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Abstract
Motivation: T cells play an essential role in adaptive immune system to fight pathogens and cancer but may also give rise to autoimmune dis-
eases. The recognition of a peptide–MHC (pMHC) complex by a T cell receptor (TCR) is required to elicit an immune response. Many machine
learning models have been developed to predict the binding, but generalizing predictions to pMHCs outside the training data remains
challenging.

Results: We have developed a new machine learning model that utilizes information about the TCR from both a and b chains, epitope sequence,
and MHC. Our method uses ProtBERT embeddings for the amino acid sequences of both chains and the epitope, as well as convolution and
multi-head attention architectures. We show the importance of each input feature as well as the benefit of including epitopes with only a few
TCRs to the training data. We evaluate our model on existing databases and show that it compares favorably against other state-of-the-art
models.

Availability and implementation: https://github.com/DaniTheOrange/EPIC-TRACE.

1 Introduction

T cells are a vital part of the adaptive immune system. To de-
termine whether an immune response is needed, T cells interact
with infected, cancerous and healthy cells. Upon recognition of
a target cell an immune response is elicited. This target cell rec-
ognition is based on their characterizing receptors, the T cell
receptors (TCR), that bind to peptides presented by major his-
tocompatibility complex (MHC) molecules. Thus, accurately
predicting the interactions between the TCR and the peptide–
MHC (pMHC) complex would be highly valuable.

The TCR consists of two chains, the a and the b chain,
which both have variable regions created by somatic V(D)J-
recombination. Both chains are important for the pMHC inter-
action and consists of three complementarity-determining
regions CDR1, CDR2, and CDR3. The CDR3 is the most vari-
able region and more in contact with the peptide, whereas the
CDR1 and CDR2 regions are encoded within the V gene and
are more in contact with the MHC (Rudolph and Wilson
2002). More importance has been placed on the CDR3 of the
b chain than other parts of the TCR, which is also reflected in
currently available TCR–pMHC data. However, the use of
both chains and V and J gene information has been shown to
improve the prediction accuracy (Jokinen et al. 2021, Moris

et al. 2021). The V(D)J-recombination creates diversity both
from a combinatorial effect by choosing which genes to include
and a junctional effect stemming from random nucleotide
insertions and deletions in the ligation process of the chosen
gene segments. Together the two chains can form a vast TCR
diversity with estimates ranging from 1015 to 1020, being
orders of magnitudes larger than the estimated amount of cells
in the human body 3:7 � 1013 (Laydon et al. 2015). Similarly as
the TCRs, the pMHCs are very diverse. Naive estimates for
pMHC diversity of one human are between 108 and 109 and
about 1013 for MHC class 1 and 2, respectively (Rock et al.
2016). In addition to the astronomical number of possible
TCR–pMHC pairs, both parts show cross-reactivity, i.e. one
TCR can recognize approximately 106 peptides and a peptide
can be recognized by many TCRs (Wooldridge et al. 2012).

The TCR repertoire can be studied as a whole by compar-
ing clonalities or diversities between individuals or popula-
tions (Valkiers et al. 2022). The usage and evolutionary
conservation of V, D, and J genes have also been studied to
understand the repertoires (Valkiers et al. 2022). However,
the underlying key concept is the TCR–pMHC binding, en-
abling one to understand which TCR(s) bind to which epito-
pe(s). Many different machine learning approaches have been
used to predict the TCR–pMHC binding, including clustering

Received: 30 June 2023; Revised: 20 November 2023; Editorial Decision: 29 November 2023; Accepted: 7 December 2023
VC The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(12), btad743
https://doi.org/10.1093/bioinformatics/btad743

Advance Access Publication Date: 9 December 2023

Original Paper

https://orcid.org/0000-0002-2845-8836
https://orcid.org/0000-0002-0060-6868
https://orcid.org/0000-0003-0909-9484
https://github.com/DaniTheOrange/EPIC-TRACE


