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Abstract
In perfusion MRI, image voxels form a spatially organized network of sys-
tems, all exchanging indicator with their immediate neighbors. Yet the current
paradigm for perfusion MRI analysis treats all voxels or regions-of-interest as
isolated systems supplied by a single global source. This simplification not
only leads to long-recognized systematic errors but also fails to leverage the
embedded spatial structure within the data. Since the early 2000s, a variety
of models and implementations have been proposed to analyze systems with
between-voxel interactions. In general, this leads to large and connected numeri-
cal inverse problems that are intractible with conventional computational meth-
ods. With recent advances in machine learning, however, these approaches are
becoming practically feasible, opening up the way for a paradigm shift in the
approach to perfusion MRI. This paper seeks to review the work in spatiotem-
poral modelling of perfusion MRI using a coherent, harmonized nomenclature
and notation, with clear physical definitions and assumptions. The aim is to
introduce clarity in the state-of-the-art of this promising new approach to per-
fusion MRI, and help to identify gaps of knowledge and priorities for future
research.

K E Y W O R D S

DCE-MRI, DSC-MRI, perfusion, spatiotemporal modeling, tracer kinetics

1 INTRODUCTION

Perfusion MRI includes the subfields T1-weighted
dynamic contrast-enhanced MRI (DCE-MRI),1,2

T∗2-weighted dynamic susceptibility contrast MRI
(DSC-MRI),3,4 and arterial spin labeling (ASL).5-7 All
three methods use an indicator which modifies the MRI
signal in proportion to its concentration—either MR con-
trast agents (DCE-MRI or DSC-MRI) or magnetically

labeled water (ASL). Rapid dynamic MRI is then used
to track the spatiotemporal variations in signal induced
by the indicator. After deriving indicator concentration
from the measured signal changes, these methods then
apply pharmacokinetic (PK) models to obtain maps or
region-of-interest- (ROI) based measurements of per-
fusion parameters. This review discusses advanced PK
modeling and therefore applies to DCE-MRI, DSC-MRI,
and ASL alike.
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The conventional approach to PK modeling in
perfusion MRI describes the concentration in each voxel or
ROI independently by a one-dimensional (1D) (temporal)
PK model. Conceptually this builds on the fundamental
assumption that each voxel or ROI acts as an isolated
system with a single, global inlet of tracer.2,8-11 The con-
centration in the inlet is typically assumed to be known
and referred to as the arterial input function (AIF). This
assumption effectively separates the problem of model-
ing a single large four-dimensional (4D) dataset into a
large number of small and independent 1D problems.
This makes the analysis highly scalable, parallelizable,
and computationally efficient. On the other hand, the
assumption is obviously invalid and it has been known
for over 20 years that this leads to significant systematic
errors.2,12-16

In principle, the problem can be resolved by drop-
ping the isolated-systems assumption and modeling all
voxels in the imaged volume as connected systems that
all exchange directly with their neighbors.17-19 Unfortu-
nately, this approach presents significant computational
challenges that have so far proven insurmountable. Yet
with the increase in computational power and the advance
of machine-learning,20,21 solutions are becoming practi-
cally feasible. New approaches to spatiotemporal modeling
of DCE-MRI are increasingly proposed, but comparing
methods and models between papers presents a signif-
icant challenge due to differences in physical concepts,
terminology and notations.

The aim of this review is to summarize all relevant
developments on spatiotemporal PK modeling of perfu-
sion MRI data in a common framework. This will establish
a firm foundation for future developments, facilitate iden-
tification of knowledge gaps, and lower the barrier for
entry in the field for new researchers.

2 HISTORY AND SCOPE

The discussion about the foundations of perfusion MRI
is as old as the field itself. In 1990, Henkelman17 argued
that the very definition of perfusion as inflow per unit
volume is not physically justifiable in an imaging set-
ting because fluid flow scales with area rather than vol-
ume. While undeniably true, these objections were largely
ignored until the early 2000’s when Thacker et al.18 pre-
sented a technique for DCE-MRI that introduced the con-
cept of cerebral blood flow orientation in terms of spatial
gradients in mean transit time. Similar ideas were pro-
posed by Christensen et al.22 in DSC-MRI using the gra-
dient of arterial delay times to derive information about
the directionality and orientation of perfusion. Within
ASL, an experimental approach for measuring perfusion

orientation was proposed which involved labeling planes
in different orientations.23 From a different angle, the idea
of spatial coherence between neighboring voxels has been
exploited to estimate AIFs from tissue-level data by a joint
fitting of multiple voxels.24-26

