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Abstract
Ancient DNA can directly reveal the contribution of natural selection to human genomic variation. However, while 
the analysis of ancient DNA has been successful at identifying genomic signals of selection, inferring the phenotypic 
consequences of that selection has been more difficult. Most trait-associated variants are noncoding, so we expect 
that a large proportion of the phenotypic effects of selection will also act through noncoding variation. Since we can
not measure gene expression directly in ancient individuals, we used an approach (Joint-Tissue Imputation [JTI]) 
developed to predict gene expression from genotype data. We tested for changes in the predicted expression of 
17,384 protein coding genes over a time transect of 4,500 years using 91 present-day and 616 ancient individuals 
from Britain. We identified 28 genes at seven genomic loci with significant (false discovery rate [FDR] < 0.05) changes 
in predicted expression levels in this time period. We compared the results from our transcriptome-wide scan to a 
genome-wide scan based on estimating per-single nucleotide polymorphism (SNP) selection coefficients from time 
series data. At five previously identified loci, our approach allowed us to highlight small numbers of genes with evi
dence for significant shifts in expression from peaks that in some cases span tens of genes. At two novel loci (SLC44A5 
and NUP85), we identify selection on gene expression not captured by scans based on genomic signatures of selection. 
Finally, we show how classical selection statistics (iHS and SDS) can be combined with JTI models to incorporate func
tional information into scans that use present-day data alone. These results demonstrate the potential of this type of 
information to explore both the causes and consequences of natural selection.

Key words: ancient DNA, gene expression, human evolution, time series.

D
iscoveries 

Received: October 16, 2023. Revised: February 02, 2024. Accepted: March 01, 2024
© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly 
cited. Open Access

Introduction
Ancient DNA (aDNA) time series can provide direct 
evidence of natural selection on specific variants, avoiding 
confounding factors associated with inferring selection 
using modern data (Marciniak and Perry 2017; Dehasque 
et al. 2020; Mathieson 2020). However, in itself ancient 
DNA does not provide any information about the func
tional consequences of selection, limiting our ability to 
learn about phenotypes under selection and to identify ef
fects of selection that may for example affect disease risk.

One problem is that, similar to genome-wide associ
ation studies, selection signals often span multiple genes 
due to linkage disequilibrium (LD), making it difficult to 
identify the loci targeted by selection. Indeed, long haplo
types due to selective sweeps make this problem even 
more challenging. One approach that has been promising 
in the genome-wide association study (GWAS) context is 
to incorporate functional information, for example expres
sion quantitative loci (eQTL), which have been used to link 
significant GWAS hits to functional consequences in 
transcriptome-wide association studies (TWAS) (Wainberg 

et al. 2019). Similarly, while the results of GWAS can be 
used to link signals of selection to phenotypes, without infor
mation about the intermediate functional changes, it is dif
ficult to interpret these links.

Changes in gene expression are expected to underlie 
many complex traits relevant to recent human evolution 
(Corradin et al. 2016), particularly as many signals overlap 
noncoding regions of the genome. We previously used 
predictive models of gene expression to detect changes 
between different ancient subsistence groups (Colbran 
et al. 2021) and to infer selection based on differences be
tween present-day populations (Colbran et al. 2023). 
Here, we develop this idea to test for selection directly 
using changes in predicted expression over time inferred 
from ancient DNA times series. We used an approach 
(Joint Tissue Imputation [JTI]; Zhou et al. 2020) devel
oped to predict gene expression from genotype data to 
predict the expression levels of ∼17,000 protein-coding 
genes in ancient (4,500–1,000 BP) and modern indivi
duals from Britain. We then inferred significant shifts in 
expression levels in this 4,500 year time-transect based 
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on linear regression models of predicted gene expression 
against time.

This approach allows us to perform a gene-level test for 
selection on gene expression, identifying four novel signals 
of selection on gene expression resulting from small shifts 
in allele frequency that were not captured by genome- 
wide scans for selection. We are also able, for regions 
identified to have been under selection in this or other 
analyses, to identify which genes are likely to have changed 
their expression due to this selection—in several cases 
showing that selection at known loci (LCT, for example) 
has substantially affected the expression of several nearby 
genes. Our work demonstrates the utility in incorporating 
functional information into genome-wide scans for 
selection.

