still lacking, centrifu-
gal pumps are theoretically more protective for the kidney 
than are other methods, considering the potential patholog-
ical mechanisms involved.

Perfusion pulsation
The advantage of pulsatile over nonpulsatile perfusion is 
widely discussed among perfusionists. Pulsatile flow is con-
sidered more physiological because it imitates the arterial 
pulse generated by the heart and is becoming the preferred 
perfusion method for CPB [169,170].

A meta-analysis suggested that pulsatile perfusion during 
CPB is beneficial for renal preservation [171]; moreover, pul-
satile flow might also reduce inflammatory cytokines and 
alleviate endothelial damage [172] and has better 
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biocompatibility than extracorporeal circulation according to 
scanning electron microscopy (SEM) [173].

However, in a recent prospective observational study, 
pulsatile flow resulted in a greater extent of hemolysis 
during the CPB procedure, which is likely attributed to 
higher circuit pressures and shear forces than nonpulsatile 
flow [174].

It should be emphasized that the inhomogeneity of defi-
nitions and quantification of pulsatile flow between different 
studies makes comparisons challenging, and high-quality 
randomized clinical trials are needed to provide additional 
evidence.

Acid–base balance
Acid–base imbalance after CPB is common, and hyperlactate-
mia can occur even in the absence of inadequate tissue per-
fusion, which might be attributed to the impact of 
hypothermia on metabolism [175], moreover, the use of cat-
echolamines during surgery leads to increased lactate levels 
[176]. One study suggested that postoperative hyperlactate-
mia is associated with poor outcomes and mortality, and 
0.75 mmol/L is an appropriate cutoff [177].

Early findings suggest that, given the hypothermic 
environment intraoperatively, an alpha-stat (temperature- 
uncorrected blood gas management) is associated with 
less postoperative cerebral dysfunction than a pH-stat 
(temperature-corrected blood gas management) [178,179]. 
A review recommended that the best management of 
acid–base therapy is dependent upon patient age, with 
the use of a pH-stat in pediatric patients and an alpha-stat 
in adult patients [180]. The results of a clinical trial also 
confirmed that the pH-stat is superior in the pediatric 
population [181].

However, these conclusions require further validation in 
larger cohorts. Additionally, considering the crucial role of 
the kidneys in maintaining acid–base balance, it is essential 
to explore outcomes related to renal function.

Goal-directed haemodynamic therapy
Given the limited tolerance of organs to ischemic and 
hypoxic conditions, the concept of intraoperative and 
perioperative haemodynamic management has been pro-
posed and extensively studied. Goal-directed haemody-
namic therapy (GDT) is a strategy based on increasing 
cardiac output by using fluids and medicine [182] and has 
been shown to reduce postoperative complications and 
length of ICU stay in cardiac surgical patients with CPB 
[183], however, no difference in renal outcome was 
detected. Similar results were demonstrated in a 
meta-analysis and systematic review [184]. Recently, a 
small prospective study demonstrated that GDT fails to 
reduce the incidence of AKI, but the level of cystatin-C 
was lower in the GDT group than in the control group 
[185]. In brief, there is a lack of kidney evidence, yet large 
multicenter studies are desirable to demonstrate the pre-
sented concept in daily clinical practice.

Remote ischemic preconditioning
Remote ischemic preconditioning (RIPC) is a technique in 
which brief episodes of ischemic protection or ‘precondition-
ing’ are applied to distant tissues or organs to endure a sub-
sequent episode of sustained ischemia; this technique was 
first proposed for use in dog coronary artery experiments 
[186], after which the nephroprotective effect was later con-
firmed [187].

The success of animal experiments has led to the devel-
opment of clinical research, but progress has not been 
smooth. There has been ongoing debate regarding the reno-
protective effects of RIPC in cardiac surgery with CPB 
[188,189]. In large cohorts, RIPC did not significantly improve 
renal outcomes, including postoperative AKI occurrence and 
renal indices (serum creatinine, urea nitrogen, and cystatin-C) 
[190]. Moreover, after adjusting for baseline creatinine, RIPC 
reduced the incidence of AKI after cardiac surgery in a small 
RCT of congenital heart defect children [191]. A high-quality 
meta-analysis indicated that RIPC does not significantly 
reduce the incidence of ischemia–reperfusion AKI [192]. This 
finding suggested that in CPB surgeries, where ischemia is 
the primary pathogenic mechanism, the renal benefits of 
RIPC require further investigation.

