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Abstract

Hepatopulmonary syndrome (HPS) is a serious vascular complication of liver disease that occurs 

in 5–32% of patients with cirrhosis. The presence of HPS markedly increases mortality. No 

effective medical therapies are currently available and liver transplantation is the only established 

treatment option for HPS. The definition and diagnosis of HPS are established by the presence 

of a triad of liver disease with intrapulmonary vascular dilation that causes abnormal arterial 

gas exchange. Experimental biliary cirrhosis induced by common bile duct ligation in the rat 

reproduces the pulmonary vascular and gas exchange abnormalities of human HPS and serves 

as a pertinent animal model. Pulmonary microvascular dilation and angiogenesis are two central 

pathogenic features that drive abnormal pulmonary gas exchange in experimental HPS, and thus 

might underlie HPS in humans. Defining the mechanisms involved in the microvascular alterations 

of HPS has the potential to lead to effective medical therapies. This Review focuses on the current 

understanding of the pathogenesis, clinical features and management of HPS.

Introduction

Cirrhosis and portal hypertension result in alterations in the vasculature in a number of organ 

systems, which affects function in these organs and increases mortality. Pulmonary vascular 

involvement in liver disease includes two unique entities: hepatopulmonary syndrome 

(HPS) and portopulmonary hypertension. HPS occurs in 5–32% of patients with cirrhosis 

and occurs when pulmonary microvascular dilatation causes impaired oxygenation in the 

absence of marked intrinsic cardiopulmonary disease.1–3 The presence of HPS markedly 

increases mortality in affected patients. Currently, no effective nonsurgical treatments are 

available for HPS—liver transplantation is the only treatment option.4–8 Unlike HPS, 

portopulmonary hypertension occurs in only 5–8% of patients with cirrhosis when increased 

pulmonary arterial pressure (pulmonary arterial hypertension) develops in the setting 
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of portal hypertension.9–16 Medical therapy with vasoactive agents improves pulmonary 

arterial pressure and symptoms in portopulmonary hypertension.17–21 In the past few years, 

the coexistence of HPS and portopulmonary hypertension has been reported, implying that 

these two disorders might share pathogenic mechanisms. Moreover, the coexistence of HPS 

and portopulmonary hypertension could mask the findings of raised pulmonary arterial 

pressure in portopulmonary hypertension.22–27 The purpose of this Review is to provide an 

update on HPS, focusing on the pathophysiology, clinical features and recommendations for 

diagnosis and management.

Definition

HPS is defined by the presence of liver disease and/or portal hypertension and 

intrapulmonary vascular dilation that causes an abnormal age-corrected alveolar–arterial 

oxygen gradient.16 HPS can coexist with other cardiopulmonary disorders and contributes 

substantially to gas exchange abnormalities in this setting.28,29 In general, HPS is reversible 

with liver transplantation.

HPS is fairly common in patients with cirrhosis being evaluated for liver transplantation 

and can occur across the spectrum of severity of cirrhosis.2,30,31 Although some studies 

find HPS to be more common in more advanced liver disease and in more severe portal 

hypertension, it clearly occurs in both well compensated and decompensated liver disease, 

and in situations in which portal hypertension is present in the absence of cirrhosis. HPS 

has been described in portal hypertension without cirrhosis (prehepatic portal hypertension, 

nodular regenerative hyperplasia, congenital hepatic fibrosis and hepatic venous outflow 

obstruction)32–34 and hepatic dysfunction in the absence of established portal hypertension 

(acute and chronic hepatitis).35–37 In a prospective, multicentre US study, no difference in 

severity of liver disease in patients with or without HPS was observed.6 Intrapulmonary 

shunting and hypoxaemia have also been reported in patients with metastatic carcinoid in 

the absence of portal hypertension38 and in those with vascular abnormalities that result 

in limited portal flow to the liver (Abernethy malformations)39–42 or that have reduced 

hepatic venous drainage to the pulmonary arterial bed (Glenn or cavopulmonary shunt).43–46 

These observations indicate that factors normally produced or metabolized in the liver could 

influence the lung microvasculature in susceptible individuals when hepatic function or 

blood flow are altered.