Results
Imputed Data Recovers Genome-Wide Selection 
Scan Results
We assembled a dataset of 91 present-day and 616 ancient 
(4,500–1,000 BP) individuals from Britain. Our approach 
assumes that the sample population is closed and homo
geneous. We thus chose this population from Britain due 
to its small geographical spread, relatively continuous 
demographic history, and large aDNA sample size. 
Present-day individuals were from the GBR population of 
the 1000 Genomes project (1000 Genomes Consortium 
2015). Ancient individuals had either been genotyped 
using the 1240k single nucleotide polymorphism (SNP) 
capture reagent, or shotgun sequenced and then geno
typed at 1240k sites. This is the same dataset used in 
Mathieson and Terhorst (2022) (original sources 
Martiniano et al. 2016; Schiffels et al. 2016; Olalde et al. 
2018; Brace et al. 2019; Margaryan et al. 2020; Patterson 
et al. 2022) with additional individuals from Gretzinger 
et al. (2022), and removing individuals with less than 
0.1× coverage at 1240k sites. We calculated genotype like
lihoods at 1240k sites, and then imputed diploid genotypes 
at 1240k sites using beagle4 (Browning and Browning 
2007). We then lifted over 1240k sites from hg19 to hg38 
and imputed at ungenotyped sites using the NHLBI 
TOPMed imputation server (Fuchsberger et al. 2015; Das 
et al. 2016; Taliun et al. 2021).

As a point of comparison to the transcriptome-wide 
scan, we ran the SNP-based genome-wide selection scan 
described in Mathieson and Terhorst (2022) on the im
puted diploid 1240k dataset. Briefly, this uses the bmws 
software to estimate time varying selection coefficients 
based on the time series of allele frequencies and reports 
P-values based on fitting a gamma distribution to the 
root mean squared selection coefficient, averaged in 
20-SNP sliding windows. The results are largely consistent 
with those of Mathieson and Terhorst (2022), identifying 
strong evidence of selection at LCT, DHCR7, SLC22A4, 
OAS1, the HLA region and other loci (Fig. 1a). Despite 
the larger sample size and diploid (as opposed to 

pseudohaploid) coverage, the new analysis does not find 
substantially more signals of selection and the shared signals 
are not more significant. Although imputation of ancient 
DNA generally produces accurate genotype calls (Hui et al. 
2020; Ausmees et al. 2022; Sousa da Mota et al. 2023), we no
ticed that at strongly selected sites, imputed allele frequen
cies were slightly biased towards present-day allele 
frequencies compared to pseudohaploid allele frequencies 
(supplementary Fig. S1, Supplementary Material online). 
This suggests that, while generally accurate, imputation 
might reduce power to detect selection because this bias 
has a greater effect on sites with large changes in frequency 
over time. In our case, this seems to offset the advantage 
from greater sample size. That said, the imputed data do 
not seem to perform worse than the pseudohaploid data 
and produce well-calibrated results (Fig. 1b). As imputation 
is necessary to perform the transcriptome-wide scan, we 
proceeded with the imputed dataset.

Transcriptome-Wide Scan Identifies Significant 
Changes in Gene Expression
We next carried out a transcriptome-wide scan for selec
tion. We predicted expression of 17,388 protein coding 
genes for each ancient and present-day individual using 
JTI models trained on the genotypes and transcriptomes 
of 49 tissues from the GTEx project (Zhou et al. 2020). 
As it is difficult to determine the most relevant tissue for 
each gene and models across tissues are generally corre
lated with each other, we used the model for the tissue 
with the highest training R2 for each individual gene 
(Colbran et al. 2023). For each gene, we fit ordinary linear 
regression models of expression against time to identify 
genes with non-neutral shifts in predicted expression 
levels. We did not include genetic ancestry principal com
ponents as covariates in this model, as the principal 
components of the ancient individuals clustered closely 
with the present-day individuals (supplementary Fig. S2, 
Supplementary Material online). Instead, we applied gen
omic control to account for any inflation in test statistics 
due to genetic drift or residual population structure. 
After filtering for imputation quality, 28 genes at seven 
loci had evidence (false discovery rate [FDR] < 0.05) for sig
nificant shifts in predicted expression (Fig. 1c, Table 1, 
supplementary Fig. S3, Table S2, Supplementary Material
online). We confirmed that predictions for these genes 
were reflective of actual population-level trends by com
paring predicted and observed expression across all 1kG 
populations (supplementary Fig. 4, Supplementary 
Material online). Despite a mismatch in tissues for most 
genes, we found that the order of population medians 
agreed more often than expected by chance (p = 0.0053).

We also replicated our results using a method called 
UTMOST which, like JTI, constructs tissue-specific, linear 
models of gene expression using expression data from mul
tiple tissues (Alzheimer’s Disease Genetics Consortium 
2019). We carried out a transcriptome-wide scan based 
on UTMOST models trained on genotypes and 
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transcriptomes from the GTEx project (Alzheimer’s 
Disease Genetics Consortium 2019; Zhou et al. 2020). 
Sixteen out of 28 JTI significant genes replicated in the 
UTMOST scan, including all genes in Figs. 2 and 3
(supplementary Fig. S5, Table S1, Supplementary Material
online). Of the 12 significant genes that did not replicate, 
3 genes could not be modeled by UTMOST, and 1 gene 
was filtered out due to low imputation quality. There was 
broad agreement in the direction of effect predicted by 
the two methods (Pearson R2 = 0.797, supplementary Fig. 
S6, Supplementary Material online). These results indicate 
that the JTI results are largely reproducible by other methods 
of predicting gene expression from genotype data.