based methods [TCRdist (Dash et al. 2017), GLIPH
(Glanville et al. 2017, Huang et al. 2020), TCRMatch
(Chronister et al. 2021)], decision trees [SETE (Tong et al.
2020)], random forests [TCRex (Gielis et al. 2019), epiTCR
(Pham et al. 2023)], and Gaussian processes [TCRGP
(Jokinen et al. 2021)]. Recently, as more data have become
available, many different data-intensive deep learning
approaches have been proposed [ERGO (Springer et al. 2020,
2021), ImRex (Moris et al. 2021), TITAN (Weber et al.
2021), NetTCR (Jurtz et al. 2018, Montemurro et al. 2021),
DeepTCR (Sidhom et al. 2021), TCRAI (Zhang et al. 2021),
TCRconv (Jokinen et al. 2023), TEINet (Jiang et al. 2023),
TCR-BERT (Wu et al. 2021), PanPep (Gao et al. 2023),
TEIM-Seq (Peng et al. 2023)]. Still, the complexity of the
problem and the quality, amount and imbalance of the avail-
able data cause challenges for developing methods that gener-
alize to TCRs and pMHC not included in the training data
(Tong et al. 2020, Montemurro et al. 2021, Moris et al.
2021, Sidhom et al. 2021, Weber et al. 2021, Gao et al. 2023,
Jiang et al. 2023, Pham et al. 2023, Peng et al. 2023).
Moreover, most available prediction tools use epitopes only
as categorical features, omitting the amino acid sequence alto-
gether (Dash et al. 2017, Glanville et al. 2017, Gielis et al.
2019, Huang et al. 2020, Tong et al. 2020, Chronister et al.
2021, Jokinen et al. 2021, Sidhom et al. 2021, Wu et al.
2021, Zhang et al. 2021, Jokinen et al. 2023). This effectively
leads to inability to predict binding for epitopes outside the
training data. Furthermore, already limited training data have
to be filtered out when training epitope-specific predictors, as
there are not sufficient amounts of data per epitope. On the
contrary, the ability to predict for unseen peptides would fa-
cilitate the prediction of cognate peptides to disease-
associated orphan TCRs.

In this work, we present a new deep learning model, EPIC-
TRACE, that utilizes ProtBERT (Elnaggar et al. 2021) based
contextualized encodings of the amino acid sequences of the
peptide and the TCR as well as multi-head attention and con-
volutions to achieve accurate and robust predictions. We pri-
marily focus on predicting TCR–pMHC interactions for
peptides that are not included in the training data (so-called
unseen epitope task). As input to the EPIC-TRACE model we
use the CDR3, V, and J genes of both chains (whenever avail-
able) and the peptide sequence together with its correspond-
ing MHC allele. The use of protein language models for
embeddings is motivated by their tendency to encode struc-
tural information which correlates well with protein function
(Vig et al. 2021). We show that utilizing information about
all available parts of the TCR–pMHC complex as input fea-
tures in our model leads to best predictive performance.
Furthermore, we show that including peptides that may have
only a few interacting TCRs in the training data improves the
performance on the unseen epitope task and demonstrate
how the model can be used as an in silico peptide screening
method. Finally, we show that our model performs better or
comparable to recent models across a variety of prediction
tasks.

2 Materials and methods

2.1 Data

TCR–pMHC discovery relies mostly on the use of pMHC-
multimers, which are restricted to relatively few pMHCs com-
pared to a vast amount of possible T cells screened for

recognition. Thus, the current TCR–pMHC data are skewed
to have far more unique TCRs than pMHCs. These skewed
data make the TCR–pMHC prediction task harder. We col-
lected our data of positive TCR–pMHC pairs from two data-
bases: VDJdb (Bagaev et al. 2020) and IEDB (Mahajan et al.
2018).

Since both VDJdb and IEDB have much less MHC class II
datapoints, we filtered the data to contain only MHC class I
datapoints and further required the host to be from human.
For a fair comparison we define our base dataset Dab;b, which
we subsample or extend as explained later in the correspond-
ing experiments. For each datapoint in Dab;b, we required the
following information: the amino acid sequence of the b chain
CDR3 region, the epitope amino acid sequence, and informa-
tion about the bV, bJ, and MHC genes at any precision, i.e.
the full-length amino acid sequence of the TCR might not be
available. Dataset Dab;b contains only datapoints with suffi-
cient b information, to which we also add information about
a chain, when available. In Section 3, we use Dab;b as de-
scribed above unless specified otherwise.

We unified the notation for all V and J genes and discarded
datapoints with nonfunctional genes according to the IMGT
(Folch and Lefranc 2000a, b, Scaviner and Lefranc 2000a, b,
Lefranc et al. 2003). We ensured that all CDR3s are in canon-
ical form by adding missing anchor position residues (C and
F/W) and if not possible we discarded the datapoint.
Datapoints that only differed in precision of gene information
were filtered out by keeping only the most precise. The num-
bers of unique feature values of all datasets are shown in
Supplementary Table S1. We note that the three most fre-
quent epitopes, i.e. epitopes with most associated TRCs,
make up more than a fourth of all datapoints in our IEDB þ
VDJdb based datasets.

2.2 Prediction tasks

Because of the paired nature of the data and the challenges
due to the data imbalance, the TCR–pMHC prediction is
more suitable to be expressed as four separate tasks. An im-
portant distinction is whether to test for epitopes contained in
the training data (seen epitopes) or the converse, test for un-
seen epitopes. Methods treating the epitope as categorical la-
bel cannot naturally predict for unseen epitopes. This
distinction is very important as it precisely defines the diffi-
culty of the problem. Furthermore, following (Springer et al.
2020) the tasks can similarly be divided in terms of seen or
unseen TCRs, resulting in the following three tasks: TCR–
Peptide Pairing 1 (TPP1) where both TCR and epitope parts
of a test datapoint are seen in training data but in different
pairs, TPP2 where the epitope is seen in training but TCR is
unseen, and TPP3 where neither the TCR nor the epitope is
seen in training. To complete the task definitions we add
TPP4, where the TCR is seen in training data but the epitope
is unseen. The tasks are illustrated in Supplementary Fig. S4.