The pulmonary gas exchange abnormalities of HPS are characterized by hyperventilation 

and arterial deoxygenation that can be mild (partial pressure of oxygen [PaO2] <80 mmHg), 

moderate (PaO2 <70 mmHg) or severe (PaO2 <60 mmHg).16,31,47,48 There is an increased 

alveolar–arterial oxygen gradient (AaPO2) whilst breathing room air (>15 mmHg, or >20 

mmHg in patients >64 years of age) with or without hypoxaemia. The prevalence of 

HPS (range 5–32%) varies depending on whether abnormalities in arterial gas exchange 

are defined by an abnormal AaPO2 or arterial hypoxaemia (in PaO2).2,30,31,49–52 From a 

practical perspective, identifying patients with PaO2 <70 mmHg (detected in the sitting 

position to avoid effects of positional changes on PaO2) is useful for recognizing those with 

clinically important HPS.53 Calculation of AaPO2 is one of the most sensitive approaches 

for the detection of early arterial deoxygenation,47 as AaPO2 can increase before arterial 
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oxygen tension (PaO2) itself becomes abnormally low. However, AaPO2 can vary markedly 

in healthy adults and usually increases with age.54,55 At sea level and whilst breathing room 

air, a resting AaPO2 of >15 mmHg is abnormal, and an AaPO2 of >20 mmHg is considered 

abnormal for an individual who is >64 years of age.2,53 Therefore, targeting values above the 

95% confidence interval for the age-corrected AaPO2 is appropriate to avoid overdiagnosis 

of HPS.56

Evidence that gas exchange abnormalities are attributable to intrapulmonary shunting 

(impaired oxygenation of blood in abnormal pulmonary capillaries) must also be present 

to confirm the existence of HPS.31 Shunting can result from microvascular dilatations, direct 

arteriovenous connections or angiogenesis in more severe cases.16 The vascular component 

characteristically includes diffuse dilated pulmonary capillaries near gas exchange units 

or localized dilation of larger capillaries and, less commonly, pleural and pulmonary 

arteriovenous communications.57–60 The diameter of the pulmonary capillaries in healthy 

individuals at rest can reach about 15 μm.61 Intrapulmonary vascular dilatation is considered 

to exist when pulmonary capillary diameter increases (15–60 μm) and is the major 

structural derangement in HPS.62 In some cases, diameters can reach as much as 500 μm, 

predominately in the lung bases, where increased blood flow exists as a result of gravity.63

Diagnosis

The diagnosis of HPS requires a high degree of clinical suspicion and rests on evidence 

of the presence of arterial gas exchange abnormalities resulting from intrapulmonary 

vascular dilatation in the appropriate clinical setting. The threshold for pursuing the 

diagnosis is influenced by the presence of specific signs and symptoms of HPS, risk 

factors for intrinsic cardiopulmonary disease and whether liver transplantation is being 

considered. In patients with risk factors for intrinsic cardiopulmonary disease (smoking 

and other cardiovascular risk factors, occupational exposure to asbestos, silica or coal dust, 

liver diseases associated with intrinsic lung disease), these factors, rather than HPS, are 

appropriate initial considerations. In patients with clubbing (proliferation of soft tissue under 

the nail bed resulting in abnormal curvature of the nail) or dyspnoea in the absence of risk 

of intrinsic cardiopulmonary disease and in those being considered for liver transplantation, 

screening for HPS is appropriate and cost-effective.64 In the latter group, it is particularly 

important to diagnose and differentiate HPS and portopulmonary hypertension, given that 

the presence of these disorders can influence treatment and candidacy and priority for liver 

transplantation.

Gas exchange abnormalities

Gas exchange abnormalities are detected by arterial blood gas measurements and quantified 

by calculating the AaPO2 (>15–20 mmHg abnormal based on age) and assessing for 

hypoxaemia (PaO2 <80 mmHg).16 Including mild gas exchange abnormalities (increased 

AaPO2, PaO2 >80 mmHg) in the diagnostic criteria for HPS seems to be important on the 

basis of findings that mortality is increased in this subset of patients with these abnormalities 

compared with patients with cirrhosis without HPS.2,6 Obtaining arterial blood gases in the 

sitting position— to minimize increases in PaO2 sometimes seen in the supine position 
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(orthodeoxia)—could enhance the detection of arterial deoxygenation in HPS.57 Pulse 

oximetry is an established screening modality for detecting hypoxaemia and HPS in patients 

being evaluated for liver transplantation.5 Using a threshold SpO2 (arterial oxygen saturation 

with pulse oximetry) value of ≤96% provides a sensitivity of 100% and specificity of 88% 

for detecting patients with HPS who have a PaO2 of <70 mmHg.5,52 This technique can 

target the use of tests for HPS to those with a higher risk of disease. On the basis of 

the utility of pulse oximetry for detecting hypoxaemia in a wide range of disorders, this 

technique could also be useful for screening all populations with cirrhosis.