We compared the results from the transcriptome-wide 
scan with the SNP-based genome-wide scan. Five peaks 
overlap between the two scans (Fig. 1). Similar to the 
genome-wide selection scan where peaks contain multiple 
SNPs (or windows of SNPs) in LD, the transcriptome-wide 
scan peaks span multiple genes due to both LD between 
eQTLs and coregulation of nearby genes (Wainberg et al. 
2019).

In some cases where the peak is shared, the 
transcriptome-wide scan is able to identify the genes tar
geted by selection as those with the largest predicted 
change in expression. For instance, our approach identified 
FADS1 as the only gene out of the six in the FADS region 
with evidence for significant changes in expression 

(Fig. 2a, Table 2). The genomic signal of selection in this re
gion has been previously linked to the increased expression 
of FADS1 (Ameur et al. 2012; Buckley et al. 2017; Mathieson 
and Mathieson 2018), which is corroborated by our results.

In other cases, the transcriptome-wide scan does not 
uniquely identify the targeted gene, but highlights a subset 
of genes in the region with significant changes. For 
example, at the LCT locus (Fig. 2b, Table 2) the 
transcriptome-wide scan identified 6 out of 11 genes 
with significant changes in expression. As expected, we 
predicted a significant increase in LCT expression 
(Fig. 2b), but we also predicted significant changes in five 
other genes. Indeed, the regulatory variants associated 
with adult LCT expression lie inside MCM6 (Ségurel and 
Bon 2017), which showed the most significant shift in ex
pression levels in this time period.

The genome-wide scan peak at the HLA region contains 
148 genes, of which we predict 12 to have significant 
changes in expression (Fig. 2c, Table 2). The most signifi
cant signal was for RNF5, which is involved in the degrad
ation of misfolded proteins and regulation of viral 
infection (Zeng et al. 2021; Li et al. 2023). Another signal 
of interest in this region is for decreased expression of 
C4A, the expression of which is associated with increased 
risk for schizophrenia (Yilmaz et al. 2021). These 12 genes 
might be priority candidates for the target of selection, but 
it remains possible that they are all hitchhiking and the real 

FIG. 1. Genome-wide and transcriptome-wide scans for selection. a) P-values for genome-wide selection. Each point represents a 20-SNP window. 
The blue line indicates FDR significance (P < 10−4), and the red line indicates Bonferroni significance (P < 10−6). FDR significant (P < 10−4) win
dows are labeled with the nearest genes or known target of selection. b) QQ plot for genome-wide scan results in 20 SNP windows with points 
from A in blue, and results with dates of samples randomized in gray. c) P-values for transcriptome-wide selection scan. Each point represents a 
gene. Blue lines indicate FDR significance (P < 10−4), and red lines indicate Bonferroni significance (P < 10−6). The most significant gene at each 
locus is labeled. Five peaks were shared between the two scans: FADS1, LCT, HLA, PDLIM4, and OAS1/3. d) QQ plot for transcriptome-wide scan 
results with points from c) in blue and results with dates of samples randomized in gray.
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target is a coding variant or an expression change in a gene 
that is not significant in our analysis.

Finally, in some cases, the gene with the most significant 
change in expression is probably not the main target of se
lection. For example, at the PDLIM4 region (Fig. 2d), we 
predict significant changes in expression in PDLIM4 and 
P4HA2, but Huff et al. (2012) identified a coding variant 
in SLC22A4 as the target of selection. Similarly, although 
the target of selection at the OAS locus is thought to be 
a splice variant in OAS1 carried by a Neanderthal intro
gressed haplotype, human cells with the introgressed 
haplotype displayed reduced OAS3 expression and no 
changes in expression of OAS1 or OAS2 in response to viral 
immune triggers (Sams et al. 2016). Our transcriptome- 
wide scan captured this signal for reduced expression in 
OAS3, with no significant changes in predicted OAS1 or 
OAS2 expression (Fig. 2e).

Selection on Gene Expression not Captured by 
SNP-Based Scans
Most of the genes identified by the transcriptome-wide 
scan fell under selection scan peaks in the genome-wide 
scan. However, we identified four genes at two loci with 
evidence for significant regulatory shifts that did not 
(Fig. 3, Table 1). SLC44A5 is a member of the choline 
transporter-like family that is highly expressed in skin, 