There are several potential reasons for these results. Apart 
from the variations in the RIPC protocols and the definitions 
of renal outcomes, high blood sugar levels appear to negate 
the renoprotective effects of RIPC [193]. Additionally, animal 
studies have indicated that the method of anesthesia can 
also impact patient outcomes [194]. Recent studies have con-
firmed the crucial role of exosomes in RIPC, potentially con-
tributing to the protective mechanisms against ischemic 
damage in organs [195,196]. These findings position exo-
somes as promising candidates for therapeutic strategies.

Additionally, in light of the growing focus on the precur-
sory stages of AKI, a range of new biomarkers, which can 
detect renal damage earlier than creatinine, have emerged 
[16]. This development necessitates additional research to 
more accurately determine the early renal effects of this 
technology.

Temperature
The role of temperature in CPB has always been controver-
sial, hypothermia results in low oxygen consumption and 
metabolic levels but leads to cytoskeletal changes and stress 
protein generation at the same time [197] and might prompt 
renal vasoconstriction [198].

Therapeutic hypothermia (TH) is a strategy aimed at pre-
venting ischemic organ damage, and earlier studies have 
indicated that perfusion temperature (28 °C, 32 °C, and 37 °C) 
does not affect perioperative renal function [199]. According 
to a meta-analysis, TH failed to prevent the occurrence of AKI 
following CPB surgery [200], although variation or absence of 
the AKI definition was found among individual trials.

Hyperthermic perfusion is deemed to be correlated with 
AKI and is recommended for avoiding arterial outlet tem-
peratures greater than 37 °C [201]. Recently, in a retrospective 
study of 5672 patients who underwent CPB surgery, 
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investigators found that mild hypothermia was associated 
with improved survival but lacked kidney outcomes; they 
also highlighted the importance of cooling and the rewarm-
ing rate [202].

In conclusion, based on the limited evidence available, 
mild hypothermia seems to have some protective effects on 
renal function during CPB. However, most current trials have 
not focused primarily on renal endpoints, have small sample 
sizes, or lack a uniform definition of AKI. Therefore, further 
research is needed to determine the optimal temperature 
and rate of achieving this goal.

Medical therapy

Exosomes

Exosomes (Exos) and microvesicles (MVs) are membrane ves-
icles of endosomal and plasma membrane in the extracellu-
lar environment and represent an important pattern of 
intercellular communication [203]. The autophagy regulator 
miR-590-3p, which plays a pivotal role in the repair of renal 
tubular cell damage, is transferred by plasma-derived Exos 
and is increased in young AKI patients after cardiac surgery 
with CPB [204].

Nevertheless, studies have shown that these microparti-
cles could be released by erythrocytes under stress or 
long-term storage conditions and decrease NO bioavailability, 
which might underlie the pathogenesis of organ damage 
during hemolysis and blood transfusion [205]. Recently, 
research on patients undergoing CPB first confirmed the 
early increase in RBC-derived Exos following aortic cross-clamp 
release; additionally, animal experimental models have vali-
dated the ability of Exos to target the kidneys and mediate 
AKI [206]. However, the present study did not establish a 
direct correlation between elevated Exos and patient renal 
injury or significant differences in MVs. Future studies might 
broaden the scope of these methods to include microparti-
cles from various cellular origins and extend their analyses to 
multiple time points during and after CPB, as the effects of 
CPB on organs are known to persist for up to three days 
postoperatively [207], not just immediately following the 
procedure.

In addition, these studies also serve as a reminder to exer-
cise caution in considering exosomes as therapeutic agents 
or carriers, as the effects of these substances are not fully 
understood in all contexts [208].

Renal vasodilation

Pharmaceuticals are another tactic; as a selective dopamine-1 
receptor agonist, a low dose of fenoldopam can dilate the 
renal vasculature without altering arterial pressure [209] and 
has shown a better ability to enhance RBF during CPB in a 
cardiac-renal perfusion model [210]. Another vasodilator, 
levosimendan, also displayed favorable results in alleviating 
hypoperfusion in a clinical trial, in addition to increasing the 
glomerular filtration rate (GFR), which is not amenable to 

dopamine. An experiment in which sheep were subjected to 
a low dose demonstrated that intraoperative metaraminol 
could increase renal oxygen and mean arterial pressure [39].

