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Abstract
Objective: Identifying abnormalities on interictal intracranial electroencephalo-
gram (iEEG), by comparing patient data to a normative map, has shown promise 
for the localization of epileptogenic tissue and prediction of outcome. The ap-
proach typically uses short interictal segments of approximately 1 min. However, 
the temporal stability of findings has not been established.
Methods: Here, we generated a normative map of iEEG in nonpathological brain 
tissue from 249 patients. We computed regional band power abnormalities in a 
separate cohort of 39 patients for the duration of their monitoring period (.92–
8.62 days of iEEG data, mean = 4.58 days per patient, >4800 hours recording). 
To assess the localizing value of band power abnormality, we computed DRS—a 
measure of how different the surgically resected and spared tissue was in terms of 
band power abnormalities—over time.
Results: In each patient, the DRS value was relatively consistent over time. The 
median DRS of the entire recording period separated seizure-free (International 
League Against Epilepsy [ILAE] = 1) and not-seizure-free (ILAE > 1) patients 
well (area under the curve [AUC] = .69). This effect was similar interictally 
(AUC = .69) and peri-ictally (AUC = .71).
Significance: Our results suggest that band power abnormality D_RS, as a pre-
dictor of outcomes from epilepsy surgery, is a relatively robust metric over time. 
These findings add further support for abnormality mapping of neurophysiology 
data during presurgical evaluation.

1   |   INTRODUCTION

Interictal electroencephalographic (EEG) biomarkers are 
currently under active research to help localize the epi-
leptogenic zone (EZ), but a key question is their temporal 

stability. Increasing evidence suggests that some markers, 
such as EEG spikes1 and high-frequency oscillations,2 are 
not static, with some studies concluding that long multi-
day recordings are required to observe the full range of 
variability in the interictal markers. To date, there has not 
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Key Points

•	 Normative maps measure expected healthy var-
iations in iEEG band power

•	 Band power abnormalities hold localizing value 
for identifying the epileptogenic zone and pre-
dicting outcome

•	 We investigated the temporal stability of band 
power abnormalities in almost 5000 hours of re-
cordings in 39 patients

•	 Predictions of outcome, using the abnormalities, 
were relatively stable over time; median predic-
tions discriminated groups with AUC = .69

•	 These findings pave the way to clinical transla-
tion of abnormality mapping during presurgical 
evaluation

been a direct investigation of the temporal impact on lo-
calization ability validated with surgical outcome.

Normative band power maps have recently emerged 
as a promising approach to identify the EZ, and we will 
focus on this approach as our interictal biomarker in this 
study. In a given patient, the approach can be summa-
rized as z-scoring interictally observed band power in a 
particular brain region to a normative control distribution 
of expected data in said region, thus deriving a regional 
band power abnormality. With intracranial EEG (iEEG), 
obtaining a normative distribution is particularly chal-
lenging, as healthy control data are not available. Instead, 
the normative distribution is derived from recordings 
from postulated nonepileptic brain areas across a large co-
hort of patients.3–5 The subsequently derived band power 
abnormalities have recently been shown by multiple in-
dependent studies to contain localizing information.6–8 
However, those studies used short segments of EEG or 
magnetoencephalographic (MEG) recordings of approx-
imately 1 min far away from seizures. It is unclear how 
the localizing ability of the approach might fluctuate over 
time.

EEG—specifically, iEEG band power—has been re-
peatedly shown to fluctuate over a range of timescales, 
and specifically circadian fluctuations have been con-
sistently reported.9–13 Previous work also highlights that 
EEG features may change peri-ictally.14,15 It is therefore 
reasonable to assume that band power scored against a 
static normative map also fluctuates over time. Thus, an 
important next step is to investigate how band power ab-
normalities change over time.

In this work, we investigate band power abnormalities 
over time in sessions of iEEG monitoring for presurgical 
epilepsy diagnostics, which typically span multiple days. 
We evaluate how temporal changes affect our ability to 
localize epileptogenic tissue by investigating how well 
we can distinguish tissue that was later resected versus 
spared based on band power abnormality in each brain re-
gion over time. We further test whether there are specific 
peri-ictal changes in our ability to distinguish resected 
and spared tissue and validate all results with patient out-
comes of postsurgical seizure freedom.