While these ideas go some way to demonstrate the
potential of using spatial information in the analysis, they
are limited by the lack of a clear underlying theoretical
framework that can be used to build models of spatiotem-
poral indicator propagation. Since the early 2010’s increas-
ing numbers of papers have proposed concepts borrowed
from continuum mechanics, computational fluid dynam-
ics or porous media theory to build spatiotemporal gener-
alizations of classic 1D PK models. The earliest proposal
dates back to Pellerin et al.27 using a spatial model of inter-
voxel diffusion but retaining the concept of a global AIF to
model indicator delivery to the voxel through the vascula-
ture. A first step toward a more general formulation, albeit
conceptually confused, can be found in a self-published
report from 2013.28

In 2014 these ideas were placed on a more rigorous
footing including also multi-compartmental systems.19

One of the consequences is the natural emergence of a for-
mal definition of perfusion (F, in units of mL/min/mL)
as the divergence of the arterial flow (f a, in units of
mL/min/cm2):

F = −∇ ⋅ f a
. (1)

In words, this states that the perfusion of a piece of tis-
sue is the part of the arterial flow into the tissue that is
converted into venous flow out of the tissue. In particu-
lar, this does not include the contribution of blood vessels
(arterial or venous) that pass through the tissue without
feeding its capillaries. This formal definition therefore cor-
rectly formalizes the true physiological notion of perfusion
as “feeding flow” or “capillary flow” into a given tissue.
Moreover, since divergences scale with volume, this fully
resolves Henkelman’s original objection17 to the conven-
tional definition of tissue perfusion as inflow per unit
volume.

The main barrier to a more widespread adoption of
spatiotemporal models is the computational challenges in
applying these to the inverse problem of deriving perfusion
parameters from data. While the number of free parame-
ters per voxel is similar to standard 1D models, the voxels
can no longer be solved independently. Spatiotemporal
models therefore present a single global inverse problem
with, for a typical three-dimensional (3D) time series,
millions of free parameters. And while the problem is lin-
ear for the simplest one-compartmental spatiotemporal
models, it is nonlinear in the more general setting of
multi-compartment models.
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The scope of this review is therefore restricted to
studies applying spatiotemporal modeling to the inverse
problem. This excludes a substantial body of the literature
using spatiotemporal models as forward models to simu-
late data. Often these papers aim to generate digital refer-
ence objects to investigate and quantify the error caused
by neglecting spatial coherence. An example is a study by
Barnes et al.29 investigating the impact of intra-voxel dif-
fusion on the accuracy of conventional DCE-MRI param-
eters. Another example is a model of the circulation
designed to determine the accuracy of conventional per-
fusion analysis as a function of ROI size.16 Incidentally,
the latter provides in silico support for Henkelman’s objec-
tion, showing that the classic definition of perfusion cre-
ates a dependence on voxel size, with increasing bias
for smaller voxels. Another application of computational
fluid dynamics-type forward models is to help predict
and understand drug delivery to tissues, informed by
DCE-MRI data.30-32 Often these models are multiscale,
coupling flow in large blood vessels to microvascular flow
and interstitial transport. This is part of a wider literature
on multiscale computational modeling of the circulation
and biological transport mechanisms.33 While these mod-
els may be informed by perfusion MRI, they are out of
scope for this review unless the models are used to fit the
spatial perfusion parameter fields from measured data.

3 MODEL CLASSIFICATION

A timeline of the publications in scope for this review is
shown in Figure 1. Comparison of the model architectures
described in these papers reveals nine nested spatiotempo-
ral models of increasing complexity, illustrated in Figure 2
and defined using harmonized notations in Table 1. These

nine nested models can be classified as either one-,
two- or three-compartment models depending on the
number of distinct compartments in each tissue voxel.
Within each group they can be further differentiated based
on (1) the transport mechanisms described, such as diffu-
sion, convection, or exchange; (2) the compartment types
such as interstitial, arterial, or venous space; and (3)
whether an external input function is utilized.