Intrapulmonary vascular dilatation

In adults, contrast-enhanced echocardiography using a transthoracic approach is the most 

sensitive and commonly used screening technique for detecting intrapulmonary vascular 

dilation. Lung perfusion scanning, pulmonary angiography and high-resolution CT scanning 

are additional studies that can be useful as adjunctive tests in selected individuals. Contrast-

enhanced echocardiography and perfusion lung scanning using technetium-99m-labelled 

macroaggregated albumin (99mTcMAA) are the two most well-accepted approaches for 

assessing intrapulmonary vascular dilatation.48,63,65–67 Typically, agitated saline is used 

to generate microbubbles during echocardiography. Intrapulmonary vascular dilatation is 

diagnosed when microbubbles are observed in the left cardiac chambers three cardiac 

cycles after intravenous injection.30,68,69 Immediate visualization of injected contrast 

(microbubbles) in the left side of the heart indicates intracardiac shunting. Transoesophageal 

contrast echocardiography can increase the sensitivity of detecting intrapulmonary 

vascular dilatation compared with transthoracic echocardiography, but is invasive and 

more expensive.30,68–70 Echocardiography also assesses cardiac function and estimates 

pulmonary arterial systolic pressure, and is useful for screening for cardiac dysfunction and 

portopulmonary hypertension. As many as 40–60% of patients with cirrhosis and normal 

levels of arterial blood gases can have a positive contrast echocardiogram, suggesting that 

mild intrapulmonary vascular dilatation insufficient to alter gas exchange is common.2,30,31 

Also, a positive result on contrast echocardiography in a patient who has hypoxaemia with 

concomitant pulmonary dysfunction (pleural effusion and chronic obstructive pulmonary 

disease) does not establish HPS as a cause of gas exchange abnormalities, because 

either intrapulmonary vascular dilatation or the underlying pulmonary process could be 

responsible. In these patients, additional testing with radionuclide lung perfusion scanning is 

useful for further diagnosis.

Radionuclide lung perfusion scanning (99mTcMAA scan) can be used to quantify 

intrapulmonary shunting in HPS. Normally, most particles are trapped in the lung 

microvasculature, but in HPS, some particles escape through abnormal capillaries and 

lodge downstream.28 Quantitative imaging of the lung and brain using a standardized 

methodology has been validated as a means to calculate the fraction of particles that escape 

the lung and reach the brain.1,28,30 Using this methodology, a positive 99mTcMAA scan 

(shunting >6%) is found only in patients with HPS who have a PaO2 <60 mmHg and 

not in those with intrinsic lung disease alone.28,30 A positive finding from a 99mTcMAA 

scan supports the presence of advanced HPS even in the setting of coexistent intrinsic 

lung disease. However, as a screening test in adults, 99mTcMAA scanning is less sensitive 
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than contrast echocardiography in detecting intrapulmonary vascular dilatation, and cannot 

evaluate cardiac function, intracardiac shunting or pulmonary artery pressures.

Pulmonary angiography is an invasive and insensitive diagnostic modality for detecting 

intrapulmonary vasodilatation in HPS and is not useful as a screening test. Two types 

of angiographic findings have been reported: type 1, a diffuse ‘spongiform’ appearance 

of pulmonary vessels during the arterial phase; and type 2, small discrete arteriovenous 

communication.16,57–60 The great majority of patients with HPS have either normal 

angiograms or type 1 findings even when hypoxaemia is severe. Therefore, angiography 

has a very limited diagnostic and therapeutic role in HPS.71,72 High-resolution chest CT 

is a less invasive radiological method to detect discrete arteriovenous communications than 

angiography in HPS.38,73,74 The degree of dilatation observed on CT correlates with the 

severity of gas exchange abnormalities in several studies, suggesting that CT might be useful 

in assessing the presence and severity of HPS.

Pathophysiology and pathogenesis

The most well-described alteration in HPS is dilations in the precapillary and postcapillary 

pulmonary vasculature, resulting in impaired oxygenation of venous blood as it passes 

through the lung.1,75,76 These changes result from decreased precapillary arteriolar tone and 

also seem to involve additional mechanisms including angiogenesis, vascular remodelling 

and vasculogenesis.77,78 Our current understanding of the pathogenesis of HPS is mainly 

drawn from experimental studies using animal models (Figure 1). Less is known about 

the pathogenesis of human HPS and how the mechanisms identified in the development of 

experimental HPS contribute to human disease.