2   |   MATERIALS AND METHODS

Our approach was to compute a normative map of in-
terictal iEEG band power to which patients from an in-
dependent site can be compared. Then, in comparing 
patients to the normative map, we could compute band 
power abnormality, with the expectation that if abnor-
malities were present beyond the resection, the patient 
will not be seizure-free. We used preoperative magnetic 

resonance imaging (MRI), postimplant computed tomog-
raphy, and postoperative MRI to localize electrodes to 
parcellated brain regions and identify resection margins. 
We compared resected and spared band power abnormali-
ties using the DRS statistic and investigated its consistency 
over time (up to 9 days). A summary of the processing 
steps is shown in Figure 1.

2.1  |  Patients

We analyzed iEEG data from two cohorts: 39 patients 
with refractory focal epilepsy from the University College 
London Hospital (UCLH; Table  1), and 249 patients 
from the Restoring Active Memory (RAM) dataset. In 
the UCLH cohort, surgical outcomes were defined using 
the International League Against Epilepsy (ILAE) surgi-
cal outcome classification at 12 months postsurgery, with 
ILAE = 1 indicating seizure freedom.16 Our processing is 
broadly similar to previous work.6 We created a norma-
tive map of iEEG band power from the RAM iEEG data. 
The normative map was used as a baseline to compute the 
time-varying iEEG band power abnormalities of the UCLH 
patients. Data were analyzed following approval from the 
Newcastle University Ethics Committee (2225/2017).

2.2  |  MRI processing

To generate a normative map, we localized RAM elec-
trode coordinates to brain regions as described pre-
viously.6 In brief, we assigned electrodes to one of 
128 regions from the Lausanne scale 60 atlas.17 We 
used FreeSurfer to generate volumetric parcellations 
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of a Montreal Neurological Institute space template 
brain.17,18 Each electrode contact was assigned to the 
closest gray matter volumetric region within 5 mm. If 
the closest gray matter region was >5 mm away, then the 
contact was excluded from further analysis. For UCLH 
data, a similar technique was used but applied in native 
space using the patient's own parcellated preoperative 
MRI.

To identify which regions were later resected in the 
UCLH cohort, we used previously described methods.6,19 
We registered postoperative MRI to the preoperative 
MRI and manually delineated the resection cavity. This 
manual delineation accounted for postoperative brain 

shift and sagging into the resection cavity. Electrode 
contacts within 5 mm of the resection were assigned as 
resected. Regions with >25% of their electrode contacts 
removed were considered as resected for downstream 
analysis.

2.3  |  iEEG processing

From each RAM patient, we extracted a single 30-s seg-
ment of interictal iEEG data, recorded during a period 
of relaxed wakefulness. To approximate nonpathological 
brain dynamics, we excluded electrodes located in lesions 

F I G U R E  1   Computing band power abnormality in a sample time window and region in Patient 1. (A) Sample 30-s time window of 
intracranial electroencephalographic (iEEG) data in a subset of Patient 1's contacts. All contacts within a sample region, l.superiortemporal2, 
are highlighted in blue. (B) From the 30 s of iEEG data, the relative log band power of each of the four contacts in the sample region was 
computed. (C) Averaging relative log band power across all of the region's contacts produces the region's relative band power. (D) Relative 
log band power was also computed in a separate cohort of 249 subjects, yielding a normative map of this measure. (E) Patient 1's regional 
relative band power was then z-scored relative to the normative map. The region's abnormality was defined as the maximum absolute z-
score (here, 2.07) across the five frequency bands. (F) The process is repeated for all regions. (G) The abnormality values are normalized so 
their sum equals 1 and plotted for resected and spared regions. This process was repeated for all time windows in each patient.
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or the seizure onset zone. We additionally removed visu-
ally and algorithmically identified noisy electrodes from 
the analysis. Each segment was then rereferenced to a 
common average reference, notch filtered at 60 Hz (2 Hz 
width, fourth order zero-phase Butterworth filter), band 
pass filtered from .5 to 80 Hz (fourth order zero-phase 
Butterworth filter), and downsampled to 200 Hz.