The symbols and notations in this paper have been
modified from the original publications and harmonized
as shown in Table 1 following the definitions in Refer-
ence 19. The aim is to reveal the structural differences
and similarities between models more clearly. The total
tissue concentration, C(r⃗, t), is a directly measurable quan-
tity and is defined as number of contrast agent molecules
per volume of tissue (mmol/mL). If the tissue is built up
of multiple compartments, the contribution of a compart-
ment 𝛾 to the tissue concentration is given as C𝛾 (r⃗, t),
and physically defined as the number of contrast agent
molecules in the compartment 𝛾 , relative to the volume
of the entire tissue (mmol/mL). Examples are the tis-
sue concentration in interstitium Ce(r⃗, t), plasma Cp(r⃗, t),
arteries Ca(r⃗, t) or veins Cv(r⃗, t). With this definition,
the total tissue concentration C(r⃗, t) is always the direct
sum of the concentrations in the individual compart-
ments. For instance, if a tissue is modelled as consisting
of plasma and interstitial compartments, the total tissue
concentration is:

C(r⃗, t) = Cp(r⃗, t) + Ce(r⃗, t). (2)

The volume fractions do not appear in these equations
because concentrations are defined relative to the total
tissue volume rather than the compartmental volume.
While the equations can be recast to an alternative

F I G U R E 1 Timeline of contributions within the literature landscape leading toward developing spatiotemporal tracer kinetics. The
studies listed are grouped by the theme of the work or model applied using distinct colors as indicated by the key.
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F I G U R E 2 Diagrams of the nine spatiotemporal models proposed in the literature (model equations are given in Table 1). Each model
is illustrated for a central voxel and four neighbors, with interstitial (green) and/or vascular compartments (red for arterial or total blood
compartments, and blue for venous). Solid colored lines and double-ended arrows show between-voxel transport by convection and diffusion,
respectively, within a given compartment. Black arrows show within-voxel exchange between different compartments. Shown are
(A) A one-compartment system with interstitial diffusion; (B) A one-compartment system with interstitial convection and diffusion;
(C) A one-compartment system with interstitial diffusion and a vascular input; (D) A one-compartment system with interstitial convection
and diffusion and a vascular input; (E) A one-compartment system with vascular convection; (F) A one-compartment system with vascular
convection and diffusion; (G) A two-compartment system with vascular convection, interstitial convection and diffusion with bidirectional
exchange; (H) A two-compartment system with vascular convection and mono-directional exchange; (I) A three-compartment system with
interstitial convection and diffusion, vascular convection, and directional exchange.

picture involving volume fractions, flows, and perfusion
explicitly (see Reference 19 for details), this introduces
additional free parameters that then have to be constrained
by adding new constraints. The total blood flow per unit
surface area (f, in units of mL/min/cm2) is defined from

velocity (u, in units of cm/min) and volume fraction (v,
in units of mL/mL), by f = vu. As f is incompressible the
systems are constrained as:

∇ ⋅ f = v∇ ⋅ u + u ⋅ ∇v = 0. (3)
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T A B L E 1 Summary of general system types for spatiotemporal tracer kinetics.

Model Figure Dimension Studies Transport equations

1C interstitial diffusion 2A 3D Koh et al.46 𝜕Ce

𝜕t
= De∇2Ce

1C interstitial convection/
diffusion

2B 3D Elkin et al.47 𝜕Ce

𝜕t
= De∇2Ce − ∇ ⋅ ueCe

1C interstitial diffusion
with vascular input

2C 2D Pellerin et al.27

and Fluckiger et al.45

𝜕Ce

𝜕t
= Ktrans

(
cin − Ce

ve

)
+ ∇ ⋅ De∇Ce

1C interstitial convection/
diffusion with vascular input

2D 2D Sinno et al.48,49 𝜕Ce

𝜕t
= Ktrans

(
cin − Ce

ve

)
+ ∇ ⋅ De∇Ce − ∇ ⋅ ueCe

1C vascular convection 2E 3D Zhou et al.50

and Zhang et al.52

𝜕Cp

𝜕t
= −∇ ⋅ upCp

1C vascular convection/
diffusion

2F 2D 3D Zhang et al.,51

Sourbron53

and Liu et al.54-56

𝜕Cp

𝜕t
= −∇ ⋅ upCp + ∇ ⋅ Dp∇Cp

2C interstitial convection/
diffusion with vascular
convection and exchange

2G N/A Sourbron19 𝜕Cp

𝜕t
= −∇ ⋅ upCp − KepCp + KpeCe

𝜕Ce

𝜕t
= −∇ ⋅ ueCe + ∇ ⋅ De∇Ce + KepCp − KpeCe

2C vascular convection and
exchange

2H 2D Nævdal et al.57a 𝜕Ca

𝜕t
= −∇ ⋅ uaCa − KvaCa

𝜕Cv

𝜕t
= −∇ ⋅ uvCv + KvaCa

3C interstitial convection/
diffusion with vascular
convection and exchange

2I N/A Sourbron19 𝜕Ca

𝜕t
= −∇ ⋅ uaCa − KvaCa − KeaCa

𝜕Cv

𝜕t
= −∇ ⋅ uvCv + KvaCa + KveCe

𝜕Ce

𝜕t
= −∇ ⋅ ueCe + ∇ ⋅ De∇Ce + KeaCa − KveCe

Notes: Models are named from the transport mechanisms and input type. All models are defined diagrammatically in Figure 2, with each specific sub-figure
indicated here. The transport equations are shown for each model. Studies from the literature concerning the theory or implementation of specific model types
are detailed. Cases that utilize different but equivalent equations from the presented models are tagged with superscript letter “a.” Where implementations are
available the dimension of the method is shown, any models tagged N/A are purely theoretical.