Considering the complexity of the operation and ethics, 
most related studies are limited by the use of models or ani-
mals and lack direct evidence for decreasing the inci-
dence of AKI.

Nitric oxide

NO is a classical vasodilator; however, considering the dif-
ferent types of nitric oxide synthase (NOS), the effects on 
the kidney can be totally different [211]. Endothelial NOS 
(eNOS) primarily affects medullary perfusion and has a pro-
tective effect on the kidney [212], while inducible NOS 
(iNOS) participates in vascular dysfunction and tissue dam-
age by inhibiting eNOS-derived NO and generating per-
oxynitrite [213,214]. In addition, NO plays an essential role 
in mediating electrolyte metabolism by inhibiting the activ-
ity of the Na+-K+-2Cl- cotransporter and reducing Na+/H+ 
exchange [215], and the NO/O2 ratio can act as a regulator 
of mitochondrial respiration to change the level of RVO2 
[212]. A recent study suggested that NO might relieve oxi-
dative reactions by transforming oxyhemoglobin [111, 216] 
and may act as an anti-inflammatory and antithrombotic 
mediator [217].

Given the essential role of NO, a clinical study of pro-
longed CPB (over 90 min) among Chinese patients indicated 
that administering NO (80 parts per million [ppm]) intraop-
eratively and on the first postoperative day significantly 
reduced the incidence of AKI incidence and the incidence 
of AKI-related AKI [218]. A similar outcome was observed in 
another trial in which a lower NO dose (40 ppm) was used 
[219]; however, recently, animal investigations have also 
indicated the positive function of NO in preventing AKI 
post CPB and provided histologic evidence [220]. However, 
a retrospective cohort study of children revealed that 
20 ppm of NO during the CPB circuit fails to diminish the 
incidence of AKI [221], and treatment with NO might not be 
suitable for patients with acute respiratory distress syn-
drome [222].

In brief, the optimal curing dose and timing of NO admin-
istration for preventing AKI after CPB still need to be verified, 
and an explicit understanding of the protective mechanism 
in the kidney is imperative.

Regulating the inflammatory response

As mentioned above, immunoparalysis after CPB has been 
widely recognized, and investigations have indicated that 
increased catabolism of arginine might be a potential mech-
anism [223]. Additionally, exogenous supplementation with 
L-arginine successfully rehabilitates the proliferative ability of 
T cells in vitro [75] and is likely to lead to the development 
of an economical and effective hedge to reduce postopera-
tive infection risk and the necessity of implementing nephro-
toxic antibiotics.
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Rat experiments demonstrated that infusion of IL-10-
transformed macrophages could promote the release and 
function of neutrophil gelatinase-associated lipocalin (NGAL; 
also known as siderocalin) to mitigate ischemic kidney 
impairment [224], and the use of EVs provides precise and 
stable nanotherapeutics to transport IL-10 [225]; however, 
the clinical practice and effectiveness of these agents during 
extracorporeal circulation remain to be confirmed. 
Surprisingly, in addition to medical treatment, in a small 
study, sustained mechanical ventilation during the CPB extra-
corporeal period diminished the postoperative concentra-
tions of CCL2 and CCL4, chemokines that induce a systemic 
inflammatory response [226], but the underlying mechanism 
still remains to be determined.

Recently, a study of 19 patients demonstrated that the 
levels of subfractionin, maresin-1, asprosin, and alamandine 
change significantly after CPB, and these hormones are asso-
ciated with the elimination of inflammation and oxidative 
stress [67]. Moreover, persistent elevation of nuclear and 
mitochondrial cell-free DNA levels is related to systemic 
inflammation in pediatric cardiac surgery with CPB [227] and 
is valuable for future treatment [228].

A haemoadsorption (HA) device is designed to remove 
molecules from the extracorporeal blood circulation and ter-
minate activation of the inflammatory response; disappoint-
ingly, the HA apparatus fails to decrease the cytokine level or 
complication incidence, and insufficient treatment time 
restricted by CPB duration might be responsible [229,230]; 
however, the safety and feasibility of this device have been 
confirmed.