In the UCLH cohort, we first divided each patient's 
continuous iEEG data into 30-s nonoverlapping, consec-
utive time windows. We referenced each window of data 
to a common average reference, with any noisy channels 
(with outlier amplitude ranges) excluded from the com-
puted average. Each segment was then notch filtered at 
50 Hz, band pass filtered from .5 to 80 Hz (fourth order 
zero-phase Butterworth filter), and downsampled to 
200 Hz. Time windows with missing data were omitted 
from the analysis.

We then computed the iEEG band power of both the 
RAM and UCLH iEEG data. We first computed the power 
spectral density (PSD) of each electrode contact in each 
30-s iEEG segment with 2-s, nonoverlapping windows. 
From each PSD, we used Simpson's rule to compute 
band power in five frequency bands: delta (1–4 Hz), theta 
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma 
(30–47.5 Hz, 52.5–57.5 Hz, 62.5–77.5 Hz). We chose the 
gamma band limits to omit electrical noise frequencies. 
We log10 transformed the band power values and, for each 
iEEG segment and channel, normalized the set of five 
band power values to sum to 1, producing the relative log 
band power for each frequency band.

2.4  |  Creating iEEG band 
power normative map

To produce a normative map of relative log band power 
values, we averaged this measure across electrodes and 
patients within each region. First, for each RAM patient, 
we took the mean relative log band power across all of  
the patient's electrodes within each region. This step 
yielded patient-specific relative log band power values  

at the region, rather than electrode, level. The norma
tive map was then defined by the mean �f ,i and SD �f ,i  
of the relative log band power in frequency band f  and 
region i across the RAM patients. Regions with coverage 
from fewer than five subjects were excluded from the nor-
mative map and further analysis. Only one region (right 
accumbens) that was present in one UCLH patient was 
excluded from the downstream analysis due to lack of 
normative map coverage.

2.5  |  Computing time-varying 
abnormalities and DRS

As with the RAM patients, we first computed relative log 
band power values at the region level for each UCLH 
patient within each 30-s time window. As before, this 
transformation was achieved by taking the mean relative 
log band power across all of the patient's electrodes in 
region i. For each frequency band f , region i, and time 
window t  , we then computed a z-score zf ,i,t by standard-
izing the patient's relative log band power bf ,i,t by the 
normative map:

We then defined the patient's band power abnormality 
for each region and time window as the maximum abso-
lute z-score across the five frequency bands, which cap-
tured any type of deviation from the region's normal band 
power. This approach has been previously successful in 
highlighting potentially abnormal epileptogenic tissue.6 
Thus, each UCLH patient's iEEG recording was described 
by time-varying abnormalities in their regions with elec-
trode coverage.

To quantify the level of band power abnormalities in 
resected and spared regions, we computed the distinguish-
ability of resected and spared tissue (DRS) for each time 
window in each UCLH patient. We defined DRS as the 
area under the curve (AUC) for distinguishing resected 

zf ,i,t =
bf ,i,t − �f ,i

�f ,i

Characteristic ILAE = 1 ILAE>1 Test statistic

n (%) 16 (41%) 23 (59%)

Age, mean (SD) 29.7 (4.3) 31.8 (9.5) p = .41, t = −.84

Sex, M, F 7, 9 11, 12 p = .80, �2 = .06

Temporal, extratemporal 8, 8 11, 12 p = .89, �2 = .02

Side, left, right 10, 6 13, 10 p = .71, �2 = .14

Contacts, n, mean (SD) 76.9 (27.5) 63.3 (22.8) p = .1, t = 1.68

Recording duration, h, mean (SD) 122.9 (56.1) 123.1 (43.9) p = .99, t = −.01

Abbreviations: F, female; ILAE, International League Against Epilepsy; M, male.