testis, and esophagus. The significant predicted change 
in expression is due to small coordinated shifts in fre
quency across many alleles (Fig. 3). SLC44A5 is one of rela
tively few genes with a population-biased eQTL (GTEx 
Consortium 2020). Specifically, rs4606268 has a much 
larger effect on SLC44A5 expression in European ancestry 
individuals compared to those of African ancestry, consist
ent with rapid evolution of the regulation of this gene in 
European populations. SLC44A5 is also generally more 
highly expressed in lymphoblastoid cell lines (LCLs) of 
European ancestry, compared to African or East Asian an
cestry, and LCLs derived from Northern Europeans show 
lower expression compared to Southern Europeans. 
Positive selection at SLC44A5 has previously been reported 
in East Asian populations (Yasumizu et al. 2020) and 
both JTI predictions and observed expression suggest 
low expression in East Asia (supplementary Fig. S4, 
Supplementary Material online). Since SLC44A5 is highly 
expressed in skin, and skin pigmentation experienced 
strong selection in both Britain and East Asia, we hypothe
size that selection on SLC44A5 expression may also be re
lated to skin pigmentation. Choline is closely related to 
folate, which is broken down by UV radiation and thought 
to drive selection for darker skin pigmentation in high-UV 
regions (Jablonski and Chaplin 2010). In mice, choline par
tially rescues the effects of low folate in development 
(Craciunescu et al. 2010), so one possibility is that selection 

Table 1. Genes with significant shifts in predicted expression (FDR < 0.05) characterized by the transcriptome-wide selection scan

Chr Gene Tissue R2 P-value Beta GWSS peak

1 SLC44A5 Skin Sun Exposed Lower leg 0.56520 8.827e−06 −1.178e−04 Novel
2 TMEM163 Kidney Cortex 0.38790 5.012e−13 1.400e−04 LCT
2 MAP3K19 Testis 0.23290 1.490e−07 1.127e−04 LCT
2 LCT Cells EBV-transformed lymphocytes 0.08194 1.078e−09 8.239e−05 LCT
2 MCM6 Esophagus Muscularis 0.19770 1.736e−18 −1.795e−04 LCT
2 DARS Whole Blood 0.16510 2.137e−07 −9.886e−05 LCT
2 CXCR4 Adrenal Gland 0.08339 1.457e−05 −4.051e−05 LCT
5 P4HA2 Thyroid 0.38000 9.358e−05 1.027e−04 PDLIM4
5 PDLIM4 Brain Cortex 0.28600 1.098e−06 −4.210e−05 PDLIM4
5 SLC22A5 Cells Cultured fibroblasts 0.43790 1.605e−05 −1.283e−04 PDLIM4
6 PPP1R18 Artery Aorta 0.20470 4.166e−05 −2.423e−05 HLA
6 TUBB Cells EBV-transformed lymphocytes 0.02940 1.635e−06 4.196e−05 HLA
6 PSORS1C1 Thyroid 0.65610 7.309e−05 −7.907e−05 HLA
6 CDSN Skin Sun Exposed Lower leg 0.19040 4.200e−05 4.507e−05 HLA
6 CCHCR1 Spleen 0.55490 9.258e−07 8.014e−05 HLA
6 APOM Testis 0.14170 1.935e−06 −2.599e−05 HLA
6 C4A Brain Cerebellum 0.47000 2.017e−06 −8.152e−05 HLA
6 ATF6B Brain Spinal cord cervical c-1 0.46570 6.076e−06 −5.952e−05 HLA
6 RNF5 Colon Transverse 0.29300 1.145e−09 −6.436e−05 HLA
6 PBX2 Whole Blood 0.08456 1.059e−06 −3.343e−05 HLA
6 HLA-DMA Cells Cultured fibroblasts 0.50690 8.493e−05 5.442e−05 HLA
6 HLA-DPA1 Cells Cultured fibroblasts 0.60710 2.249e−05 −1.380e−04 HLA
11 FADS1 Brain Cerebellum 0.47180 3.310e−05 6.236e−05 FADS1
12 FAM109A Kidney Cortex 0.11600 6.886e−05 −1.752e−05 OAS
12 OAS3 Cells Cultured fibroblasts 0.42350 8.779e−06 −1.264e−04 OAS
17 NUP85 Brain Cerebellar Hemisphere 0.62490 7.025e−05 1.011e−04 Novel
17 GGA3 Breast Mammary Tissue 0.21800 4.907e−05 3.052e−05 Novel
17 MRPS7 Brain Cerebellar Hemisphere 0.41430 2.420e−05 −3.548e−05 Novel

Tissue indicates which tissue model was used. Note that this does not mean that the gene did not have significant shifts in other tissues, just that this tissue had the highest JTI 
training R2. R2 indicates the JTI training R2 for these tissues. Beta indicates the effect size of time on expression levels in the ordinary regression models. GWSS Peak indicates 
the significant (FDR < 0.05) genome-wide selection scan peak indicated in Fig. 1 to which each gene corresponds.
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on SLC44A5 acts to counteract the increased rate of folate 
degradation due to light skin pigmentation.

