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Abstract

Purpose: We previously developed a virtual treatment planner (VTP), an artificial intelligence 

robot, operating a treatment planning system (TPS). Using deep reinforcement learning guided by 

human knowledge, we trained the VTP to autonomously adjust relevant parameters in treatment 

plan optimization, similar to a human planner, to generate high-quality plans for prostate cancer 

stereotactic body radiation therapy (SBRT). This study describes the clinical implementation and 

evaluation of VTP.

Materials and methods: We integrate VTP with Eclipse TPS using scripting Application 

Programming Interface. VTP observes dose-volume histograms of relevant structures, decides how 

to adjust dosimetric constraints, including doses, volumes, and weighting factors, and applies the 

adjustments to the TPS interface to launch the optimization engine. This process continues until 

a high-quality plan is achieved. We evaluated VTP’s performance using the prostate SBRT case 

from the 2016 American Association of Medical Dosimetrist/Radiosurgery Society plan study 

with its plan scoring system, and compared to human-generated plans submitted to the challenge. 

Using the same scoring system, we also compared the plan quality of 36 prostate SBRT cases 

(20 planned with IMRT and 16 planned with VMAT) treated at our institution for both VTP and 

human-generated plans.

Results: In the plan study case, VTP achieved a score of 142.1/150.0, ranking the third in the 

competition (median 134.6). For the clinical cases, VTP achieved 110.6±6.5 for 20 IMRT plans 

and 126.2±4.7 for 16 VMAT plans, similar to scores of human-generated plans with 110.4±7.0 

for IMRT plans and 125.4±4.4 for VMAT plans. The workflow, plan quality and planning time of 

VTP were reviewed to be satisfactory by experienced physicists.
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Conclusion: We successfully implemented VTP to operate a TPS for autonomous human-like 

treatment planning for prostate SBRT.

1. Introduction

Modern radiation therapy uses advanced delivery techniques, such as Intensity-modulated 

RT (IMRT) and Volumetric-modulated RT (VMAT) to precisely control a medical 

linear accelerator (LINAC) to generate a carefully sculptured 3D dose distribution. New 

technologies successfully maintain highly conformal dose to tumor target shape but with 

significantly reduced toxicity to preserve organs at risk (OARs)1. The success of these novel 

techniques cannot be achieved without successful patient-specific treatment planning2,3. 

In the current clinical practice, the task of IMRT and VMAT treatment planning is 

accomplished by a human planner operating a commercial treatment planning system (TPS). 

Specifically, the planner sets up initial treatment planning objectives for different structures 

to mathematically define an optimization problem. The optimization engine in TPS is then 

launched to solve the defined problem and generate a plan. Due to the inherent complexity 

of finding the optimal solution for this multi-criteria optimization problem, the human 

planner is required to repeatedly interact with the TPS to adjust the values of treatment 

planning parameters (TPPs), e.g., dose limit, volume constraint, and priority, in a trial-and-

error fashion to steer the plan quality towards desired trade-offs. This iterative process is 

time-consuming and labor-intensive, and the resulting plan quality is highly dependent on 

the planner’s experience and available planning time4,5. Hence, there is a strong desire to 

develop automated treatment planning approaches that can generate consistent high-quality 

plans.

Over the years, researchers have devoted tremendous efforts to solve the automated 

treatment planning problem using various approaches, such as greedy algorithms6,7,8,9, 

heuristic approaches10,11, fuzzy inference12,13,14, statistics-based methods15,16, knowledge-

based planning17,18, and multi-criteria optimization19,20,21. Deep-learning based 

methods22,23,24, particularly reinforcement learning (RL)-based ones have demonstrated 

great potential25. With recent breakthrough of RL, particularly in the deep learning regime, 

called deep reinforcement learning (DRL), approaches employing this technique show great 

potential in automated treatment planning26,27,28,29,30. A recent study has developed a DRL-

based machine parameter optimization approach to directly control LINAC and rapidly 

generate VMAT plans for prostate cancer26.