T A B L E  1   Summary of University 
College London Hospital patient data.
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and spared regions using band power abnormalities, 
with DRS < .5 indicating higher abnormalities in resected 
regions and DRS > .5 revealing higher abnormalities in 
spared regions.

2.6  |  Identifying interictal and peri-
ictal periods

For each UCLH patient, we labeled each time window as 
ictal, interictal, or peri-ictal based on the patient's seizure 
times. From each patient's clinical annotations and re-
ports, we obtained the times and durations of all recorded 
seizures, including subclinical seizures. The 30-s time 
windows containing seizures were labeled ictal windows. 
Time windows within 1 h of an ictal time window, exclud-
ing the ictal time windows themselves, were labeled peri-
ictal windows. Finally, the remaining time windows were 
labeled interictal windows.

2.7  |  Identifying peaks and troughs of 
circadian cycles in a sleep marker

As a marker for sleep/wake periods, we identified each 
patient's circadian cycle in their alpha/delta band power 
ratio, averaged across all regions (see Figure  S2 for de-
tails). Thirty-second time windows with circadian cycle 
phases within �∕4 radians of the cycle peaks and troughs 
were labeled as peak (indicative of wake) and trough (in-
dicative of sleep) periods, respectively.

2.8  |  Code and data availability

Code and data to reproduce the main findings are avail-
able at : https://github.com/cnnp-lab/2023W​ang_Tempo​
ral-stabi​lity.

3   |   RESULTS

We analyzed relative band power abnormalities in contin-
uous iEEG data of 39 patients with focal epilepsy who un-
derwent surgical resection. We focused on the presence of 
abnormalities in spared and resected brain regions in each 
patient, as captured by our measure DRS. In the following 
sections, we first present time-varying abnormalities and 
DRS in two sample patients. We then show the level of DRS 
variability across patients and relate typical DRS values to 
patient surgical outcomes. Finally, we compare DRS values 
in interictal and peri-ictal periods.

3.1  |  Location of abnormalities remains 
relatively stable

Figure  2A shows the time-varying abnormalities of an 
sample patient (Patient 1), who was seizure-free follow-
ing surgery (ILAE = 1). Although there was some spatial 
variability in abnormalities across the recording, abnor-
malities tended to be higher in resected brain regions. As 
such, DRS was <.5 in most time windows, and the median 
DRS across the recording was .29 (Figure 2B). Figure 2C,D, 
which show the abnormalities of a sample time window 
with DRS = .29, further demonstrating the presence of 
higher abnormalities in resected brain regions in this 
patient.

Meanwhile, Patient 2 had a poor surgical outcome 
(ILAE = 4). As in Patient 1, regional abnormalities were rel-
atively consistent across Patient 2's recording (Figure 2E). 
However, in Patient 2, higher abnormalities were located 
in spared regions, producing a DRS > .5 across almost the 
entire recording and a high median DRS of .8 (Figure 2F–
H). Thus, in both patients, the median DRS corresponds 
to postsurgical outcome and is relatively stable over time.

3.2  |  Median DRS over time separates 
surgical outcomes

We next investigated variability in DRS in all 39 patients in 
our cohort. Figure 3A shows the distribution of DRS val-
ues in each patient's iEEG recording. Although there was 
within-patient variability in DRS, most distributions were 
unimodal, with DRS fluctuating around a particular value. 
Thus, although DRS could differ between time windows, it 
was not random or highly variable.