Using tissue concentrations up front simplifies the
equations and numerical challenges, and ensures the mod-
els are defined using the least number of free parameters.
After solving for the models in this picture, any missing
markers such as volume fraction, perfusion or blood flow
can then be derived as described in Reference 19.

The indicator in a compartment 𝛾 is transported
between voxels by velocity fields, u𝛾 (r⃗), and diffusion fields,
D𝛾 (r⃗). Indicator exchange within a voxel between compart-
ments 𝛽 and 𝛾 is denoted by rate constants K𝛾𝛽(r⃗), describ-
ing exchange from 𝛽 to 𝛾 . Some models have an AIF, cin(t),
without a positional coordinate r⃗, that represents a global
vascular input.

The following sections provide a more detailed
description of the nine models identified including numer-
ical implementations, and important results. For clarity,
the models are detailed in order of increasing model
complexity.

4 ONE- COMPARTMENT MODELS

In one-compartment systems, the compartmental tracer
concentration is simply the tissue concentration and is

therefore directly accessible through measurement. The
implications are that one-compartment models with con-
vection and diffusion can be recast as a first-order lin-
ear system of equations. The majority of the work on
inverse approaches for spatiotemporal models has focused
on one-compartment systems. These effectively describe
the voxel as a single compartment with a uniform con-
centration, and model the exchange of indicator between
voxels using diffusion and convection either separately or
concurrently. Beyond the precise type of contrast mech-
anisms, these models differ in the physical compartment
that is modeled (intravascular or extravascular), or, equiva-
lently, which tissue spaces are assumed to carry negligible
amounts of indicator.

An increasing body of evidence using forward models
has demonstrated that ignoring between-voxel intersti-
tial exchange can lead to significant bias on parameters
such as Ktrans.29,34-38 Initial developments in spatiotempo-
ral analysis of perfusion MRI therefore aimed to eliminate
this bias by modeling interstitial convection and diffusion.
Additionally, the introduction of interstitial convection
enables the accurate representation of tumor regions with
significant interstitial fluid pressure gradients that drive
detectable advective transport.39-42 Only more recently,
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attention has turned to spatiotemporal models of vascular
transport by convection and diffusion.

4.1 Interstitial diffusion

Pellerin et al.27 introduced a one-compartment model
with interstitial diffusion and a global vascular input
function (Figure 2C). The model introduces a new inter-
stitial diffusion parameter, De, which acts to transport
contrast agent through the interstitium between adjacent
voxels. The model does not incorporate vascular transport
between voxels, instead retaining the assumption that
contrast agent is delivered to the voxel through a global
AIF. Effectively the model, therefore, extends the standard
Tofts model8,9 with between-voxel diffusion in the inter-
stitial space. As in the standard Tofts model it is assumed
that the concentration in the plasma space is negligible
compared to that in the interstitial space, so the measured
concentration is made up of the interstitial concentration
only (C = Ce).

Pellerin et al.27 reduce the computational challenge
of the inverse problem by considering a two-dimensional
(2D) system only, and assuming De everywhere is a known
parameter. All De values were fixed to a constant (in the
simulations) or spatially dependent but derived from a
measured apparent diffusion coefficient of water (in data).
Optimization was implemented using a simulated anneal-
ing algorithm,43 a stochastic optimization method that
improves parameter recovery in systems with local min-
ima.44

Experiments include a synthetic dataset and 2D slices
of mouse DCE-MRI data. The synthetic data modeled 2D
circular tumor with a highly perfused rim and necrotic
core. Ktrans was defined to be zero at the core so the only
means of contrast agent transport in the core is via inter-
stitial diffusion. The conventional Tofts model produced
unphysical ve > 1 in the necrotic core, underestimated
Ktrans in the rim, and overestimated it in the core. These
biases disappear after adding the interstitial diffusion
terms, allowing a nonvascular transport pathway to the
tumor core.

In 2013,45 the same team reduced the computational
complexity of the model by assuming the differences in ve

and the diffusion coefficient between adjacent voxels are
negligible. These assumptions decouple the equations of
individual voxels, allowing for a voxel-by-voxel analysis of
the data. This also implies that the interstitial diffusivity of
the contrast agent can be fitted as a free parameter.