Blood purification techniques have been extensively stud-
ied for toxin clearance, and subzero-balance ultrafiltration 
during CPB has recently been successful at extracting multi-
ple immunomodulators and inflammatory mediators based 
on molecular mass [66], which offers solid testimony and ref-
erence for future research.

Colchicine is a traditional anti-inflammatory medicine, and 
a low dosage of colchicine perioperatively (0.5 mg once daily) 
reduces inflammatory indicators and has cardioprotective 
effects after CPB [231]. Recently, the gut microbiota was 
found to be involved in intestinal vulnerability, and 
Lactobacillus murinus might ameliorate intestinal ischemia–
reperfusion (I/R) injury through TLR2 to increase the release 
of IL-10 from macrophages [232]. Considering the common 
pathogenic role of I/R and inflammatory activation in organ 
damage, these studies provide new insights into the preven-
tion of CPB-related AKI.

Antioxidative stress

Although the pathogenic role of oxidative stress has been 
confirmed in AKI, antioxidant therapy is not effective in 
patients undergoing cardiac surgery with CPB [233]. The anti-
oxidant vitamin E demonstrated an adequate curative effect 
in a large cohort of patients with hypercholesterolemia [234]; 
nevertheless, given the time of medicament onset and the 
urgency of cardiac surgery, this treatment seems unavailable.

Haptoglobin (Hp) is a major plasma-binding protein for 
free Hb. In the early century, the administration of Hp was 
found to mitigate renal loss after CPB surgery by decreasing 
free Hb [235], and glucocorticoids seemed to increase the 
level of Hp and prevent kidney oxidant injury in animals [236].

A recent study reaffirmed elevated cell-free plasma Hb 
levels in CPB-associated AKI [206, 216], which is likely to 
aggravate the consumption of NO [110]. Additionally, free Hb 
contributes to the oxidative stress response [79], and 
Hp-bound Hb also promotes peroxidase activation [237]. In 
subsequent animal experiments, acetaminophen seemed to 
eliminate the oxidant induced by haemoglobin [238]. 
Surprisingly, exposure to hyperoxaemia might augment oxi-
dative damage [239], but avoidance of supranormal arterial 
blood oxygen tensions during extracorporeal circulation 
failed to decrease the incidence of AKI in a multicenter clin-
ical trial [240].

Intravenous sodium bicarbonate injection was first 
demonstrated to prevent CPB-associated AKI [241], partially 
due to the function of urine alkalinization in attenuating oxy-
gen radical production and the level of free ferric ions [85]; 
however, the controversy has persisted. Some researchers 
suggest that bicarbonate might be appropriate only for par-
ticular populations. Patients with a low risk of AKI are likely 
to benefit from this treatment and even have a lower mor-
tality risk [242–244]. On the other hand, metabolic acidosis is 
common after extracorporeal circulation, as the accumulation 
of lactate and bicarbonate, which are essential components 
of the physical fluid alkalinization system, is worth investigat-
ing intensively.

In the past few years, animal experiments have made 
great progress. Ghrelin improved the glutathione content of 
mice during CPB and mitigated organ failure [245]. Baicalin 
has been shown to ameliorate renal injury in an optimized 
CPB mouse model and suppress the expression of iNOS 
[246]. The calcium channel blocker diltiazem can increase 
superoxide dismutase (SOD) (a natural antioxidant enzyme) 
activity and alleviate lipid peroxidation to protect the kidney, 
and these effects are enhanced when diltiazem is combined 
with tadalafil [247]; however, clamping of the renal artery 
cannot represent the clinical procedure used for CPB 
completely.

Similarly, macrophage migration inhibitory factor (MIF) is 
considered to be a protective factor in the early phase of 
myocardial I/R injury [248] and is currently found to be 
decreased in cardiac surgery patients with postoperative AKI. 
Researchers subsequently demonstrated that the administra-
tion of MIF could augment cytoprotective capacity by restor-
ing intracellular GSH and inhibiting peroxidation in the 
kidney [249]; however, although the results of animal exper-
iments are encouraging, considering the ability of MIF to 
activate inflammation in the prolonged period [248], the 
long-term effects of MIF in the kidney also require 
clarification.

In addition to medicinal strategies, metal nanoparticles 
and carbon-based nanomaterials with redox properties have 
been widely studied for their potential use in curing I/R 
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injury [250]. Currently, low-level light therapy during periph-
eral circulation can erase the activation and damage of 
extravasated red blood cells in pigs and promote resistance 
to oxidative stress [251].