As a simple measure of consistency in DRS, we com-
puted the percentage of time windows in each patient 
with a DRS value of ≤.5 (Figure 3B). We refer to this value 
as the “localizing percentage” of time windows; a high 
percentage indicates that abnormalities were consis-
tently higher in the patient's resected brain regions, and 
thus localized to the hypothesized EZ. For example, in 
Patient 1 (Figure 2A–D), the localizing percentage was 
87.2% due to consistently high abnormalities in resected 
regions. Low localizing percentages, which resulted 
from consistently high DRS values, revealed that abnor-
malities were instead usually higher in spared regions, as 
in Patient 2 (Figure 2E–H; localizing percentage = .3%). 
In 28 of the 39 patients (72%), the localizing proportion 
was either low (≤ 20%) or high (≥ 80%). Thus, in most 
patients, DRS values were either consistently > or <.5, 
indicating a consistent relationship between spared and 
resected abnormalities.

https://github.com/cnnp-lab/2023Wang_Temporal-stability
https://github.com/cnnp-lab/2023Wang_Temporal-stability
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We then determined whether each patient's typical DRS 
value, as captured by the median of their DRS distribution, 
was associated with surgical outcome. Median DRS was 
higher in patients who were not seizure-free (ILAE = 2–5) 
versus seizure-free (ILAE = 1) after surgical resection 
(p = .021, one-sided Wilcoxon rank sum test; Figure 3C), 
and the AUC when using DRS as a binary classifier of 
patient surgical outcome was .69 (Figure  3D). Patients 
who were not seizure-free had median DRS values of >.5 
(p = .006, one-sided Wilcoxon signed rank test), indicating 
higher abnormalities in spared brain regions in this group. 
However, seizure-free patients did not have median DRS 
values of <.5 (p = .455, one-sided Wilcoxon signed rank 
test).

We also explored the amount of data needed to estimate 
patient DRS for surgical outcome predictions (Figure S1). 
We found that estimating DRS from even a small number 
(e.g., five) of randomly sampled, nonconsecutive 30-s seg-
ments provided better and more consistent estimates of 
surgical outcome than using only one 30-s segment per 
patient. No substantial improvement was found beyond 
30 segments. In contrast, estimating DRS from increasing 
numbers of consecutive segments barely improved out-
come prediction.

3.3  |  Interictal and peri-ictal 
time windows perform similarly at 
distinguishing patient surgical outcomes

Finally, we determined whether DRS differed between 
interictal and peri-ictal (defined as within 1 h of a sei-
zure) periods within each patient. Figure 4A shows the 
time-varying abnormalities of Patient 3, with seizure 
times marked with red dashed lines. The pattern of ab-
normalities appears relatively similar across the record-
ing, regardless of the proximity to seizures. Likewise, 
Patient 3's DRS was similar in interictal and peri-ictal 
periods (Figure  4B), and the patient had almost the 
same median interictal and peri-ictal DRS (.61 and .60, 
respectively).

Across patients, we also observed that each patient 
had similar median interictal and median peri-ictal DRS 
(Figure 4C). The median values of each time period were 
not different either across all patients or within patients 
with the same surgical outcome (p = .17 for all patients, 
p = .09 for ILAE = 1 patients, p = .68 for ILAE = 2–5 pa-
tients, two-sided Wilcoxon signed rank tests). As such, 
median interictal and median peri-ictal DRS also per-
formed similarly at distinguishing patients by their 

F I G U R E  2   Time-varying abnormalities and DRS in sample Patients 1 (A–D) and 2 (E–H). (A, E) Heatmap of regional maximum absolute 
band power abnormalities, with each column corresponding to a 30-s time window in the patient's intracranial electroencephalographic 
recording. Abnormalities in each time window are normalized to sum to 1, thus showing each region's contribution to the total abnormality 
in that time window. Resected regions are outlined with a black box. (B, F) Time-varying DRS computed from band power abnormalities. 
Histogram to the right of each plot shows the distribution of DRS in each recording, with the median DRS marked with a bold horizontal line. 
The circle and dashed vertical line mark a sample time window that had a DRS equal to the patient's median DRS. DRS = .5 is also shown with 
a dashed black line for reference. (C, G) Normalized abnormalities of spared and resected regions in the sample time window with DRS equal 
to the patient's median DRS. Quartiles of the abnormality distributions are marked with dashed lines. (D, H) The same abnormalities on a 
brain surface from top and side views. ILAE, International League Against Epilepsy.
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surgical outcomes, with AUCs of .69 and .71, respectively 
(p = .022 and p = .014, one-sided Wilcoxon rank sum tests; 
Figure 4D).