The major challenge in automatic treatment planning is that TPSs can only solve an 

optimization problem but lack of human-level intelligence to proactively adjust TPPs to 

improve plan quality. To overcome this problem, we previously proposed an Intelligent 

Automatic Treatment Planning (IATP) framework27,28,29,30,31. In this framework, a virtual 

treatment planner (VTP), an AI planning robot, was built via end-to-end DRL training, 

which can interact with a TPS and adjust TPPs during treatment planning for high-quality 

prostate SBRT plans. Due to the low efficiency of having VTP interacting with Eclipse TPS 

(Varian Medical Systems, Palo Alto, CA) directly in the training phase, we trained VTP 

with an in-house TPS which had a similar inverse planning optimization engine to the one 

in Eclipse TPS. Studies have demonstrated preliminary success in terms of decision making 
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and autonomously producing high-quality plans of high-dose-rate brachytherapy for cervical 

cancer 27 and IMRT for prostate cancer28,29,30.

Based on the previous success, it is of importance to clinically implement our VTP to 

operate a commercial TPS and evaluate its performance. Hence, in this study, we will 

report our recent progress designing a workflow to integrate VTP with Eclipse TPS. We 

will also evaluate the planning performance of VTP by comparing with human-generated 

clinical plans for prostate SBRT. To our knowledge, this is the first study demonstrating that 

a DRL-based AI planner can autonomously make decisions like a human to intelligently 

accomplish SBRT treatment planning in a real-world clinical setting.

2. Materials and Methods

2.1. Overview of VTP

VTP was previously developed to interact with an in-house developed Eclipse-like TPS 

and adjust TPPs of 13 planning objectives to generate prostate SBRT plans using IMRT. 

Each planning objective had a set of three TPPs to adjust, i.e., priorities, dose limits, and 

volume constraints. VTP consisted of three sub-networks: Structure-Net, Parameter-Net, 

and Action-Net. It took DVHs of 13 relevant structures as input. The three sub-networks 

were applied sequentially to determine the way of TPP adjustment to improve plan quality. 

Specifically, Structure-Net first selected a structure, Parameter-Net then chose one TPP of 

the selected structure, and Action-Net decided on the specific adjustment action of the 

chosen TPP. Such an architecture was designed to tackle the treatment planning problem via 

a hierarchical decision-making process like human planners.

Training VTP was achieved via DRL with a Q-learning framework. The purpose of DRL 

is to establish the relationship between an observed DVH d and the corresponding optimal 

way of adjusting TPPs, denoted as C, so that repeated applications of TPP adjustments to 

the TPS lead to a high plan quality as measured by a score function. In the Q-learning 

framework, this was achieved by establishing the VTP networks as a representation of the 

so-called optimal action-value function function Q∗(d, C). Once this function was obtained, 

the proper TPP adjustment C corresponding to the observed DVH d can be inferred as 

C = argmaxC′Q∗(d, C′), i.e., selecting the one that maximizes the Q∗(d, C) function.

To decide Q∗(d, C), we minimized a loss function corresponding to the L2 norm of the 

residual for the Bellman equation32, a general property satisfied by the optimal action-

value function: ∣ r + γ maxa′Q∗(d′, C′) − Q∗(d, C) ∣ 2
. Here r is the reward after applying TPP 

adjustment C to the current plan with DVH d, and d′ is the new plan after launching 

plan optimization with the adjusted TPPs. γ ∈ [0, 1] is a discount factor that determines 

the importance of future rewards in the learning process. In this study, we incorporated 

the Proknow scoring system (ProKnow Systems, Sanford, FL, USA) used in the 2016 

AAMD/RSS prostate SBRT plan study33 as the plan quality evaluation criteria, and the 

improvement in plan quality before and after taking an TPP adjustment as the reward 

function.
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We retrospectively collected 20 prostate cancer patients who were treated with 45 Gy in 

5 fraction SBRT at our institution. We randomly selected 10 patients for training, 5 for 

validation and the remaining 5 for testing. In the training process, we let the VTP networks 

to interact with the in-house TPS with an ϵ-greedy scheme to generate training data, each 

being a quadruple {d, C, r, d′}. The data were than used to minimize the loss function and 

hence determine Q∗(d, C) with an experience replay strategy. Detailed network structure and 

training strategies can be found in the previous study30.

2.2. Interfacing VTP with Eclipse environment

To evaluate VTP in the real clinical environment, a graphical user interface (GUI) was 

developed to integrate VTP with the clinical Eclipse TPS using its Eclipse Scripting 

Application Programing Interface (ESAPI). VTP was packaged as a single executable file, 

so that it can be programmatically called by an ESAPI script with custom parameters. 