Experimental HPS

Animal models—Defining well characterized and easily accessible animal models that 

mimic human diseases is critical for exploring pathogenic features and mechanisms of 

disease, and for developing effective therapeutic strategies for HPS. To date, chronic 

common bile duct ligation (CBDL) in the rat is the only established experimental model 

of human HPS.

CBDL induces biliary fibrosis, which results in a reduction in pulmonary vascular resistance 

and gas exchange abnormalities similar to human HPS.79–82 Direct measurement of 

pulmonary microvascular size and arterial blood gases show that there is a progressive 

increase in the size of the pulmonary microvasculature and in the AaPO2 that begins within 

2 weeks after CBDL in the absence of light-level pulmonary histological abnormalities.83–

85 During this time period, onset of bile duct proliferation, bridging biliary fibrosis 

and a hyperdynamic state with early portal hypertension occur.83,84,86,87 Therefore, HPS 

develops prior to the full development of cirrhosis and portal hypertension after CBDL. 

These observations support a concept drawn from human studies in which the presence or 

development of HPS does not require advanced and long-standing liver disease.6,67

As experimental controls, two additional liver disease models have been evaluated and 

compared with the CBDL model for the development of HPS. Partial portal vein ligation 
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results in prehepatic portal hypertension without cirrhosis, accompanied by hyperdynamic 

circulation, splanchnic vasodilation and portal–systemic shunts.88–90 Chronic thioacetamide 

administration results in toxic hepatocellular injury that leads to nonbiliary micronodular 

cirrhosis and portal hypertension within 8 weeks.86,91–96 HPS does not develop in either 

model. Together, these observations document that CBDL, relative to the partial portal vein 

ligation or the thioacetamide model, triggers unique alterations that lead to the development 

of HPS.

Vasodilation—The pathogenic hallmark of human and experimental HPS is microvascular 

alterations within the pulmonary arterial circulation. Both human and animal studies support 

the hypothesis that excess pulmonary production of gaseous vasodilators, including nitric 

oxide (NO) and carbon monoxide (CO), contributes to vasodilatation in the lung.

We and others have identified increased pulmonary vascular endothelial nitric oxide 

synthase (eNOS) as a major source of pulmonary NO production in CBDL,83,85,92,97,98 

and have demonstrated that inhibition of the eNOS–NO pathway using NG-nitro-L-arginine 

methylester (L-NAME) or methylene blue improve hypoxaemia after CBDL.98–101 One 

important trigger for pulmonary eNOS activation and vascular dilation is the increased 

hepatic production and release of endothelin-1.85,91,97,102 This effect is mediated by an 

increase in expression of pulmonary vascular endothelial endothelin B (ETB) receptor, 

which augments endothelial NO production in response to endothelin-1.92,103 Accordingly, 

selective ETB receptor inhibition or genetic ETB receptor depletion decreases pulmonary 

endothelial eNOS–NO activation and markedly improves HPS after CBDL.104,105 An 

increase in expression of inducible nitric oxide synthase (iNOS) in the lungs of CBDL 

animals (transient in some studies) can also contribute to local NO production during the 

progression of HPS.86,106 Together, these observations document that CBDL recapitulates 

the physiological findings in human HPS, and support a role for NO in experimental HPS.

Pulmonary production of CO is also increased as experimental HPS progresses. CO seems to 

derive, in part, from intravascular macrophages that progressively accumulate after CBDL. 

These cells transiently produce iNOS and progressively produce heme oxygenase 186,107 

and contribute to vasodilatation through production of iNOS-derived NO and CO derived 

from heme oxygenase 1. Accordingly, in vivo inhibition of heme oxygenase 1 activity 

ameliorates gas exchange abnormalities and intrapulmonary vascular dilatation in CBDL 

animals.86 Further studies indicate that crosstalk occurs between the eNOS–NO and heme 

oxygenase 1–CO systems and has a role in the progression of experimental HPS.86,107

Angiogenesis—Several lines of evidence suggest that the pathophysiology of human and 

experimental HPS might involve factors in addition to intrapulmonary vascular dilatation. 