Similarly, we found no consistent influences of our 
sleep/wake marker on DRS or surgical outcome predic-
tions (Figure S2).

F I G U R E  3   Variability in DRS across patients. (A) Distribution of DRS in each patient's intracranial electroencephalographic recording, as 
shown in sample patients in Figure 2B,F. Bold vertical lines show the median of each distribution. Number of days of data used to compute 
each distribution is also provided. (B) Localizing percentage of time windows (i.e., percentage of time windows with DRS ≤ .5) in our cohort. 
(C) Comparison of median DRS in patients who were seizure-free (International League Against Epilepsy [ILAE] = 1) versus not seizure-free 
(ILAE = 2–5) after surgery. Quartiles of the DRS distributions are marked with dashed lines. (D) Receiver operator characteristic curve using 
median DRS as a binary classifier of patient surgical outcome. AUC, area under the curve.
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4   |   DISCUSSION

We have investigated the temporal stability of interic-
tal band power abnormality patterns on iEEG relative 
to a normative map over timescales of multiple days. 
We found that in most patients, the localizing percent-
age of time windows was either low or high, indicating 

that abnormalities were consistently higher in either 
spared regions or resected regions, respectively, across 
each recording. We further demonstrated that the spa-
tial distribution of abnormalities was temporally sta-
ble in terms of its localization ability, even peri-ictally. 
Furthermore, we reproduced the previously reported 
separation of patients by postsurgical outcome based on 

F I G U R E  4   DRS in interictal and peri-ictal periods. (A, B) Interictal and peri-ictal DRS in sample Patient 3. Seizure times are marked with 
vertical dashed red lines. (A) Heatmap of time-varying regional band power abnormalities (normalized to sum to 1). Resected regions are 
outlined with a black box. (B) Time-varying DRS, colored by whether the time window was interictal (gray) or peri-ictal (orange). Histogram 
to the right shows the distribution of DRS and median value (bold horizontal lines) in each time period. (C, D) Interictal and peri-ictal DRS 
across patients. (C) Median peri-ictal DRS versus median interictal DRS of each patient, colored by patient surgical outcome. (D) Comparison 
of median interictal (left) and peri-ictal (right) DRS in patients who were seizure-free versus not seizure-free after surgery. Quartiles of the 
DRS distributions are marked with dashed lines. AUC, area under the curve; ILAE, International League Against Epilepsy.
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median distinguishability of spared and resected tissue 
in each patient.

These findings have important implications for the 
practical application of interictal abnormality detection 
in presurgical evaluation with iEEG. Our results suggest 
that estimating a median abnormality map is sufficient 
to obtain localizing information. Additionally, we found 
that this estimate is best achieved by randomly sampling 
at least several short (e.g., 30 s) segments of iEEG data, 
rather than using a single larger window of continuous 
data. Interestingly, even peri-ictal segments could be used 
to obtain an interictal abnormality map, although we still 
suggest avoiding segments with obvious ictal and peri-
ictal phenomena. Practically speaking, the suitability of 
peri-ictal segments makes adopting the method imme-
diately feasible, as it does not require additional manual 
screening or large amounts of continuous iEEG data han-
dling. Beyond invasive iEEG recordings, our results hint 
at the possibility that noninvasive electrophysiological 
abnormality maps (e.g., based on scalp EEG, MEG) are 
likely also relatively stable over time. This hypothesis is 
supported by a recent MEG study mapping abnormalities 
across multiple epochs.8

Our findings are encouraging, especially when com-
pared to other traditional interictal markers of epilep-
togenic tissue such as interictal spikes. Apart from the 
previously demonstrated added value of band power ab-
normality compared to interictal spikes in our cohort,6 
our results here also seem to suggest that band power ab-
normality is temporally stable enough as a biomarker. It is 
unknown whether a similar stability is seen with interic-
tal spikes, as spike load is reported to be generally higher 
during sleep,20 the pattern and location can vary depend-
ing on brain state,1 and a minimum analysis period of at 
least 24 h has been recommended.1 We encourage future 
work to evaluate and compare the temporal stability of 
more electrophysiological markers directly in the context 
of localization and validate it with surgical resection and 
outcome information.