The second novel locus includes NUP85, GGA3, and 
MRPS7. It is likely that one of these genes is the target of 
selection, as all protein-coding genes within 100 kb of 
this signal were modeled. Of these three, NUP85 is pre
dicted to be upregulated in GBR compared to the other 
European 1kG populations, consistent with our inferred 
selection for increased expression on this gene in Britain, 
though this does not match the observed patterns in 
LCLs (supplementary Fig. S4, Supplementary Material on
line). NUP85 encodes a part of the nucleoporin complex, 
which controls transport between the cytoplasm and the 
nucleus (Ling et al. 2022). It is involved in the recruitment 
and migration of immune cells through chemokine signal
ing (Toda et al. 2009), as well as the control of viral repli
cation (Brass et al. 2008; Ling et al. 2022), suggesting 
pathogen-induced selective pressures.

Classical Selection Statistics can also be Combined 
with Functional Information
Although ancient DNA provides direct evidence of selec
tion, its usefulness is limited by sample size, data quality 
and limited geographic and temporal availability. We 
therefore also explored a complementary approach of 
combining the JTI models with classical selection statistics 
based on present-day populations (Fig. 4). To do this, we 
generated gene-level selection statistics from SNP-level se
lection statistics based on the integrated haplotype score 
(iHS) and the singleton density score (SDS) (Voight et al. 
2006; Field et al. 2016). The test statistic is a standardized 
weighted sum of the per-SNP selection statistics included 
in the predictive model for each gene weighted by effect 
size on normalized gene expression. As both SDS and iHS 
are already normalized, this weighted sum also has a stand
ard normal distribution. We therefore calculated P-values 
based on Z scores and applied genomic control to account 

(c)

(e)

(d)

(a) (b)

FIG. 2. Transcriptome-wide selection scan highlights genes with directional change in expression from genomic signals of selection. Each black bar 
represents a 20-SNP window in the genome-wide selection scan. Each triangle indicates a gene, with upturned and red indicating significant 
increased expression and downturned and blue indicating significant decreased expression in the transcriptome-wide scan. Blue lines indicate 
FDR significance (P < 10−4) and red lines indicate Bonferroni significance (P < 10−6) in the transcriptome-wide scan. Regions a) FADS, b) LCT, 
c) HLA, d) PLDLIM4, and e) OAS.
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for residual correlation between JTI model SNPs. SDS and 
iHS were not available for each SNP included in our predic
tion models, so we removed genes for which less than half 
of the SNPs had scores available.

Based on SDS scores, 34 genes had significant evidence 
for selection (FDR < 0.05). Five of these (MCM6, TMEM163, 
P4HA2, CXCR4, and SLC22A5) were significant in both 
the gene-level SDS and the transcriptome-wide selection 
scan (Fig. 4a), while 13 genes that were significant in the 
transcriptome-wide scan were filtered out of the gene-level 
SDS analysis due to missing SDS scores. Based on iHS scores, 
48 genes had FDR < 0.05, of which 5 were also significant in 
the transcriptome-wide scan (TMEM163, MAP3K19, C4A, 
APOM, and PPP1R18; Fig. 4c). One gene that was significant 
in the transcriptome-wide scan was filtered out of the gene- 
level iHS analysis due to missing iHS scores.

Given that the SDS scan detects selection in the last 
∼ 2,000 years, while iHS captures the last ∼ 10,000 years, 
we expected that the SDS results would be more similar 
to the transcriptome-wide scan. In terms of shared 
significant signals, 5/34 is not significantly different than 
5/48. However, all 15 genes that were significant in 
the transcriptome-wide scan and had gene-level SDS 
available had the same predicted direction of change in 

both analyses, while the predicted changes in gene expres
sion from the iHS analysis were relatively uncorrelated 
with those predicted by the transcriptome-wide scan 
(ρ = 0.0438).

The overlap between these results shows that these differ
ent analyses do identify some of the same signals, and that 
functional information can be used to enhance selection 
scans based on standard selection statistics. However, these 
analyses also highlight that the information obtained from 
these statistics is complementary to information obtained 
from ancient DNA time series. While ancient DNA allows dir
ect observation of selection and precise estimates of timing, 
present-day samples can be much larger and therefore more 
powerful, though potentially more sensitive to artifacts and 
model mis-specification. Different statistics may also be sen
sitive to different types of selection, or to selection in different 
time periods and we do not know how much of the differ
ence between these analyses is due to these different factors.