The result is a drastic reduction in computation time
compared to the original model from Pellerin et al.27 on
the same reference object and using the same optimiza-
tion method, computation time was reduced from 70 h

to 52 s—almost reaching the efficiency of standard Tofts
modeling (11 s). Unfortunately, the results also showed
large spatial gradients in diffusivity and Ktrans, indicating
that the assumptions do not capture the true behavior
of the system. Additionally, due to the voxel-wise fitting
approach the control over global contrast agent
conservation is eliminated. This drawback is recognized
within the work,45 and it is proposed that future itera-
tions of the method should seek to enforce global mass
conservation.

Also in 2013, Koh et al.46 proposed a one-compartment
model with interstitial diffusion (Figure 2A). This sim-
plifies the model proposed by Pellerin et al.,27 by remov-
ing contrast agent delivery through a global input fol-
lowed by extravasation. As such, between-voxel diffu-
sion remains the sole mechanism for indicator transport
through the system. The model equations can in principle
be solved directly for the diffusion coefficient by dividing
the time-derivative of the concentration by its Laplacian.
Experiments for this method46 included 14 sets of 3D mice
xenograft DCE-MRI data of varying cancer types. In prac-
tice, stability in the presence of noisy data was improved
by clustering voxels with similar contrast-enhancement
patterns, and solving for a single diffusion coefficient in
each cluster. While this approach is obviously limited
by the strong assumption of diffusion-only transport, it
presents an elegant solution for areas such as homoge-
neous necrotic tumor cores where these assumptions are
justified.

4.2 Interstitial convection
and diffusion

In 2019, Elkin et al.47 introduced a one-compartment
model with interstitial convection and diffusion
(Figure 2B). The model applies interstitial diffusion
and convection parameters to distribute contrast agent
through the interstitium between adjoining voxels. A
global vascular input is not included in the model, effec-
tively assuming that all transport between voxels takes
place via the interstitium.

Elkin et al.47 reduce the scale of the inverse problem by
asserting the contrast agent mass density can be written as
a function of velocity. For optimization, an operator split-
ting method followed by a Gauss–Newton minimization is
applied.58 Uniquely, a forward flux is defined as the aver-
age velocity magnitude over an initial time period and a
backward flux for the remaining time interval.

Experiments included 10 sets of 3D head and neck
squamous cell carcinoma patient DCE-MRI data. While
both the standard Tofts model Ktrans parameter and pro-
posed forward flux follow similar trends, abrupt changes
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between neighboring slices and voxel are present in
the Ktrans maps. Accounting for between voxel transport
helped maintain the integrity of the forward flux estima-
tions in the same regions.

Recently, Sinno et al.48 explored parameter recovery
in tumor regions using a one-compartment system with
interstitial convection and diffusion with a global vas-
cular input. This model is an extension of the standard
Tofts model with additional diffusion and convection
terms for contrast agent transport through the intersti-
tium between neighboring voxels (Figure 2D). For vascular
input, the model applies an AIF-based approach. It, there-
fore, extends the approach proposed by Pellerin et al.27

with interstitial convection, or generalizes the model in
Elkin et al.47 with a global AIF.

Sinno et al.48 reduce the complexity of the inverse
problem by assuming radial symmetry, fitting 1D ROIs
extending from the tumor center. Within each ROI diffu-
sion is further assumed to be constant. The optimization
approach is largely standard, applying a MATLAB ® non-
linear solver.

Experiments detail a set of 2D synthetic radially sym-
metric tumor models,48 and a set of 2D human cervi-
cal carcinoma xenograft DCE-MRI data.49 Their results
highlighted a successful differentiation of increased tumor
periphery velocities along with considerable diffusivity at
the tumor core. Due to assumed symmetry, tracer flow is
restricted to along the radial direction only. Within the
xenograft study ve is assumed constant, in contrast to their
synthetic study where it was a free parameter. A sensitiv-
ity analysis showed no evidence of an impact on transport
parameter fits for a fixed ve between 0.5 and 1. However,
for smaller fixed ve the results became significantly differ-
ent. As such, the validity of fixing ve is highly dependent
on the influence it exerts on its co-variant parameters.

4.3 Vascular convection

Several studies from a group at Cornell have developed
a one-compartment model with vascular convection.50,52

The model introduces a spatially variable velocity coeffi-
cient, up, which acts to transport contrast agent through
the vascular space between adjacent voxels (Figure 2E).
Any diffusive transport between voxels is neglected due to
the large magnitude of blood velocity.