In humans, early autopsy studies found increased capillary density abutting alveoli in the 

arterial microvasculature in cirrhosis, suggesting the presence of what is now considered 

angiogenesis.62 This concept is supported by the finding that acute inhibition of NOS in 

general has failed to reliably improve oxygenation in human HPS77 and that the syndrome 

might take more than 1 year to resolve after liver transplantation in some patients. Moreover, 

single nucleotide polymorphisms in certain genes important in angiogenesis occur more 

commonly in patients with cirrhosis who have HPS than in control patients with cirrhosis 
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without HPS.108 In experimental HPS, we and others have expanded on earlier work 

showing increased pulmonary microvessel density by electron microscopy after CBDL,75 

by documenting the development of pulmonary angiogenesis and activation of vascular 

endothelial growth factor A (VEGFA)-dependent angiogenic signalling pathways, including 

downstream Akt (protein kinase B) and eNOS.96,99,109 A similar role for VEGFA-mediated 

splanchnic and hepatic angiogenesis has been observed during the onset of cirrhosis and 

the development of portosystemic vascular collaterals in experimental models.110–116 The 

importance of pulmonary angiogenesis in the development of HPS has been confirmed by 

studies showing that the inhibition of angiogenesis improves gas exchange abnormalities in 

experimental HPS.96 Interestingly, one major source of VEGFA production in experimental 

HPS is monocytes adhered to the pulmonary vasculature.96 Therefore, understanding the 

specific signals and mediators that drive pulmonary angiogenesis in HPS, including how 

monocytes home to the pulmonary microvasculature, could provide critical insights for 

developing effective medical therapies.

Intravascular macrophages—The observation that monocytes adhere to the lung 

microvasculature in experimental HPS and could be important in pathogenesis was made 

in the initial studies of experimental HPS.81 These studies used electron microscopy 

and quantification of lung uptake of radioactive particles to show that phagocytically 

active pulmonary intravascular macrophages are detectable between 2 weeks and 3 weeks 

after CBDL.81 These cells do not seem to migrate into the lung parenchyma over time, 

and no reliable accumulation is found in other organs. Further studies have revealed 

that accumulation of pulmonary intravascular macrophages and/or monocytes is an early 

event in response to CBDL.86 In addition, modulation of monocyte infiltration can alter 

intrapulmonary vasodilation and angiogenesis, and inhibition of angiogenesis decreases 

monocyte accumulation in experimental HPS.96,109,117 The precise mechanisms that drive 

the accumulation and activation of macrophages in the lung remain undefined. However, 

studies suggest that circulating tumour necrosis factor (TNF; owing to an immune 

response to translocation of bacteria or bacterial endotoxins), endothelin-1 and possibly 

monocyte-directed chemokines contribute to intravascular accumulation of monocytes in the 

lung.91,102–104,118–120

Human HPS

Three mechanisms for the development of hypoxaemia have been described in 

human HPS: ventilation–perfusion mismatch (increased capillary blood flow possibly 

attributable to vasodilatation), diffusion–perfusion mismatching (impaired passage of 

oxygen from the alveolus into the vasculature possibly as a result of vasodilatation or 

angiogenesis) and anatomic arteriovenous shunting (possibly because of vasodilatation 

or angiogenesis).1,121,122 The relative contribution of these mechanisms to gas exchange 

abnormalities seem to vary based on the severity of HPS.31,122 In line with the 

concept that ‘physiological’ rather than ‘anatomic’ shunting of blood through the alveolar 

microcirculation is the major mechanism of hypoxaemia in HPS, many patients have a 

substantial increase in PaO2 (to >300 mmHg) when breathing 100% oxygen.123
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Pulmonary vascular dilatations in human HPS have been attributed to excess production of 

vasodilators, particularly NO.124–126 Exhaled NO levels—reflecting pulmonary production

—are increased in HPS and return to normal levels after liver transplantation, as HPS 

regresses. However, what modulates pulmonary NO production and how it relates to the 

severity of liver injury and portal hypertension remain uncertain. Observations show that 

inhibition of NO production or action does not reliably improve HPS and that increased NO 

production is not unique to HPS,43–45 supporting the concept that factors other than NOS-

derived NO modulate pulmonary vascular tone. Heme oxygenase 1-derived CO production 

does seem to be selectively increased in human HPS, although whether this increased 

production derives from lung production or influences the vasculature is not known.127 In 

addition, the fact that HPS occurs across a spectrum of aetiologies, diseases and severities 

of portal hypertension, and develops in <50% of patients with cirrhosis, suggests that HPS 

develops in patients with an underlying predisposition to the disease. That variation in 

genes associated with vascular growth and development is associated with the risk of HPS 