Discussion
In this study, we used JTI models to detect selection on 
gene expression over the last 4,500 years in Britain. We 
identified 28 genes (FDR < 0.05) with evidence for 

(a) (b) (c)

(d) (e) (f)

FIG. 3. Transcriptome-wide selection scan characterizes genes with directional change in expression not captured by genome-wide selection 
scans. a, d) Genome-wide scan for selection does not capture significant signal for selection at SLC44A5/NUP85. Each black bar represents a 
20-SNP window in the genome-wide selection scan. Each triangle indicates a gene, with upturned and red indicating non-neutral increased ex
pression and downturned and blue indicating non-neutral decreased expression in the transcriptome-wide scan. Blue lines indicate FDR signifi
cance (P < 10−4), and red lines indicate Bonferroni significance (P < 10−6) in the transcriptome-wide scan. b, e) SLC44A5/NUP85 expression 
across time. The x-axis indicates time in years before present. The y-axis indicates predicted normalized expression level. Each point represents 
one individual. c, f) Allele frequency changes and effects of SNPs included in the prediction models for SLC44A5/NUP85 across time. The x-axis 
indicates the effect of each variant on normalized expression as determined by the prediction models. The y-axis indicates average change in the 
frequency of each allele per year as calculated by a linear regression model of allele frequency against time. Each point represents an allele in
cluded in the prediction model for the gene. Red upturned triangles indicate alleles which have contributed to an increase in the expression level 
of the gene. Blue downturned triangles indicate alleles that decreased expression. Small but coordinated shifts in frequency across many alleles 
that were not captured by the genome-wide approach led to a decrease in the expression of SLC44A5 and an increase in the expression of NUP85.
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selection, of which 24 were also identified by a SNP-based 
genome-wide selection scan on the same data. The 
transcriptome-wide scan identified significant shifts in pre
dicted expression of four genes that were not captured by 
scans based on SNP-based genomic signatures of selection 
that do not incorporate functional information. Though 
we focused here on the application to ancient DNA 
data, we also demonstrated how eQTL data can be incor
porated into selection scans based on present-day data, 
with complementary results.

The results of the transcriptome-wide scan can be inter
preted in multiple ways. First, where significant genes over
lap with peaks from SNP-based genome-wide scans, the 
transcriptome-wide scan can be used to prioritize genes 
that are targets of selection. This is analogous to the way 
in which eQTL colocalization is helpful but not a complete 
solution to identifying causal genes at genome-wide asso
ciation peaks. The most significant gene may not be the 
most important, or may not have a JTI model, or the target 
of selection may be a coding variant (e.g. at SLC45A2, 
where we find no significant genes in the transcriptome- 
wide scan). Nonetheless, we find several examples where 
the most significant gene in the transcriptome-wide scan 
is the targeted gene at a genome-wide scan peak. 
Second, the transcriptome-wide scan can identify genes 
(e.g. SLC44A5) that are not identified in the genome-wide 
scan because the selection is relatively polygenic. Finally, 

the transcriptome-wide scan can identify the effects of se
lection on genes that are not themselves the target of se
lection. For example, selection on the expression of LCT 
affects the expression of several other genes which may 
themselves have functional consequences. More generally, 
although the interpretation of selection scans tends to fo
cus on a single causal gene at a locus, the transcriptome- 
wide scan makes it clear that the linked and coregulated 
genes can be important and the phenotypic changes 
that selection acts on reflect the composite effect of 
many genes. For example, we predict that selection on lac
tase persistence significantly changed the expression of at 
least five other genes and the fitness consequences of the 
selected allele would depend on the aggregate effects of 
these changes.

Our approach still has several technical limitations. First, 
it is tissue-agnostic. Because expression is typically corre
lated across tissues, we focused on the tissue with the high
est R2 in our scan. However, the tissue with the highest 
expression is not necessarily the one that is the target of 
selection. More tissue-specific predictions can be used to 
test specific hypotheses (such as melanocytes in the case 
of selection on skin pigmentation; Colbran et al. 2021), 
but in general eQTLs may be context-specific in which 
case this scan could miss signals of selection entirely. 
Second, even for most genes, the JTI models explain only 
a relatively small proportion of the variance in expression 

Table 2. Genome-wide selection signal peaks and associated genes

Chr GWSS Start GWSS End TWSS Significant # All Modeled # All # Significant
Genes Genes Genes Genes

2 134292811 136385296 MCM6, LCT, DARS, CXCR4, 
TMEM163 MAP3K19

11 12 6

3 50849763 51387494 2 2 0
5 33777346 34069589 2 4 0
5 132101060 132454548 P4HA2, PDLIM4, SLC22A5 5 5 3
6 28140757 33178885 PPP1R18, TUBB, HLA-DMA, 

PSORS1C1, APOM, HLA-DPA1, 
PBX2, RNF5, APOM, CCHCR1, 
CDSN, ATF6B, C4A

148 148 12

6 128796160 129062458 0 0 0
8 33218070 33438568 1 1 0
10 49643164 50348209 5 7 0
10 110778270 111086977 4 4 0
11 61684455 61903876 FADS1 7 7 1
11 71302258 71592390 4 7 0
12 110796571 113044151 OAS3, FAM109A 17 21 2
13 111558732 111786334 0 0 0
15 27951279 29045218 1 5 0
16 49972683 50325572 2 4 0
16 82983756 83190020 0 0 0
17 30984555 31423638 4 4 0
18 41362995 41666874 0 0 0
21 43286434 44295140 11 12 0