Increased renal functional reserve

The renal functional reserve (RFR), the change in the glomer-
ular filtration rate (GFR) from baseline to a peak value, rep-
resents the capacity of the kidney to respond to physiologic 
or pathologic stimuli and can be induced clinically by a pro-
tein load [252,253].

Within the setting of CPB, a preoperative decrease in the 
RFR is a high risk factor for AKI [254]. Furthermore, in post-
operative AKI patients, a marked decrease in the RFR is 
observed after three and twelve months, respectively, and 
the ability of urinary AKI biomarkers to predict a decrease in 
the RFR in nonclinical AKI patients has also been con-
firmed [255].

Clinical randomized trials indicate that a preoperative 
high-protein oral load is associated with a preserved eGFR at 
3 and 12 months after cardiac surgery with CPB [256], and 
intravenous amino acid therapy also reduces the duration of 
AKI [257], despite the failure to reduce the incidence of AKI.

These observations suggest that a recruitable RFR pos-
sesses profound physiological and therapeutic importance 
among individuals undergoing CPB; however, there must be 
a parallel reduction in the RFR due to its progressive utiliza-
tion [252]. The ‘premature depletion’ of kidney reserves 
requires further consideration in terms of safety and long-term 
clinical benefits. In addition, for the routine clinical applica-
tion of RFR, establishing a standardized and dependable mea-
surement technique for RFR is currently a top priority.

Nanotechnology

Numerous drugs have shown promise in preventing and 
treating AKI, but their applications are greatly impeded by 
their physicochemical characteristics, such as hydrophobicity, 
stability, bioavailability, and inadequate renal concentration. 
The emergence of nanomaterials, however, represents a turn-
ing point. NPs, composed of natural polymers, polymers, 
organic substances, or lipids, constitute a novel drug delivery 
system [258]. Influenced by the glomerular filtration barrier, 
controlling the size of nanomaterials (diameters of 100 nm) 
enables targeted accumulation of drugs in damaged renal 
tubules [259]. In addition to glomerular filtration, mesoscale 
nanoparticles (with diameters of 350–400 nm) have been 
demonstrated to possess selective renal targeting capabili-
ties, which are likely achieved through endocytosis by endo-
thelial cells surrounding renal tubular capillaries [260,261].

Moreover, some inorganic nanoparticles, including ceria, 
carbon nanodot, copper, gold, and molybdenum, can scav-
enge ROS. Ceria nanoparticles effectively reduce renal tubule 
necrosis by decreasing oxidative stress and inflammatory 
responses in a mouse model of sepsis-induced AKI [262], and 
molybdenum-based polyoxometalate nanoclusters prevent 
ROS-induced AKI [263].

The results from these animal studies are inspiring, but in 
the unique environment of CPB, the stability of nanocompos-
ites needs to be reevaluated to withstand the influences of 
surgery, extracorporeal conditions, low temperatures, and 
turbulence, as well as the clearance effects of intraoperative 
dialysis filtration. Currently, there is a lack of corresponding 
research. Nanomaterials have also been explored as a choice 
for CPB circuit tubing. Disappointingly, although 
surface-bound carbon nanotubes are considered to alleviate 
blood-surface interactions to prevent platelet activation and 
modulate blood biocompatibility [264], in vivo animal exper-
iments first demonstrated that surface-bound multiwalled 
carbon nanotubes cause devastating thrombosis during 
extracorporeal circulation [265].

Conclusion

AKI is a general and critical complication of cardiac surgery, 
and CPB plays a distinctive role in the pathogenesis of AKI. 
The series of physiological and pathological changes result-
ing from CPB-specific manipulations and equipment mainly 
involves hypoperfusion and hypoxia, inflammation, oxidative 
stress, coagulation and hemolysis, and endothelial damage. 
Given the consideration of the causative factors, 
CPB-associated AKI is theoretically preventable, and critical 
judgment of the benefits to the surgical population, opti-
mized CPB, and necessary medical intervention are all poten-
tially effective strategies. Although clinical evidence is still 
insufficient and controversial, the future is promising, and 
additional studies are urgently needed to verify clinical 
efficacy.
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