For the inverse problem, this group50,52 uses
least-squares optimization on the concentrations to fit
for up in each voxel. Specifically, an alternating direction
method of multipliers with a conjugate gradient algorithm
is applied. A regularization term based on the velocity
gradient is employed, acting to enforce smoothness in the
recovered velocity field.

Experiments comprise 3D synthetic datasets
and 3D clinical data covering varied physiologies
such as liver52 and kidney.50 For synthetic data
production, a 1D nonlinear network of cylindrical
models—solved using Poiseuille’s law—are employed
to represent the 3D microvascular network. To compare
against the ground truth the convection and Navier–Stokes
velocities are assumed to be equivalent.

For the synthetic data sets in Zhou et al.50 the intro-
duced method achieved a smaller up error than the Kety’s
method blood flow when compared with the ground truth
up values. While these approaches are clearly limited by an
assumption of convection-only transport, for intravascular
indicators or highly vascularized well-mixed systems this
may well be justified.

4.4 Vascular convection and diffusion

The Cornell group, applying a similar inverse
approach,50,52 developed their method to include diffu-
sive transport.51 Experiments include 3D clinical breast
DCE-MRI data, where Zhang et al.51 reported a more sta-
tistically significant distinction between malignant and
benign breast tumors in up than Ktrans from the Tofts
model.

Sourbron53 introduced a one-compartment model with
both vascular convection and diffusion (Figure 2F). The
inclusion of vascular diffusion increases the number of free
parameters per voxel compared to convection alone, but
actually simplifies the numerical problem by allowing for
bi-directional exchange at every voxel interface.

With this generalization, the inverse problem becomes
linear and can be solved with standard matrix inversion
methods. The unknowns of the discrete inverse system
are rate constants at each voxel surface, which represent
a combination of the diffusive and convective transport
parameters. After solving the linear system for these rate
constants, the results can then be converted back to con-
vection and diffusion fields.

Experiments include a 2D synthetic data test case with
a population AIF at selected boundary voxels, and the
transport equations are solved by forward propagation of
the linear system. Results showed that while the concen-
trations were reconstructed accurately from the data, the
fitted parameter maps showed a deviation from the ground
truth. These results indicate that the inverse problem in
spatiotemporal modeling of DCE-MRI is not in general
well-posed and multiple possible solutions exist that are
compatible with the data. Strategies to resolving the degen-
eracy include refining the experimental conditions (e.g.
faster injections or sampling), and/or adding regularizing
constraints to select solutions with particular properties.
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Within the DSC community, Liu et al.54 also propose
a one-compartment model with both vascular convection
and diffusion (Figure 2F). The model introduces spatially
variable velocity and diffusion coefficients, up and Dp,
respectively, which act to transport contrast agent through
the vascular space between adjacent voxels.

To reduce the complexity of the estimation Liu et al.54

assume up is incompressible. In consequence, this effec-
tively constrains the system to have a constant volume
fraction (Equation 3). For the inverse problem, Liu et al.54

use a stochastic gradient descent method to minimize the
mean square error between the model and measurement
concentration. Regularization terms based on gradients in
diffusion and velocity are employed to enforce smoothness
in recovered transport parameter fields. Their approach
returns 3D maps of up and Dp.

Experiments consist of two synthetic and 43 human
stroke lesion DSC-MRI data sets, both in 3D. Their syn-
thetic datasets comprise of (1) purely convective and (2)
purely diffusive transport, with various noise levels. The
ground truth maps used for up are derived using the
inverse technique on a brain DSC-MRI dataset, while Dp

are derived from apparent diffusion coefficient values.
Their synthetic investigations report a low error recov-

ery of up and Dp that is robust to noise level increase.
Within the stroke lesion study, Liu et al.54 consistently
report lower velocity and diffusion values within lesion
regions than normal regions. Additionally, their feature
maps report a similar or improved interpretation of the
stoke lesions when compared to standard perfusion maps.

The same group utilize partially supervised convo-
lutional neural networks fitting the same system type
(Figure 2F) to decrease computational time.55,56 These
methods55,56 also apply velocity incompressibility and
parameter regularization as in the original study.54 Across
10 of the same ischemic stroke data sets the new convolu-
tional neural network-based methodology showed greater
distinction between lesion and normal regions than their
previous work54 or standard perfusion metrics.

5 MULTI- COMPARTMENTAL
MODELS

While one-compartment models have some practical util-
ity, it is well-known that most tissues require at least
two compartments for an accurate description of their
indicator concentrations. For instance, the assumption
that intra- and extravascular spaces are well-mixed, is
in general not justified. Unfortunately, moving from
one-compartment to multi-compartment spatiotemporal
models comes with a step change in computational com-
plexity.