The different tasks correspond to different biological
questions. TPP2 seeks to answer if a TCR repertoire has T
cells targeting given epitope(s), e.g. SARS-COV-2 or HIV,
such that we have data on those epitopes in training. In the
case our training data contain neither the epitopes nor the
TCRs, the task changes to TPP3, which is arguably the
most general and interesting task. Even though all tasks are
relevant, currently only the two first tasks (TPP1 and TPP2)
can be solved with reasonable performance. However, as
individuals have generally very little overlap in their TCR
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repertoires the unseen TCR tasks (TPP2 and TPP3) are
more generally applicable. In addition, TCRs in the current
databases, such as IEDB and VDJdb, are mostly specific to
a single epitope, i.e. the TCRs appear as a pair to only one
epitope. This means that the amount of positive datapoints
for the TPP4 task is very low and makes it unfeasible to
test with. Thus, we focus our experiments primarily to the
TPP3 task, but we also include TPP2 experiments as a com-
parison. For the TPP4 evaluation we use an external dataset
that we describe later.

2.3 Cross-validation and performance metrics

Following the common practice in the field, the performance
of our model was evaluated using 10-fold cross-validation
that was repeated five times. In each cross-validation fold we
split the data to train and test sets and extract part of the train
set for validation used for early stopping. We report the per-
formance measures as the mean and standard error of the
mean across the five cross-validation runs. We use the area
under the receiver operating characteristics (AUROC) and the
average precision (AP) metrics.

10x Genomics (2020), but these are not generally avail-
able for all epitopes. The generation of negative data by
shuffling the positive datapoints is established in the field
and gives a more reliable estimate of model performance
compared to usage of external TCR datasets (Moris et al.
2021). The negatives are generated separately for every
train (þ validation) and test set in each cross-validation fold
to ensure a larger amount of negatives to shuffle epitopes in
train. Importantly, this also restricts data leakage from test
to train for the corresponding task. We generated the nega-
tive data by shuffling TCRs (CDR3, V, and J for both
chains) with epitopes (epitope and MHC) such that the new
datapoint was not in the set of positive datapoints. The ran-
domly generated datapoint was determined negative if any
part (CDR3, V, or J gene) of either chain was different to
the positive TCRs of the epitope. As epiTRC, TITAN, and
ImRex only consider the b chain and the epitope, the above
definition can create some CDR3b-Epitope pairs that have
both positive and negative labels. To ensure a fair compari-
son with epiTCR, TITAN, and ImRex, we created a second
version of cross-validation splits of Dab;b, where we deter-
mined the negatives such that at least the CDR3b had to
differ. In both settings we did not allow duplicate data-
points. We created five times as many negatives as positives
for each epitope as in (Montemurro et al. 2021, Meysman
et al. 2023). This means that not only has the test set the
ratio of 1:5 but also any individual epitope. For most fre-
quent epitopes, there are not enough TCRs to create enough
negatives by shuffling. In these cases, we discarded positive
datapoints randomly to maintain the correct ratio. In order
to comply with the given TPP task definitions, the splits
were created separately for each task.20

As the majority of the datapoints belong to a small amount
of most frequent epitopes, we balanced the amount of epito-
pes and datapoints in each fold for TPP3. More specifically,
we ordered the epitopes in descending frequency order and
then randomly assigned a fold index for k ¼ 10 consecutive
epitopes at a time. Importantly, this also assures that all folds
have both frequent and less frequent epitopes. The TCRs are
more evenly distributed and thus the cross-validation folds
for TPP2 can be done simply by choosing TCRs to the splits.
If any of the epitopes in the test set is not present in train,

extra negatives were added to the train to obtain the TPP2
constraint (and naturally the 1:5 ratio cannot be retained for
those epitopes).

2.4 EPIC-TRACE model

Our model utilizes the full TCR–pMHC information avail-
able and is designed to predict interaction between a TCR
and an pMHC, i.e. a binary classification problem.