We enabled functions such as plan setup, optimization, dose calculation, data import and 

export for VTP by the ESAPI script to automate the entire process. We also allowed 

remote execution of VTP on a GPU cluster to expedite the calculation and minimize the 

computational burden in local clinical workstations. ProKnow scoring system was integrated 

in the GUI to automatically report the up-to-date score at each planning iteration. A shared 

folder was created as the communication channel between VTP and Eclipse to store inputs 

and outputs for VTP and Eclipse TPS.

Figure 1 shows the schematic diagram of the Eclipse-based VTP workflow. Note that the 

workflow is fully automated with the options for human planners to intervene in some steps. 

Specifically, after delineating target and OAR volumes, a human planner can execute ESAPI 

scripts to call the GUI. The GUI offered options to prepare initial plan setup automatically 

following the integrated plan template or manually based on their preferences. Plan setup 

included the selection of isocenter position, dose, fraction, machine parameters (machine, 

energy, dose rate), fluence model (with or without flattening filter free), field numbers, 

collimator angle, gantry angle, technique (IMRT or VMAT), and jaw position. After this, 

the GUI automatically launched Eclipse TPS to start plan optimization and dose calculation. 

After a plan was generated, DVHs and TPPs were automatically exported into the shared 

folder and VTP acquired the plan data from the folder and decided an action to adjust 

planning parameters (dose, volume, and priority of relevant planning structures). VTP stored 

the adjusted TPPs into the shared folder for Eclipse TPS to pick up and start a new iteration 

to optimize the plan. The iterative planning process continued until a high-quality plan was 

achieved, as indicated by the convergence of plan scores. The final plan can be fine-tuned by 

human planners if deemed necessary.

2.3. Performance evaluation

To evaluate the performance of VTP-enabled treatment planning workflow with Eclipsed 

TPS, we used it to plan the prostate SBRT case of the 2016 AAMD/RSS Plan Study 

and compared the final plan score with submitted human-generated plans. ProKnow 

scoring system quantitatively assesses the plan quality in 15 clinical criteria including 
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V PTV [Rx]( % ), V Prostate[Rx]( % ), DPTV [PTV − 0.03 cc](Gy), Conformation NumberPTV , V Rectum[36 Gy]
(cc), V Bladder[37 Gy](cc), DRectum[40 % ](Gy), DUretℎra[20 % ](Gy), DBowel[1 cc](Gy), DPenileBulb[0.1 cc](Gy),
DNeurovascularBundles[50 % ](Gy), DRigℎtFemoralHead[max](Gy), DLeftFemoralHead[max](Gy), DSkin[max](Gy), DTestes
[max](Gy)

. 

The plan can be scored between 0 and 150, with a higher score indicating better plan quality.

Under the approval of the Institutional Review Board of UT Southwestern Medical Center 

(IRB# STU 082013-008), this study selected a retrospective cohort of 36 males previously 

treated with prostate SBRT using VMAT between 2017 and 2020 from our clinical database. 

The age of the patient cohort ranged in between 53 and 88, with a median of 68 years 

old. The median PTV volume was 68 cm3 and range was [37, 135] cm3 . SBRT plans 

were designed to deliver 4500 cGy in five fractions and all plans normalized to achieve the 

minimal PTV coverage (V PTV [Rx]( % ) = 95). To evaluate VTP, which was trained for IMRT 

treatment planning, 20 cases were re-planned by a dosimetrist (3-year experience). The 

plans were compared with those generated by VTP. Plan scores and dosimetric metrics were 

analyzed using non-inferiority tests with a significance level of 0.05. More importantly, we 

demonstrated VTP’s decision-making behaviors by comparing the initial, intermediate, and 

final plan quality and showing the improvements made by VTP during the planning process. 

Moreover, although VTP was trained based on IMRT optimization, as it takes DVHs as input 

to improve plan quality, it can be theoretically applied to different planning techniques. To 

study the feasibility and generalizability of VTP on VMAT planning, we used it to plan the 

remaining 16 patients with VMAT and compared with their clinical plans.

3. Results

Our VTP successfully generated a high-quality IMRT plan for the 2016 AAMD/RSS Plan 

Study case using Eclipse TPS. Fig. 2(a) shows dose distributions in three axial slices, and 

coronal and sagittal views. Fig. 2(b) illustrates the evolution of scores in the planning 

process as VTP improved plan score from 115.3 to 142.1 out of 150 in 9 iterations. Fig. 