raises the possibility that genetic susceptibility to angiogenesis might be one predisposing 

factor.108 Finally, whether monocytes adhere to the lung vasculature in human HPS and 

whether inhibition of TNF or bacterial translocation across the gastrointestinal tract alters 

the severity of HPS are poorly defined.109

Natural history and clinical features

The natural history of HPS is incompletely characterized, although quality of life and 

survival are adversely affected by its presence.6 Over time, the majority of patients seem 

to develop progressive intrapulmonary vascular dilatation and worsening gas exchange, 

and spontaneous improvement, though reported, is rare.3 Mortality in patients with HPS 

is increased twofold relative to unaffected patients with cirrhosis.3,6,51 In addition, many 

patients with moderate to severe HPS have comparatively well-preserved hepatic synthetic 

function, making it probable that the presence of HPS will contribute to poor outcomes.3,6,65

The majority of patients with HPS are either asymptomatic, particularly if diagnosed 

during evaluation for liver transplantation, or develop the insidious onset of dyspnoea.128 

Classically, dyspnoea (platypnea) and hypoxaemia (orthodeoxia) increase in the upright 

position in HPS owing to the predominance of vasodilatation in the lung bases and the 

increased blood flow through these regions when sitting upright.129 These findings are 

highly suggestive of HPS but are not present in the majority of patients and are therefore 

of limited diagnostic utility.78,130 Several other clinical features, including spider angiomata, 

clubbing and cyanosis are also commonly described in HPS, but are also not reliable 

diagnostic indicators.30 In addition, respiratory symptoms are common in cirrhosis owing to 

poor physical condition, smoking, ascites and/or intrinsic lung disease.54 The presence of 

HPS might, therefore, be difficult to discern and the diagnosis delayed and identified only 

after severe arterial hypoxaemia has ensued. Finally, sleep-time oxygen desaturation also 

frequently occurs in patients with HPS and can worsen hypoxaemia at night.131

Chest radiography, chest CT and/or pulmonary function tests (PFTs) are often performed to 

evaluate dyspnoea in cirrhosis and during evaluations for liver transplantation. Commonly, 

chest radiograph findings are normal in HPS, even when hypoxaemia is severe.6,132 
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However, lower lobe interstitial markings resulting from dilated vessels can be present 

and are often confused with pulmonary fibrosis.133 Dilated vessels, as well as fibrotic lung 

disease, are visible on high-resolution chest CT, but its role in the diagnosis of HPS has not 

been established. PFTs typically demonstrate well-preserved spirometry and lung volumes. 

The diffusing capacity for CO is often reduced and can indicate a positive diagnosis, 

although a decrease in this parameter frequently occurs in cirrhosis in the absence of HPS, 

limiting diagnostic utility.134–136

HPS also affects children, although few prospective studies are reported. Overall, it seems 

to be less common in children than in adults (3–19%).40,137,138 Most frequently, the 

disease is found in common causes of paediatric liver disease requiring liver transplantation 

(biliary atresia), but is also reported in congenital disorders that alter portal venous blood 

flow through the liver (Abernethy malformation, polysplenia with interrupted inferior vena 

cava).39–42 Findings of liver disease can be minimal or absent in these syndromes, requiring 

a high degree of clinical suspicion of HPS to make the diagnosis.40 Compared with adults, 

whether children have a higher frequency of type 2 angiographic features resulting in 

improved sensitivity for 99mTcMAA scanning relative to contrast echocardiography in the 

diagnosis of HPS is not resolved.139

Management

No clearly effective medical therapy for HPS is available although a number of compounds 

have been studied in experimental and human disease (Table 1). Supplemental oxygen 

therapy is appropriate in hypoxaemic patients with HPS, although no studies have evaluated 

survival benefit. Somatostatin, almitrine, indometacin, norfloxacin, inhaled (nebulized) L-

NAME, aspirin and plasma exchange have all been tried in patients with HPS without clear 

benefit.1,77,101,133,140 A small open-label clinical trial, several case reports and a prospective 

trial using garlic have shown some benefit in HPS.141–144 Moreover, pentoxifylline—a 

phosphodiesterase inhibitor with known mild inhibitory effects on TNF and NO—has been 

linked to improved oxygenation in experimental HPS.118,120,145,146 However, in human 