TCR features. A TCR is defined as
TCR ¼ ðbV;bJ;bCDR3; aV; aJ; aCDR3Þ, where bV 2 B

gbV and
bJ 2 B

gbJ are one-hot encoded vectors indicating the V and J
genes in the b chain, B ¼ f0;1g, and gbV and gbJ denote the
numbers of V and J genes (similarly for the a chain, aV 2 B

gaV

and aJ 2 B
gaJ ). Variable bCDR3 2 R

lb�e consists of two parts:
(i) contextualized information about the CDR3 region of the
b chain that is obtained from the pre-trained ProtBERT lan-
guage model (size lb � 1024) (Elnaggar et al. 2021), and
(ii) one-hot encoded CDR3 region. These are concatenated to
form feature representation of size lb � e, where lb denotes the
length of the CDR3 region that is further padded to CDR3
maximum length l � e. If the V and J gene information is
available for the b chain, the full-length TCR b amino acid se-
quence is constructed and embedded with ProtBERT. For full-
length TCRs only the CDR3 region positions are extracted
from the ProtBERT embedding and stored in bCDR3. This is
done as we use the V and J genes as separate inputs, and as
shown by Jokinen et al. (2023) the contextualized CDR3 cap-
tures the essential features for classification. If the full TCR
cannot be constructed, only the CDR3 region is embedded
with ProtBERT and no further extraction is done. If the a
chain is available, aCDR3 2 R

la�e is defined similarly.
Epitope–MHC features. The epitope–MHC complex is de-

fined as pMHC ¼ ðEpitope;MHCÞ, where Epitope 2 R
le�e is

obtained by concatenating the ProtBERT embedding and the
one-hot encoding of the epitope sequence (and subsequent
padding to maximum length), le is the length of epitopes,
MHC 2 B

gm is the one-hot encoded vector of the MHC allele,
and gm is the number of alleles.

Output labels. We formulate our model using three sepa-
rate binary output labels y ¼ ðya; yb; yabÞ, where ya 2 B,
yb 2 B, and yab 2 B. If only the b chain is available, then ya

and yab are considered as missing (similarly if only ya is avail-
able). If both a and b chains are available, then yab defines the
binding and ya and yb are considered missing. The prediction
problem is then defined with datapoints ðTCRn; pMHCn; ynÞ,
where n 2 f1; . . . ;Ng, and N is the number of positive and
negative datapoints.

Architecture. Our architecture utilizes convolutions, multi-
head self-attentions, learnable linear embeddings and ReLU
activations. The model contains three output heads corre-
sponding to the cases when only b, only a, or both b and a
chains are available. An overview of the model is shown in
Fig. 1. The representations of the CDR3 regions (bCDR3 and
aCDR3) and the epitope (Epitope) are first processed with 1-D
convolutions to infer binding motifs from either the
ProtBERT embedding or the one-hot encodings. Epitope con-
volution is concatenated separately with the CDR3 convolu-
tion of the b and a chains (if available). Multi-head attention
is used to identify the important interacting features sepa-
rately for ðbCDR3;EpitopeÞ and ðaCDR3;EpitopeÞ pairs. In this
way the model can handle missing information in either of the
chains and, importantly, the model will benefit from data
with a missing chain even if the test data points would have
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both chains (the same neural network parameters for a and b
chains are respectively used in either missing or full data use
cases). Learnable linear embedding is trained for the one-hot
encoded V and J genes from both chains ðbV;bJ; aV; aJÞ as
well as for the MHC allele (MHC), which are then
concatenated with the outputs of the attentions. The b and a
chains are processed with the multilayer perceptrons (linear
and ReLu) separately as well as together (whenever both
chains are available) and passed through sigmoidal activation
to make the predictions ŷb 2 ½0; 1�, ŷa 2 ½0; 1� and ŷab 2 ½0;1�
corresponding to the three different cases. Details of the neu-
ral network architecture are shown in Supplementary Section
S2.

Model training. We trained our model by maximizing the
logarithm of the Bernoulli likelihood or equivalently the nega-
tive binary cross-entropy

BCELðhÞ ¼ � 1
N

XN
n¼1

wn

�
yn logðŷnÞ þ ð1� ynÞ logð1� ŷnÞ

�
;

where wn is the weight for the nth datapoint. We weighted
the positive datapoints five times higher than the negatives.
We controlled for over-fitting by using early stopping based
on the average precision on the validation set, and the
model parameters giving the highest validation score were
used. Following the main training we used stochastic weight
averaging (SWA) (Izmailov et al. 2018) for 20 epochs. We
used different learning rates for training models for the
TPP2 and TPP3 tasks in both the main training and the
SWA sampling, 0.0001 and 0.001, respectively. In addition,
we used exponential learning rate scheduler for the main
training for TPP3.