2(c) presents the distribution of human-generated IMRT plans submitted to the planning 

competition. VTP could have been placed at the 3rd out of all the submitted IMRT plans. 

Table 1 shows the dosimetric evaluation and scores of the VTP-generated plan.

To compare the VTP-generated and human-generated IMRT plans for the 20 prostate 

SBRT cases, we report ProKnow scores in Fig. 3(a) and dosimetric metrics in Fig. 3(b). 

VTP achieved a slightly higher average plan score 110.6±6.5 compared with clinical 

plan 110.4±7.0 (p=0.00), indicating VTP-generated plans were not inferior to the human-

generated plans. Plans generated by VTP and human presented comparable coverage and 

conformity as V PTV [45 Gy], V Prostate[45 Gy], DPTV [PTV − 0.03cc] and CIPTV . Non-inferiority test 

indicated the performance of VTP was not inferior to human on dosimetric metrics including 

V Rectum[36 Gy](cc), DRectum[40 % ], DUretℎra[20 % ], DBowel[1cc], and DSkin[max] as p<0.05. For other 

metrics, V Bladder[37 Gy], DPenileBulb[0.1cc], DBowel[1cc], DRigℎt Femoral Head[max], and DLeft Femoral Head[max], the 

performance of VTP may be inferior to human as the p>0.05. VTP-generated plans had 

less mean monitor units (MUs) 3859.4±445.3 than human-generated plans 3942.6±541.0 

(p=0.02), indicating the complexity of VTP-generated plans was slightly lower thus 

an advantage in treatment delivery efficiency. Generally, VTP has comparable planning 

performance to human planners.
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To demonstrate VTP’s decision-making behavior, Fig. 4(a) shows the improvements on the 

plan quality during the planning process for an example case. The plan quality scores were 

105.2, 121.9, and 127.6 out of 150, at iteration step 1, 5, and 13, respectively. Iteration 13 

gave the best-quality plan with more dose sparing in the urethra and rectum, as pointed by 

arrows 1 and 3. Dose fall-off was steeper in the inferior region of bladder and the superior 

lateral region of PTV, as pointed by 2 and 4. Fig. 4(b) presents DVHs of plans at iteration 

1 (dot), 5 (square), and 13 (triangle). VTP was able to maintain PTV coverage while 

effectively increasing the minimum dose to PTV and reducing the dose to OARs. Significant 

improvements in PTV minimum coverage, max dose to the urethra, high dose in rectum, 

and max dose to femurs were indicated by 5, 6, 7, and 8, respectively. The VTP-centered 

treatment planning workflow, plan quality, and decision-making behaviors were reviewed to 

be satisfactory based on the clinical feedback from dosimetrists and physicists.

To demonstrate the feasibility and generalizability of VTP on different planning techniques, 

we evaluated VTP on additional 16 prostate SBRT cases. ProKnow scores and dosimetric 

metrics of the generated plans and their clinically accepted plans are summarized in Fig. 

5(a) and (b). Similar to the findings indicated in the compressions for IMRT planning, 

VTP showed comparable planning performance to human planners with slightly higher 

averaged ProKonw score (VTP: 126.2±4.7, Human: 125.5±4.4, p=0.01). Fig. 5(c) compares 

cross-sectional 3D dose distributions and plan scores between the VTP-generated and 

human-generated plans of one example patient. VTP spared more bladder, rectum, urethra, 

bowel, and femoral heads. As shown in Fig. 5(c), VTP-generated plan presented better 

dose fall-off laterally while human-generated plan showed better fall-off anteriorly and 

posteriorly. VTP spared more dose to urethra but human controlled low dose spread-out in 

rectum, pointed by 1 and 2, respectively. The VTP-generated plan required 380 more MUs, 

indicating it was more complex. Overall, both plans present comparable dose distributions 

for VMAT, proving the feasibility.

4. Discussion

This study described the clinical implementation of an in-house planning robot VTP, as 

a part of the ongoing development on the IATP framework27,28,29,30, which was built to 

overcome the challenge that TPSs often lack human-level intelligence to evaluate plan 

quality and to steer the optimization process towards a high-quality plan. IATP aimed at 

employing DRL techniques to achieve an automated treatment planning workflow similar to 

the current human-centered workflow. To our knowledge, the current study is the first one 

on implementing a DRL-based AI planner in a clinical TPS and evaluating its performance. 