HPS, results with pentoxifylline are conflicting. In one study, tolerability of the drug 

was poor and no oxygenation benefit was observed.145 In another study, tolerability to 

pentoxyfylline was not the limiting factor and there was an overall improvement in PaO2 

of >10 mmHg.146 No studies have explored whether endothelin-receptor antagonists or 

angiogenesis inhibitors, which have benefit in experimental HPS, are effective in human 

disease. A number of case reports have suggested a beneficial effect of other interventions, 

including inhaled prostacyclin derivatives to improve ventilation–perfusion matching,147,148 

withdrawal of chronic methadone149 and lowering of portal pressure with transjugular 

intrahepatic portosystemic shunt (TIPS) on HPS. Although several reports of using TIPS 

to treat HPS reported marked improvement, no benefit has been found in others, which 

makes assessments of utility difficult.150–154 These reports highlight the need to identify 

and target probable pathogenic mechanisms and undertake randomized, multicentre trials of 

sufficient size to determine efficacy. Finally, ligation of congenital portosystemic shunts in 

patients with Abernethy malformation associated with HPS has resulted in increased hepatic 

blood flow to the pulmonary arterial bed and resolution of HPS.42,155
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Currently, liver transplantation is the only effective treatment for patients with HPS 

and complete resolution of gas exchange abnormalities is reported in >80% of such 

patients.1,50 Both living donor and deceased donor liver transplantation have been reported 

to be effective. 156–158 However, an early prospective study found that those with severe 

HPS (preoperative PaO2 of ≤50 mmHg and 99mTcMAA shunt fraction ≥20%) had a 

marked increase in postoperative mortality, in part attributable to prolonged mechanical 

ventilation and the development of unique postoperative complications (such as worsening 

hypoxaemia and embolic intracerebral haemorrhage) recognized in these patients.59 These 

findings support the current practice of providing model for end-stage liver disease 

(MELD) exception points to patients with cirrhosis who have HPS and a PaO2 <60 

mmHg listed to undergo liver transplantation. Strategies including the use of inhaled NO 

and frequent repositioning of patients have been reported to be beneficial in improving 

oxygenation during recovery after liver transplantation.159–162 Since the initial prospective 

study reporting HPS outcomes after liver transplantation,4 a number of additional small 

studies and an analysis of the Scientific Registry of Transplant Recipients data have found 

1–3 year mortality after liver transplantation in patients with HPS to range widely from 

5% to 42%.3,4,51,156,163–165 These studies highlight the need to more precisely define the 

influence of HPS on liver transplantation outcomes to guide MELD exception policy.

Conclusions

Over the past 15 years, HPS has been increasingly recognized as an important clinical entity 

that influences survival and liver transplant candidacy in affected patients. No effective 

medical therapies exist. The pathogenesis of HPS remains incompletely understood, 

although ongoing studies in the CBDL animal model and in human disease suggest that 

vascular remodelling might have a central role in its development. One working hypothesis 

is that pulmonary vascular alterations in HPS represent a variation of inflammatory 

or tumour angiogenesis166– 168 in which homing and activation of inflammatory cells 

(including monocytes) results in paracrine production of mediators that drive a local 

angiogenic response. Evaluating the mechanisms underlying experimental HPS provides 

a pathogenic framework for investigating human disease and for developing and testing 

potential novel and effective therapies.
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Key points

• HPS is a common finding in patients with cirrhosis that increases mortality in 

this context

• HPS is defined by the triad of liver disease with intrapulmonary vascular 

dilatation causing abnormal oxygenation

• No effective medical therapies for HPS exist and liver transplantation is the 

only treatment option

• Chronic common bile duct ligation in the rat is the only established 

experimental model of human HPS

• Excess lung production of gaseous vasodilators, nitric oxide and carbon 

monoxide contributes to vasodilatation in human and experimental HPS

• Pulmonary angiogenesis has an additive role in the development of 

experimental HPS
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Review criteria

A search for original articles published between 1990 and 2012 and focusing 

on hepatopulmonary syndrome was performed in MEDLINE and PubMed. The 

search terms used were “hepatopulmonary syndrome”, “intrapulmonary vasodilation”, 

“intrapulmonary shunting”, “hypoxaemia”, “gas exchange”, “cirrhosis”, “portal 

hypertension”, “pathogenesis” and “common bile duct ligation” alone and/or in 

combination. All articles identified were English-language, full-text papers. We also 

searched the reference lists of identified articles for further relevant papers.
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Figure 1. 
Working model of pathogenic mechanisms in experimental HPS. The key 

pathophysiological features of experimental HPS induced by CBDL cirrhosis are pulmonary 

microvascular alterations, including vasodilation, intravascular monocyte accumulation and 

angiogenesis. Pulmonary vasodilation is triggered by excessive NO production through 

ET-1/ETB receptor-driven eNOS activation and iNOS induction in intravascular monocytes, 

as well as the altered CO production (caused by altered levels of HMOX1) in monocytes. 