3 Results

3.1 Choice of validation set, and per epitope scores

We first set out to investigate the effect of the validation set
(used for early stopping) on the test performance. We com-
pared two different ways to generate the validation set: (i) na-
ive random sample of datapoints from the train set, and
(ii) creating unseen epitope validation by choosing datapoints
by epitopes from the train set. The comparison was made
only for the TPP3 task, where epitope is unseen, as the unseen
epitope validation is not sensible for seen epitope tasks TPP1
or TPP2. The random validation set had slightly better perfor-
mance compared to the unseen epitope validation (see
Supplementary Table S4), perhaps because that leaves more
distinct epitopes in the training set. The unseen epitope rela-
tion is present between both train-validation (TPP3 or TPP4)
and train-test (TPP3). However, the epitope distributions in
validation and test are naturally distinct for the TPP3 task.
Due to this inherent epitope covariate shift (as a result of very
few epitopes in the current data) a representative validation
set is hard to construct. Because the random validation is bet-
ter representing the other tasks and also resulted in slightly
better performance for the TPP3, we chose to use the random
validation in all following experiments.

Due to the highly imbalanced data the joint prediction ac-
curacy measures (AUROC and AP) are dominated by the epit-
opes with most datapoints. Therefore, we quantified the per
epitope scores for the TPP2 and TPP3 tasks. We observe that
the epitopes with more datapoints have a higher score on av-
erage on the TPP2 task (Fig. 2 left), which is logical as there
are more datapoints for those epitopes to train on. To better
characterize the trend explained by the number of datapoints
for an epitope in the TPP2 task, we binned the per epitope
scores and calculated the bin averages (Supplementary Fig.
S1). The AUROC scores seem to slightly increase as the num-
ber of datapoints increases. On the other hand, we observe
that the number of datapoints per epitope does not affect the
performance on the TPP3 task as expected (Fig. 2 right), since
by the TPP3 definition the datapoints for a specific epitope
are not included in the training and, thus, only affect the num-
ber of test datapoints. Overall, prediction accuracies vary
across epitopes, which can be due to the currently available
data for that epitope or underlying biophysical reasons.

Furthermore, we investigated the effect of a distance be-
tween epitopes in the training and test sets. This was done by
quantifying the minimum (Levenshtein) edit distance between
an epitope in the test set and the epitopes in the training set.
Similarly as in Moris et al. (2021), we observe that the per
epitope scores seems to slightly decrease when the minimum
edit distance to the training set increases (Fig. 3a). To further
investigate the generalization performance on diverse epitope
sequences, we carried out an additional experiment where we
stratified the training and test folds according to minimum
edit distances between the folds. More specifically, we re-
quired at least a distance of five between any two epitopes
that belong to two different folds, leading to a minimum dis-
tance of five between training and test sets. The scores
(AUROC 0.693 and AP 0.288) are similar to the scores
obtained from the unrestricted cross-validation (see Row 7 in
Table 1). These analyses suggest that our proposed model can
generalize to data points outside the training data.

Figure 1. Architecture of the EPIC-TRACE model.
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3.2 Input feature contribution

To study which input features are important we conducted an
ablation study and trained the model using different features.
We studied the performance gain of using the full length
TCRs (long context) when possible for creating ProtBERT
embeddings from which the CDR3 part is extracted, com-
pared to using always only the CDR3 region as input for the

ProtBERT model. In addition, we trained the models with or
without the categorical V, J, and MHC information. Models
were trained separately for TPP2 and TPP3 tasks. The results
are presented in Table 1 and discussed below.

Interestingly, the two tasks benefited in different magni-
tudes of the different features. The VJ gene information given
either as categorical features or as part of the context to the

Figure 2. Per epitope AUROC values for the TPP2 (left) and TPP3 (right) tasks. Epitopes were sampled logarithmically to include epitopes with varying

number of TCRs. Top x-axis shows the number of positive datapoints for each epitope (bottom x-axis). The vertical axis shows the mean of five 10-fold

cross-validations runs together with the standard error.

(a) (b)

(c)

Figure 3. (a) Violin plot of AUROC scores grouped by minimum edit distance to train dataset. The large (red) dots are (unweighted) averages of the scores

for the given minimum edit distance. (b) Comparison to TCRconv. TCRconv was trained on three subsets of 30 epitopes from the Dab;b dataset and

compared to EPIC-TRACE trained on full Dab;b folds either with all or reduced input features. The y-axis shows average per epitope AUROC values of

frequency binned epitopes with standard error. (c) Comparison of models trained with all datapoints or by discarding epitopes with <15 TCRs from

training for TPP3. Models were trained with or without MHC information. The y-axis shows the average per epitope AUROC with standard error.
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ProtBERT embeddings was more important for the TPP2
task, while the MHC information was more important for the
TPP3 task (Table 1). Even though the vast majority of the
datapoints had either “HLA class 1” or “HLA*02:01” as
their MHC information the MHC feature showed to be im-
portant. For the TPP3 task, the performance without the
MHC information is much lower than when using it, even if
VJ information is used. The results are logical when compar-
ing the MHC importance between the tasks. In the TPP3 case
the MHC information can be included in the training data,
and thus some information about the pMHC complex can be
directly used in test predictions. On the other hand, in the
TPP2 task, most of the datapoints for one epitope share the
same MHC information and thus this information becomes
redundant, which explains the lower improvement.
Expectedly, both tasks had best performance when using both
VJ and MHC information. When using both VJ and MHC in-
formation the gene-gene preferences can be explicitly mod-
eled, which could explain synergistic improvement on the
TPP3 task.