Previously, Zhang el al. developed a RL-based planning bot with linear action-value function 

approximation for optimal action determination for pancreas SBRT using Eclipse TPS25. In 

addition to the use of the “deep” version of reinforcement learning, our study differed from 

two other aspects. First, the previous study only added or removed one fixed dose-volume 

constraint with the pre-defined constant priority at each step, because the linear function 

approximation limited the capability for more complicated tasks. By contrast, with the 

flexibility offered by deep neural network-based function approximation, our VTP can 

determine the optimal adjustment on dose, volume and priority in a planning objective. 

The interpretation about the planning process (Sec 3.3) found that its actions to adjust dose-
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volume constraints generally agreed with a human planner’s intuition30. Second, Zhang el 

al. carefully selected fixed types of constraints for the planning bot to add/remove, ahead of 

training. Yet, using the same type of dose-volume constraints with constant priorities for all 

patients may limit the space of optimal solutions and bias the actions. In this study, our VTP 

had the flexibility to adjust all TPPs that the TPS exposed to users, and the training process 

learnt the optimal policy of TPP adjustment via an end-to-end DRL training scheme. This 

potentially allowed VTP to discover unseen action-value space to gain knowledge without 

being biased to the known experience.

Computation time is one factor affecting the practicality of a planning tool. Currently, VTP 

makes TPP adjustments within 30 seconds of each iteration, and it takes ~10-15 iterations to 

finish the planning of case. Eclipse TPS costs about 5 minutes to solve IMRT optimization 

per iteration, making the total time 1 to 2 hours. The relatively long planning time were 

ascribed to two factors, calling for future improvements. First, majority of time was spent 

on plan optimization and dose calculation. A human planner could pause the optimization 

and bypass the final dose calculation step, before making a decision on TPP adjustment. 

However, for our system, the Eclipse interface did not allow us to interfere the optimization 

and final dose calculation step. Hence, VTP had to wait this to finish to adjust a TPP. 

Second, the plan quality was improved, but slowly at the last a few iterations. This was 

mainly caused by the fact that VTP was trained to change one TPP at a time, and hence 

the impact of changing plan quality at each step was relatively small. In contrast, a human 

planner may decide to simultaneously modify multiple TPPs in one step to improve the 

plan from different perspectives. It is our future work to further improve VTP to enable this 

simultaneous decision-making capability.

A potential application of the VTP clinical workflow is adaptive radiation therapy (ART). 

Although online ART treatment planning has been driven by many AI models, offline ART 

planning is still achieved by human planners to manually generate new plans. Not only does 

this increase the workload, but also potentially results in treatment delay, thus deteriorating 

treatment outcomes. With the full clinical implementation, a high-quality adaptive plan 

may be quickly generated by VTP in an automated fashion. The human planner can 

refine the plan for better quality if needed. Another area that VTP can lead to clinical 

impacts is at large-scale clinical trial studies investigating effectiveness of radiotherapeutic 

approaches. Inter- and intra- institutional plan quality variation34,35 is one factor affecting 

outcomes of those trial studies. Using VTP to generate treatment plans is expected to reduce 

quality variations related to planner factors. Note that the plans are actually produced by a 

commercial TPS under VTP operation, and hence deliverability of the plans is not of a major 

concern. VTP may also be used as a quality assurance tool for clinical trials to ensure plan 

quality consistency.

Our study has the following major limitations. First, VTP can only change TPPs for 

the planning objectives of 13 pre-defined structures but not proactively creating auxiliary 

structures to guide optimization, which is a common skill of human planners to sculpture 

dose distribution. Although VTP has achieved similar planning performance as human for 

prostate SBRT, VTP may struggle with more challenging tumor sites, such as head-and-

neck, as it involves larger treatment regions and more overlapping with OARs. One simple 
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solution may be creating optimization structures manually in advance and including them in 

the VTP model training along with other planning structures, following the same framework 

in this study. However, we do hope to build a truly intelligent VTP that can determine the 

shape and location of optimization structures as needed to ensure the flexibility of using 

VTP in different scenarios.

Second, the current VTP was trained to pursue a high plan quality in the form of ProKnow 

score. We made this choice to allow benchmarking VTP in the AAMD/RSS case. However, 

acceptability of a plan is determined by the attending physician, who may evaluate plan 

quality with more criteria than the pre-defined metrics in the ProKnow system. A recent 

study has successfully developed a deep learning-based Virtual Physician Network (VPN). 