In a multi-compartment setting, the concentrations
in the individual compartments are hidden and only the
total concentration is directly accessible to measurement
(Equation 2). Hence the multi-compartment spatiotempo-
ral model inherently requires solving a nonlinear system
with hidden variables, or a linear system of higher order.

The literature is extremely sparse. Most spatiotemporal
equivalents of standard multi-compartment models only
exist as theoretical proposals, or still rely on a global tem-
poral input function, which does not model between-voxel
transport in the vasculature.

5.1 Interstitial diffusion and vascular
input

Sainz-DeMena et al.59 report a two-compartment system
with interstitial diffusion and a vascular input. This model
applies a diffusion coefficient, D, which acts on the total
tissue concentration. The vascular component is a nonneg-
ligible plasma space vp with spatial variation and supplied
by a global AIF.

Sainz-DeMena et al.59 reduce the computational com-
plexity of the inverse problem by considering 2D systems
only, and assuming D everywhere is a constant known
parameter. Minimization was implemented using a Trust
Region Reflective algorithm, which handles sparse matri-
ces efficiently.

Experiments include the 2D circular synthetic tumor
previously proposed27,45 and a 2D heterogeneous synthetic
tumor with various noise levels. The proposed diffusion
term enabled the method to consistently outperform the
extended Tofts model for parameter accuracy in noise-free
scenarios. For systems with low measurement noise, the
method showed significantly reduced fitting accuracy, par-
ticularly for vp, compared to the relative stability of the
extended Tofts model.

5.2 Vascular convection with exchange

Nævdal et al.57 implemented a two-compartment system
defined by Sourbron,19 modeling blood flow in arterial-
and venous compartments and mono-directional trans-
port from arteries to veins by perfusion (Figure 2H). Their
implementation employs a Darcy flow approach to define
the arterial and venous velocities, with the intravoxel
exchange from artery to vein mediated by a porous cap-
illary space. Darcy flow is commonly used in porous
media to describe pressure-driven fluid flow.60 To relate
this model to biology, porosity and permeability are inter-
preted in terms of compartmental volume fractions and
the transport between compartments.
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Concerning the inversion problem, Nævdal et al.57

decrease the computational complexity by applying a pri-
ori knowledge of either the permeabilities or porosity val-
ues to reduce the number of free parameters. For optimiza-
tion, an Ensemble Kalman filtering method is applied, a
popular method for parameter estimation in geoscience.61

Experiments included two synthetic 2D systems. The
proposed method was applied for two separate investi-
gations, either using known porosity values, or known
permeability values. While the accuracy of the recov-
ered porosity and permeability values are encouraging,
the special cases presented apply very specific assump-
tions that would be inaccessible from a clinical DCE-MRI
dataset.

5.3 Three-compartment models

A theoretical three-compartment system has been
proposed19 characterized by separate arterial and
venous compartments with convective transport and an
interstitial compartment with both convective and dif-
fusive transport. These compartments interact with a
mono-directional exchange from artery to vein or inter-
stitium and interstitium to vein (Figure 2I), following the
picture of microvascular exchange involving extravasation
at arterial ends of capillaries and reabsorption at venous
ends. All the previously presented lower complexity com-
partment models are special cases of this general descrip-
tion. To the best of the authors’ knowledge, there currently
exists no implementation of a three-compartment
system.

6 DISCUSSION

This review has presented nine nested compartmental
approaches that currently exist within the community.
Of these nine models, seven have existing numerical
implementations to recover between-voxel transport coef-
ficients, covering systems from pure interstitial diffusion
to dual vascular convection with exchange. The presented
approaches differ in complexity and applied assumptions,
but all seek to extract spatial information that is inaccessi-
ble to single voxel modeling.

While all approaches build in methods of transport
between voxels, either by diffusion and/or convection,
some still assume a global vascular input to supply
each voxel.27,45,48,49 While convenient, this in some sense
bypasses the key challenge of modelling transport to a
voxel via exchange with neighboring voxels. Most recent
work therefore has focused on removing the assumption
of a global source.46,51-53 Looking forwards, the further

development of methods that do not require a global
input is critical to achieve realistic models of indicator
propagation across larger distances.