To investigate the importance of the TCR chains, we evalu-
ated the EPIC-TRACE model on a reduced dataset (Dab),
where every datapoint has necessary information of both
chains available. With Dab we required that TCRs in the test
sets differed on both a and b CDR3s from TCRs in the train.
Similarly, we required both CDR3s to differ when determin-
ing negative pairs. We trained our model utilizing only either
chain and with both chains. Results are shown in Table 2. On
TPP2 task, using both chains outperforms the models that
were trained on only the a or b chain, whereas the performan-
ces are similar on the TPP3 task. However, when using only
either chain the performances are very similar, for both tasks.
We note that the performances on the reduced dataset Dab are
worse than on the full dataset Dab;b due to a smaller sample
size.

Lastly, we combined our base dataset (i.e. Dab;b that con-
tains both ab and b datapoints) with datapoints containing

only the a chain (i.e. Dab;a;b). This could not be done with the
other models that are compared in this paper as they require
b chain (ERGO-II) or can only utilize either of the chains
(epiTCR, TITAN, and ImRex). The combination was done by
adding the new datapoints to the training sets leaving the test
sets the same and comparable. Adding the a datapoints in-
creased the TPP3 performance but lowered the AP on the
TPP2, see row 8 Table 1

3.3 Increasing the amount of unique epitopes

improves generalization

To investigate how the number of unique epitopes in the
training data affects the two tasks (TPP2 and TPP3), we eval-
uated the model with two settings: (i) we included all epitopes
in the cross-validation (i.e. the same standard cross-validation
as above), and (ii) we discarded the epitopes with <15 TCRs
from training. These settings were also extended to test sets
such that the test set either included or excluded the less fre-
quent epitopes. These low frequency epitopes comprise ap-
proximately 75% of the (1301) epitopes but only 2994 of the
147 346 datapoints. In earlier work low frequency epitopes
have been discarded from the data: e.g. epitopes with <15
TCRs were excluded in TITAN (Weber et al. 2021), and epit-
opes with <10 were excluded in TEInet (Jiang et al. 2023).
The performance scores for the two tasks and the two differ-
ent settings are shown in Supplementary Table S5. When test-
ing on all epitopes, we observe an apparent increase in the
performance for the TPP3 task when the low frequency epito-
pes are included in the training data (AP increases from
0.28060.008 to 0.29160.005). Interestingly, there is only lit-
tle to no improvement when testing on only more frequent
epitopes in TPP3 (AP increases from 0.27860.006 to
0.28560.005). The TPP2 task scores did not improve with
the added epitopes.

To further investigate the effect of low frequency epitopes
on the low frequency and the more frequent epitopes sepa-
rately, we calculated the average per epitope scores for the

Table 1. Effect of input features.a

TPP2 AUROC TPP2 AP TPP3 AUROC TPP3 AP

1. ab (CDR3) 0.830 6 0.000 0.574 6 0.000 0.513 6 0.008 0.179 6 0.003
2. ab (CDR3) þ VJ 0.891 6 0.000 0.665 6 0.001 0.548 6 0.007 0.192 6 0.004
3. ab (CDR3) þMHC 0.837 6 0.000 0.583 6 0.000 0.611 6 0.002 0.243 6 0.002
4. ab (CDR3) þ VJ þMHC 0.897 6 0.000 0.676 6 0.000 0.692 6 0.007 0.289 6 0.006
5. ab (long) 0.888 6 0.000 0.663 6 0.000 0.528 6 0.008 0.191 6 0.004
6. ab (long) þMHC 0.893 6 0.000 0.674 6 0.000 0.682 6 0.010 0.284 6 0.007
7. ab (long) þ VJ þMHC 0.906 6 0.000 0.698 6 0.000 0.691 6 0.008 0.291 6 0.005
8. ab (long) þ VJ þMHC [Dab;a;b] 0.906 6 0.000 0.691 6 0.001 0.693 6 0.008 0.294 6 0.007

a The model was trained on Dab;b using different subsets of the input features. Here CDR3 and long in parenthesis denote the context used for the
ProtBERT embeddings and VJ and MHC denote if the respective categorical features were used. We also compared the model on Dab;a;b that contains also
datapoints that have only the a chain but not the b chain (row 8). Reported values are the mean of the five 10-fold cross-validation runs together with the
standard error. The values corresponding to best performing configurations are bolded.