Despite the temporal stability in terms of localization 
ability, our data also clearly show some level of temporal 
fluctuations in band power abnormalities. These fluctua-
tions do not hamper the relative stability of distinguish-
ability of resected and spared tissue. In particular, the 
circadian cycle in iEEG alpha/delta ratio, which we used 
as a marker of sleep/wake periods, did not consistently 
impact DRS or surgical outcome predictions. Nevertheless, 
temporal fluctuations in abnormalities are present, and 
in some patients clearly structured in time (see, e.g., 
Figure 2A, region l.middletemporal2 for a circadian fluc-
tuation in band power abnormality). These temporal fluc-
tuations could reveal different pathological subnetworks 
and relate to seizure occurrence,21 for example, when they 

coalesce in space and time.22–24 It is also possible that they  
are related to seizure severity or other temporally modu-
lated properties of seizures.9,25,26 The notion of fluctuat
ing pathological subnetworks may also suggest alternative 
treatment strategies of network resections, disconnections, 
or closed-loop neuromodulation of subnetworks.22–24 
Finally, these abnormalities may not be epileptogenic per 
se, but relate to other temporally changing impairments 
in, for example, mood or cognitive performance. Future 
research should not neglect these time-varying aspects 
simply due to our reported temporal stability in terms of 
localization performance, as these aspects may be the key 
to understanding fundamental mechanisms of epilepsy.

An important step for making band power abnormali-
ties more specific and predictive is to account for the nor-
mative map of band power in various brain states. Sleep 
and vigilance states must be accounted for, as their band 
power changes are well known and described in healthy 
humans.27 Although we did not observe consistent sleep/
wake differences in DRS, a sleep normative map may 
highlight sleep-specific pathological dynamics by reveal-
ing deviations from normal sleep states. Cognitive and 
mood states have also been reported in terms of electro-
graphic correlates.28,29 We expect that by accounting for 
brain states and other potential confounds, the abnormal-
ities will become more specific to epileptogenic tissue. In 
clinical practice, we envisage one or multiple short, well-
controlled abnormality mapping paradigms during iEEG 
monitoring with a straightforward but well-defined state/
task.

Another practical consideration for future work is how 
band power abnormality from iEEG information should 
be used. Here, we followed a previously used and straight-
forward method of measuring the distinguishability of 
resected and spared tissue (DRS) and related it to surgical 
outcome. However, other measures besides DRS may need 
to be considered, especially given the abovementioned 
possibility of nonepileptogenic abnormalities and the 
patient-specific spatial sampling in iEEG. Other possibili-
ties include measures that only focus on the abnormality 
of the resected tissue or the proportion of resected abnor-
malities (see, e.g., Owen et al.8).

In a practical clinical workflow, it is also unlikely 
that median band power abnormality from iEEG would 
be considered as standalone information to guide surgi-
cal planning. We therefore envisage a quantitative mul-
timodal approach to guide surgical planning, and there 
are several ways to achieve this goal. For example, abnor-
malities across modalities could be compared directly to 
determine whether they are concordant. Alternatively, 
multiple proposed surgeries could be simulated, and hy-
pothetical DRS values from multiple modalities could be 
combined quantitatively30 to decide on the best proposed 
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resection. Finally, information from multiple modalities 
may also guide implantation of iEEG electrodes, allowing 
for more relevant spatial sampling and better subsequent 
surgical planning.31

In summary, using continuously recorded iEEG, we 
have demonstrated that band power abnormality maps 
are temporally stable in terms of their localizing infor-
mation, despite brain state and seizure-related changes 
throughout the recording. This finding is an important 
cornerstone in establishing the feasibility of band power 
abnormality mapping to aid localization for presurgical 
evaluation. We encourage investigating temporal patterns 
in band power for increased predictive power and mecha-
nistic insights into epilepsy.
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