A prevailing problem limiting progression within this
topic, is the availability of software implementations from
previous studies. To the best of the authors’ knowledge,
there are no freely available software implementations
for any of the presented methods. Consequently, in order
to apply or develop any of the previously implemented
approaches, researchers are faced with the major chal-
lenge of replicating the synthetic data and inversion
methodology. Such re-implementation is a significant time
investment and acts as a barrier to the future develop-
ment of otherwise promising methodologies. Moving for-
wards, increased efforts to publish algorithm and software
details via open-source sharing platforms such as GitHub
would be invaluable. Not only will open science enable
fast external implementation of existing methods but it
can also help boost citations and collaboration opportu-
nities.62 In recent years, there has been increased focus
on open science within the perfusion imaging commu-
nity via the forming of the International Society for Mag-
netic Resonance in Medicine Open Science Initiative for
Perfusion Imaging an initiative and activity of the Inter-
national Society for Magnetic Resonance in Medicine
Perfusion study group.63 Contributions from Open Sci-
ence Initiative for Perfusion Imaging and related projects
cover challenges, code libraries,64 standardized data for-
mats,65 and recommended lexicon naming conventions
for DCE, DSC, and ASL.66,67 Application of these and
other software development guidelines68-70 to new contri-
butions within the field will help to accelerate the pace of
progression.

Another major hurdle to the development of useful
spatiotemporal tracer kinetics modeling is the runtime of
newly developed methods. Moving from single voxel mod-
eling where each voxel may be fit independently, to a
scenario where all voxels must be concurrently fit requires
increased computational power. Some of the newly devel-
oped techniques apply assumptions within their models to
reduce the number of free parameters per voxels, to reduce
the computational requirement. While a useful exercise,
new developments should focus on a reduction of phys-
ically inaccessible assumptions. Presenting an overview
of computational runtimes for the implementations dis-
cussed in this review is not feasible without replicating the
studies: apart from two studies27,45 reported runtimes are
unavailable.

Spatiotemporal tracer kinetic analysis would benefit
from a fully generalized method for parameter recon-
struction of any specified compartment model from tissue
concentration data. Going forward, research in the field
should focus on the development of methods that tackle
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the multi-compartment inversion problem from small in
silico test systems up to four-dimensional in vivo datasets.
This development to increasingly complex systems will
incur a heavy computational load. For example, a fully spa-
tial model with just two compartments has up to five free
parameters to fit per voxel—compartmental convection
and diffusion coefficients and an inter-compartment
exchange term. Such a high number of target parameters
alongside a large volume of data appears to lend
itself to machine learning approaches, such as the
convolutional neural network methods proposed.55,56 A
relatively new branch of the machine learning field is
Physics Informed Neural Networks (PINNs),20,71 which
incorporate the underlying system physics within the
loss function to avoid unphysical solutions. The most
applicable advance from the PINNs field is a method
developed to identify parameters of the Navier–Stokes
equations from concentration-time data.21 A promising
future direction for this work would be the adjustment
of the PINNs network architecture to handle compart-
mental structures and tracer kinetics equations. Such a
network would need to output the compartmental con-
centrations alongside relevant transport coefficients. To
construct the physics-informed aspect of the network,
governing equations would be specified (e.g. any system
in Table 1) and used to form residual equations. Appropri-
ate steps for nondimensionalization would be required,
alongside suitable activation functions and weighting
schemes.72,73 Due to the PINNs layout, modification of the
output fields and system dimensions should be relatively
straightforward, thereby creating a general inversion
framework.

On a fundamental theoretical level, the spatiotempo-
ral field currently lacks some broader understanding of
the uniqueness of solutions, and to what extent this is
affected by experimental conditions. This has been iden-
tified as a problem in several studies,48,53 and is pivotal
to the future development of inversion methods. Espe-
cially in multi-compartmental systems, proof of unique
solutions would increase confidence in results where
recovered parameters show good agreement with con-
centration data. The extent to which an AIF is recover-
able from the available measurement data, or whether it
needs to be separately measured, is of particular inter-
est. Additionally, further investigation into the depen-
dence of uniqueness on experimental design is needed
to reliably define solvable systems and conditions. Sim-
ilar work on system design in standard perfusion quan-
tification demonstrates that solutions degenerate if the
indicator is not injected rapidly, or if sampling is too
slow or too limited in duration.74,75 It is likely that
similar limitations are valid for spatiotemporal models, but
no data currently exists to guide experimental design.

7 CONCLUSIONS

Nine nested model architectures for vascular-interstitial
tissues have been identified, although two of those
have only been described theoretically. The most com-
plex model currently implemented is a spatiotemporal
two-compartment exchange model. While these
developments show promise, there exist unmet needs
for model assumptions that apply to real-world problems
and for robust computational approaches to the inverse
problem.
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