Table 2. Comparison of TCR chains.a

Used
chain(s)

TPP2
AUROC

TPP2
AP

TPP3
AUROC

TPP3
AP

ab 0.767 6 0.001 0.505 6 0.001 0.541 6 0.008 0.204 6 0.006
b 0.721 6 0.001 0.441 6 0.001 0.539 6 0.004 0.202 6 0.005
a 0.725 6 0.001 0.442 6 0.001 0.537 6 0.005 0.206 6 0.004

a The model was trained with either or both of the TCR chains on a more stringent dataset Dab, where each datapoint contains both chains. Reported
values are the mean of the five 10-fold cross-validation runs together with the standard error.
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different settings. Figure 3c shows that including the low fre-
quency epitopes in training improves the results on the TPP3
task. This is especially apparent for the low frequency epito-
pes in the test set. Overall, the result in Fig. 3c shows that uti-
lizing the low frequency epitopes in training is beneficial for
generalization. We note that the low frequency epitopes are
associated to many HLA alleles that are not present in the
data of the more frequent epitopes. Since the MHC informa-
tion improves the results on the TPP3 task as shown in
Section 3.2, we wanted to confirm that it is indeed the addi-
tion of different epitope sequences that improves the result,
not just the addition of MHC alleles. To confirm that, we
trained our model without the MHC information in the same
two settings. Figure 3c shows that including low frequency
epitopes in the training data results in a similar performance
improvement even when the EPIC-TRACE model is trained
without the MHC information, thus supporting our
hypothesis.

3.4 Comparisons to other methods

Next, we compared our method to other state of the art mod-
els that treat the epitope as an amino acid sequence. We com-
pared against ERGO-II (Springer et al. 2020, 2021), TITAN
(Weber et al. 2021), ImRex (Moris et al. 2021), and epiTCR
(Pham et al. 2023). ERGO-II uses LSTMs to embed the
CDR3 (b or ab) and epitope sequences in addition to V, J
MHC and T cell type class labels. ImRex utilizes a matrix of
pairwise physicochemical features between CDR3 (b or a)
and the epitope sequence as an input to a convolutional neu-
ral network. TITAN uses convolutions and context attention
to make the prediction from the SMILES embedded epitope
and BLOSUM62 embedded full length TCR (b or a).
Importantly TITAN is also pretrained on a more general pro-
tein ligand binding task using SMILES. epiTCR uses random
forest to predict the BLOSUM62 embedded CDR3 (b) and
epitope also utilizing a 34-amino acid-long pseudosequence
for the HLA. We used again the dataset Dab;b and exactly the
same cross-validations data splits for all methods. The results
in Table 3 show that our model outperforms epiTCR, TITAN
and ImRex by a large margin, and performs consistently bet-
ter than ERGO-II on both tasks. One reason to the difference
can be that epiTCR, TITAN, and ImRex only utilize the b
chain and the b-CDR3, respectively, compared to our model
and ERGO-II utilizing all available information. Performance
of all models remained consistent when using the different
definitions for negative datapoints (see Supplementary
Table S2).

We additionally assess the generalization performance on
unseen epitopes from independent test data. For this we col-
lected all recently added data points from the IEDB
and VDJDB databases, i.e. all experimentally measured

TCR–epitope–MHC interactions that were added to either
IEDB or VDJDB after extraction of the Dab;a;b dataset that we
have used. We restricted the new test data points to have both
distinct epitopes and distinct CDR3b sequences from those in
the train data, i.e. the new data points belong to the TPP3
task for the previous training train Dab;a;b. The negatives for
the new test data points were generated similarly as for train
in a ratio 1:5 per epitope, where unseen TCRs were randomly
chosen for each epitope. Altogether, the new independent
dataset contains 2400 positive and negative data points.
EPIC-TRACE compared favorably against the other methods
based on the average per epitope AUROC (see Supplementary
Fig. S3).

We also compared our model against a state of the art
model that uses epitopes as class labels, TCRconv (Jokinen
et al. 2023). Since the number of unique epitopes in the data-
set originally used for TCRconv is in the order of tens, we
trained TCRconv separately with three subsets of 30 epitopes
from the Dab;b, stratified according to the number of TCRs
per epitope in the train set (i.e. epitopes with �27, �45, or
�780 TCRs in the train set, the last one presenting the most
frequent epitopes). This was done for a more fair comparison
as opposed to using hundreds of epitopes. For a more detailed
description of the comparison see Supplementary Section S1.
Figure 3b shows that EPIC-TRACE performs better on all
three subsets with both the full model and the reduced model
(only b chain and no MHC). As expected, the more frequent
epitopes receive a better mean AUROC score than the less fre-
quent epitopes for both EPIC-TRACE and TCRconv.
Importantly, the difference between TCRconv and EPIC-
TRACE increases when the epitope frequency decreases,
showcasing the advantage of using the epitope amino acid se-
quence. We also tested EPIC-TRACE against TCRconv on
the most abundant epitopes using both a and b sequences.
This is a setting where methods that treat epitopes as class
labels are strongest. We observed that TCRconv can achieve a
comparable performance in this setting (see Supplementary
Table S3), but as discussed above, TCRconv or other similar
tools cannot make prediction for any other epitopes than
those in the training data.