GWSS start and GWSS end indicate the selection peaks in the genome-wide scan for selection. Consecutive 20-SNP windows with less than 5 Mb distance in-between were 
merged into single signals. Three separate signals in the HLA region were merged to one signal. 0.1 Mb buffers were added to each selection signal to include all relevant genes. 
TWSS significant genes indicates the genes within the selection signal that have evidence for non-neutral regulatory shifts in the transcriptome-wide selection scan. # All Genes 
indicates the number of all protein coding genes within the selection signal, # All Modeled Genes indicates the number of all protein coding genes within the selection signal 
that were included in the TWSS after filtering for imputation quality # Significant Genes indicates the number of genes that achieved significance in the transcriptome-wide 
scan.
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and include only cis-regulatory variants. Many genes have 
low (or even zero) training R2, and we would have limited 
power to detect selection on those genes. Finally, since 
predicted expression levels are normalized, it is not pos
sible to translate our effect size predictions into absolute 
expression levels, or to compare the magnitude of effects 
across genes. Further work would therefore be required 
to quantify the changes in expression at statistically signifi
cant genes, and understand the biological consequences.

Overall, this study demonstrates the potential of in
corporating functional predictive models in the analysis 
of ancient DNA to explore the phenotypic drivers and con
sequences of selection. Our transcriptome-wide scan for 
selection provides a broad overview of the regulatory shifts 
associated with recent human evolution in Britain and 
shows how the TWAS workflow can be used to better 
understand the molecular basis and consequences of 
selection.

Methods
Data Collection and Imputation
We identified ancient individuals from Britain with 
genome-wide ancient DNA data, dated to within the 
past 4,500 years (Martiniano et al. 2016; Schiffels et al. 
2016; Olalde et al. 2018; Brace et al. 2019; Margaryan 
et al. 2020; Gretzinger et al. 2022; Patterson et al. 2022). 
Most of these data had been generated using the 1240k 
capture reagent but some had been shotgun sequenced. 
We calculated genotype likelihoods at 1240k sites using 
a binomial model for read counts with a 1% error rate 
and a 5% deamination rate. We then imputed diploid gen
otypes at 1240k sites using beagle4 (Browning and 
Browning 2007) with the 1000 Genomes reference panel 
(1000 Genomes Consortium 2015). We then lifted over 
the 1240k sites from hg19 to hg38, and imputed ungeno
typed sites using the NIH TOPMed server (Fuchsberger 

FIG. 4. iHS and SDS statistics combined with functional information reveal the gene-level consequences of selection. a, c) Gene-level SDS/iHS and 
average change in predicted gene expression per year. The x-axis indicates average change in predicted gene expression per year as measured by 
the beta of time in the transcriptome-wide selection scan and the y-axis indicates gene-level SDS/iHS values. Positive gene-level scores indicate 
an increase in gene expression resulting from selection, whereas negative scores indicate a decrease in expression. Each point represents a gene, 
with blue points indicating genes that reached FDR significance in the transcriptome-wide scan, red points indicating those that reached sig
nificance in the gene-level SDS/iHS analysis scan, gray points indicating genes that do not reach FDR significance in either scan, and purple in
dicating genes that achieve significance in both. There is greater concordance between the SDS analysis and the transcriptome-wide scan 
compared to the iHS scan, as expected by the similar time scales of the SDS and the transcriptome-wide scan analyses. b, d) QQ plot for gene- 
level SDS/iHS with genomic control imposed.
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et al. 2015; Das et al. 2016; Taliun et al. 2021). Finally, we 
merged these genotypes with present-day individuals 
data from the GBR population of the 1,000 Genomes 
Project Phase 3 NYGC resequenced data using bcftools 
(Danecek et al. 2021; Byrska-Bishop et al. 2022). We re
moved genetic ancestry PCA outliers and individuals 
with less than 0.1× coverage at 1240k sites, retaining a to
tal of 616 ancient and 91 present-day individuals.

Genome-Wide Selection Scan
We ran a genome-wide scan for selection based on selection 
coefficient estimation from time series aDNA data as described 
in Mathieson and Terhorst (2022). We used the imputed data 
at 1240k sites, lifted over to hg38. We started with 1,150,639 
autosomal SNPs and filtered out all SNPs with MAF < 0.1, 
greater than 90% missingness and those with MAF = 0 in 
the ancient data leaving 409,232 SNPs. We inferred selection 
coefficients at each generation using a smoothing parameter 
λ = 104.5 and effective population size Ne = 104. We calcu
lated root mean squared selection coefficients for 20-SNP 
sliding windows sliding in 10-SNP increments. We fit a gam
ma distribution to the window selection coefficients and 
computed P-values for each window.