Moreover, monocytes adhered to the pulmonary vasculature produce growth factors such 

as VEGFA, which contribute to the development of angiogenesis by activating angiogenic 

signalling pathways including Akt and ERK in endothelial cells. Abbreviations: Akt, protein 

kinase B; CBDL, common bile duct ligation; CO, carbon monoxide; eNOS, endothelial 
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nitric oxide synthase; ERK, extracellular signal-regulated protein kinase; ET-1, endothelin-1; 

ETB receptor, endothelin B receptor; HPS, hepatopulmonary syndrome; HMOX1, heme 

oxygenase 1 (also known as HO1); iNOS, inducible nitric oxide synthase; NO, nitric 

oxide; TNF, tumour necrosis factor; VEGFA, vascular endothelial growth factor A; VEGFR, 

vascular endothelial growth factor receptor.
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Table 1

Selected compounds used in studies of experimental and human HPS

Agents Mechanisms of action Effects in HPS

Experimental Human

NG-nitro-L-arginine 
methyl ester (L-
NAME)

Inhibitor of NO synthesis Decreases iNOS-mediated NO production 
in lung intravascular macrophages;100 

improves intrapulmonary shunting and gas 
exchange98,100

Decreases NO production; 
intrapulmonary shunt and 
arterial deoxygenation remain 
unchanged;77 increases arterial 
oxygen pressure in one case 
report101

Methylene blue Oxidizing agent that blocks 
NO stimulation of soluble 
guanylate cyclase

Improves arterial gas exchange and 
angiogenesis99

Improves intrapulmonary shunt, 
gas exchange and haemodynamic 
abnormalities;169,170 worsening of 
pulmonary gas exchange in a case 
report171

Garlic Unknown, effects might be 
attributable to an improvement 
in perfusion ventilation (V/Q) 
mismatch (redistribution of 
pulmonary blood flow)

Unknown Improves intrapulmonary shunts 
and arterial oxygenation141–144

Pentoxifylline Nonspecific phosphodiesterase 
inhibitor that decreases TNF 
production

Decreases TNF and NO levels, 
improves intrapulmonary shunting and 
gas exchange;96,118,120 inhibits lung 
intravascular monocyte accumulation and 
angiogenesis96,118

Arterial deoxygenation remains 
unchanged; gastrointestinal toxicity 
reported;145 decreases TNF levels; 
improves gas exchange146

Norfloxacin Antibiotic Decreases iNOS-mediated NO production 
in lung intravascular macrophages; 
improves intrapulmonary shunting and gas 
exchange119

Improves hypoxaemia in a case 
report;58 no major effect on gas 
exchange140

BQ788 ETB receptor antagonist Decreases eNOS and NO production 
and intravascular monocyte accumulation; 
improves intrapulmonary shunting and gas 
exchange104

Unknown

Tin protoporphyrin 
(SnPP)

Inhibitor for HMOX1 activity Decreases HMOX1-mediated CO 
production; improves intrapulmonary 
shunting and gas exchange86

Unknown

Angiostatin/
endostatin

Antiangiogenic agents Decreases eNOS and NO production; 
inhibits lung intravascular monocyte 
accumulation and angiogenesis; improves 
gas exchange96

Unknown

Caffeic acid 
phenethyl ester 
(CAPE)

Free radical scavenger Decreases NO levels and vessel diameter172 Unknown

Quercetin Dietary flavonoid with 
antioxidant effects

Decreases lung production of NO, iNOS, 
receptor; blocks eNOS, HMOX1 and 
ETB monocyte accumulation; improves gas 
exchange and vessel dilation173

Unknown

Gadolinium (GdCl3) 
or clodronate-
liposome

Depletion of lung vascular 
monocytes

Decreases iNOS levels; inhibits dilation and 
angiogenesis; improves gas exchange109

Unknown

Abbreviations: CO, carbon monoxide; eNOS, endothelial nitric oxide synthase; ETB, endothelin receptor B; HMOX1, heme oxygenase 1; HPS, 

hepatopulmonary syndrome; iNOS, inducible nitric oxide synthase; NO, nitric oxide; TNF, tumour necrosis factor.
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