3.5 Prediction of yeast display data

Next, we demonstrate how EPIC-TRACE can be used to
screen epitopes for disease-associated TCRs—a computa-
tional task that is notoriously difficult but would have tre-
mendous potential e.g. in understanding disease pathogenesis.
Recently, Yang et al. (2022) identified five orphan TCRs that
are associated with ankylosing spondylitis (AS) as well as
acute anterior uveitis (AAU) and used yeast display library
screening followed by subsequent validation to identify 26
HLA-B*27:05 restricted shared self-peptides and microbial

Table 3. Comparison to previous methods.a

TPP2 AUROC TPP2 AP TPP3 AUROC TPP3 AP

EPIC-TRACE (our) [Dab;a;b] 0.906 6 0.000 0.691 6 0.001 0.693 6 0.008 0.294 6 0.007
EPIC-TRACE (our) 0.906 6 0.000 0.698 6 0.000 0.691 6 0.008 0.291 6 0.005
ERGO-II 0.895 6 0.002 0.659 6 0.007 0.675 6 0.007 0.274 6 0.004
epiTCR 0.793 6 0.000 0.581 6 0.000 0.515 6 0.001 0.183 6 0.001
TITAN 0.786 0.454 0.577 0.204
ImRex 0.697 0.420 0.519 0.178

a EPIC-TRACE, ERGO-II, and epiTCR are evaluated on five 10-fold cross-validation runs, whereas TITAN and ImRex are evaluated on only one of the
five cross-validations due to long training time. Reported values are the mean of the five 10-fold cross-validation runs together with the standard error. Values
for best performing models are bolded.
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peptides that activated the five AS- and AAU-derived TCRs.
Here we demonstrate that machine learning methods are
starting to reach sufficient accuracy to complement, and even-
tually replace, the laborious yeast display library screening.
We used the five experimentally validated TCRs and 26 epito-
pes, altogether 81 HLA-B*27:05 restricted TCR–peptide
pairs, as positive datapoints, and created negative datapoints
by assigning 2000 randomly selected HLA-B*27:05 restricted
epitopes from IEDB to the five TCRs. EPIC-TRACE model
trained with VDJDB þ IEDB dataset Dab;a;b performed poorly
on the yeast display dataset (AUROC 0.485). This was also
the case for ERGO-II (AUROC 0.195). This prediction task is
challenging because all the datapoints have the same HLA
and V alleles, meaning that the distinction has to be made
purely by peptide and CDR3 sequences. Therefore, we in-
cluded randomly chosen 1–4 distinct epitopes corresponding
to 2–14 positive data points into the train set. For each yeast
display peptide included into the training set, we generated
negatives by pairing this peptide to random TCRs from the
original training set to obtain the ratio 1:5, leaving the 2000
HLA-B*27:0 restricted negatives only for testing. The proce-
dure was repeated 10 times such that all positive yeast display
data points were added to train once, while evaluating on the
rest of the data (unseen epitope, TPP4/TPP3). The average
AUROC and AP scores were 0.807 and 0.303, respectively.
The recall and number of true positives against the number of
best scoring test data points are shown separately for each
part in Supplementary Fig. S2. We note that all individual
AUROC values are above 0.5 and from the 50 highest predic-
tion values 20 are positive on average. This analysis shows
that by utilizing approximately as little as 10%, or on average
8 positive datapoints, the performance of the model in the
yeast display library task is at least moderately good.

4 Discussion

Here, we have presented EPIC-TRACE, a novel method for pre-
dicting TCR–pMHC binding using the full TCR information
together with the peptide amino acid sequence and MHC allele.
We showed that the seen and unseen epitope tasks behave dif-
ferently and have different importance for the used input fea-
tures. It is apparent that current data mostly obtained with the
use of pMHC-multimers are very imbalanced and lead to diffi-
culties to generalize to the full TCR–pMHC space. More specifi-
cally, the unseen epitope task remains very hard for state-of-the-
art methods. We showed that specificity to some epitopes is eas-
ier to predict than to others, which results in varying predictive
performance across epitopes. Although the simple minimum
edit distance to train set in the TPP3 case explained the general
difficulty, it is not accurate enough to be used as an estimate for
prediction accuracy for any specific epitope. An estimate of the
reliability of the prediction would be very useful for both the
seen and unseen tasks. Furthermore, the development and use
of new TCR–pMHC sequencing methods increase the through-
put and quality of the data. Especially important is that the
amount of distinct epitopes increases, even if these epitopes are
not associated to many TCRs, thus also the unseen epitope task
becomes more feasible to solve.
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