Models for Predicted Gene Expression
In order to construct predictive models for gene expres
sion, we used published JTI gene expression models, which 
leverage shared regulation across tissues (Zhou et al. 2020). 
These models were trained on common variants (MAF > 
0.05) for 49 tissues in version 8 of the Genotype Tissue 
Expression project (GTEx) (GTEx Consortium 2020). For 
each gene, we utilized the tissue with the highest training 
R2 as described by Colbran et al. (2023). The median num
ber of SNPs in each model was 12. The median R2 for these 
models was 0.1938.

To test the robustness of our results with different mod
eling strategies, we also performed the analysis using predict
ive models from UTMOST (Alzheimer’s Disease Genetics 
Consortium 2019), as trained for the JTI publication (Zhou 
et al. 2020). As for the JTI models, we chose the tissue 
with the highest R2 for each gene. The median number of 
SNPs in each model was 15, and the median R2 was 0.188.

Transcriptome-Wide Selection Scan
We constructed ordinary linear regression models of pre
dicted expression against time for 17,833 protein-coding 
genes:

Predicted expression ∼ βt, (1) 

where t indicates years before present and β indicates aver
age change in predicted expression per year. We did not 
include genetic ancestry principal components as covari
ates in this model, as the principal components of the an
cient individuals clustered closely with the modern 
individuals. We calculated imputation quality scores for 
each gene (R2

gene) by taking a weighted average of the 

quality scores of each SNP included in the prediction mod
el for each gene (R2

i ) with weights |βi equal to the absolute 
JTI effect size of the SNP on normalized gene expression:

R2
gene =

􏽐
|βi|R

2
i􏽐

|βi|
. (2) 

We filtered out the 20% genes with the lowest imputation 
quality, retaining 13,892 genes. We applied genomic con
trol to the resulting P-values to account for genetic drift. 
We calculated an inflation factor, λ = 1.791 and divided 
all test statistics by λ to ensure that the median P-value 
was equal to the median P-value in the null χ2 distribution 
(Devlin and Roeder 1999).

We also randomized the dates of the samples and re-ran 
the linear regression analysis to generate randomized 
P-values. We categorized genes that achieved FDR signifi
cance (P < 0.0001) as those with evidence for significant 
changes in predicted expression.

We repeated this analysis with the UTMOST models for 
14,009 genes. After filtering, we retained 11,121 genes. The 
inflation factor was λ = 1.755. The cutoff for FDR signifi
cance was P < 0.0001.

Gene-Level iHS and SDS Analysis
We generated gene-level selection statistics from SNP-level 
classical selection statistics, the integrated haplotype score 
(iHS) and the singleton density score (SDS) (Voight et al. 
2006; Field et al. 2016). We retrieved SDS scores calculated 
using data from 3,195 individuals from Britain in the 
UK10K dataset from Field et al. (2016). For the iHS analysis, 
we used data from 91 individuals from the GBR population 
in the 1000 Genomes Project (1000 Genomes Consortium 
2015). We polarized the ancestral/derived alleles of the 
1000G individuals with respect to the chimpanzee refer
ence genome (GenBank accession: GCA 002880755.3). 
We then used selscan with the -norm flag to calculate nor
malized iHS scores (Szpiech and Hernandez 2014).

We calculated gene-level selection statistics by taking 
the sum of the SDS/iHS values of each SNP included in 
the predictive model for each gene multiplied by its effect 
size on normalized gene expression (βi). SDS and iHS were 
not available for every SNP included in our prediction 
models, so we removed genes for which less than half of 
the SNPs had scores available. We retained a total of 
13,588 genes for the SDS analysis, and 15,123 genes for 
the iHS analysis. As the SNP-level SDS and iHS scores 
were normalized, we re-normalized the gene-level selec
tion scores by dividing by the square root of the sum of 
the squared effect sizes:

SDSgene =
􏽐

βiSDSi
������􏽐

β2
i

􏽱 (3) 

iHSgene =
􏽐

βiiHSi
������􏽐

β2
i

􏽱 , (4) 
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where the sums are over all SNPs i in the model for each 
gene. We treated the normalized gene-level statistics as 
Z-scores to generate P-values, to which we applied genom
ic control (Devlin and Roeder 1999).

Comparison to Observed Expression
To assess how similar the predicted patterns of expression 
are to observed patterns, we used data from the MAGE 
study (Taylor et al. 2023), which performed RNA-seq ana
lysis in LCLs from individuals in all populations from 1kG. 
For each gene showing significant evidence for selection, 
we calculated the median observed read count and me
dian predicted expression in each population. We used a 
Spearman correlation across populations to calculate the 
agreement between the two for each gene. To test 
whether observed and predicted expression agreed more 
often than expected by chance, we summed the ρ across 
genes, then calculated an empirical P-value by shuffling 
the expression of each gene, maintaining the between- 
population relationships.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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