Using adversarial learning based on clinical-approved plans, VPN was trained to model 

the physicians’ preference on plan approval for prostate SBRT31. Based on an input plan 

seeking for evaluation, VPN outputs a probability for the plan to be accepted and highlights 

areas require improvements, should the plan be rejected. We expect the plan approval 

probability output by VPN can serve as the reward function to guide the VTP’s training 

and planning process. It is our ongoing work to connect VTP and VPN and jointly train 

them in an end-to-end process to emulate the physician-planner partnership to cooperatively 

accomplish treatment planning task with generated plans acceptable to the physicians.

Third, the current VTP was trained to only adjust TPPs in the inverse planning optimization. 

There are other parameters that critically affect resulting plan quality. For instance, in IMRT, 

beam angles are known to affect dose distribution36. Collimator angle may play a role when 

shaping dose fall-offs around the target to spare dose to OARs. The current study is only the 

initial step towards building the IATP framework, whereas extensive subsequent studies are 

ahead to improve the intelligence level of the virtual planner.

5. Conclusions

We successfully implemented VTP to operate a commercial TPS for autonomous human-

like treatment planning for prostate SBRT in the clinical environment. The fully automated 

workflow and outstanding planning performance demonstrated feasibility and effectiveness 

of the IATP framework.
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Figure 1. 
Fully automated workflow of VTP to operate Eclipse TPS.
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Figure 2. 
(a) Dose distribution of the VTP generated plan for the 2016 AAMD/RSS Plan Study case. 

Horizontal lines in the coronal and sagittal views indicating locations of the axial slides. 

Dose color wash is shown between 44 Gy and 20 Gy. (b) Evolution of plan scores in the 

planning process of VTP. (c) Score distribution of human-generated IMRT plans submitted 

to the 2016 AAMD/RSS prostate SBRT plan study. The score of the VTP-generated plan 

ranked the third, as pointed by the arrow.
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Figure 3. 
(a) Scores of IMRT plans generated by VTP and human planner for 20 prostate SBRT 

patients. Dash line indicates equal plan quality. (b) Boxplots of dosimetric metrics and MUs 

to compare VTP-generated with human-generated plans of the 20 cases. The edges of boxes 

are the upper and lower quartiles. The horizontal lines inside boxes represent the median 

values. Mean ± standard deviation and p-value of non-inferior testing for each metric are 

calculated and displayed in the right upper corner of the boxplot.
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Figure 4. 
(a) Evolution of cross-sectional dose distributions and plan scores of plans at iteration 1, 5, 

and 13 generated by VTP. Dose improvements on the high dose to urethra and low dose 

spread out in rectum are pointed by 1 and 3. Steeper dose gradient is highlighted by 2 and 4. 

Dose color wash is shown between 49.5 Gy and 22.5 Gy. (b) Comparison on DVHs of plans 

at iteration 1 (dot), 5 (square), and 13 (triangle). Improvements on PTV coverage, dose to 

urethra, rectum, and femurs are pointed by 5, 6, 7, and 8.
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Figure 5. 
(a) Scores of VMAT plans generated by VTP and human planner for 16 prostate SBRT 

patients. Dash line indicates equal plan quality. (b) Boxplots of dosimetric metrics and 

MUs to compare VTP-generated with human-generated plans of the 16 cases. Mean ± 

standard deviation and p-value of non-inferior testing for each metric are calculated and 

displayed in the right upper corner of the boxplot. (c) Comparisons on cross-sectional 3D 

dose distributions and scores. Dose color wash is shown between 45 Gy and 22.5 Gy. PTV, 

prostate, urethra, bladder, rectum, and femurs are segmented in magenta, red, dark green, 

cyan, brown, and yellow lines.
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Table 1.

Dosimetric evaluation and scores of the 2016 AAMD/RSS prostate SBRT plan study case.

METRIC Scored

Volume (%) of PTV covered by Rx dose (Gy) 95.0 35.0 / 35.0

Volume (%) of Prostate covered by Rx dose (Gy) 97.5 19.2 / 20.0

Dose (Gy) covering whole PTV minus 0.03 (cc) 34.0 8.8 / 10.0

Conformation Number [36.25 (Gy), PTV] 0.9 8.6 / 10.0

Volume (cc) of Rectum covered by 36 (Gy) 0.1 15.0 / 15.0

Volume (cc) of Bladder covered by 37 (Gy) 0.0 15.0 / 15.0

Dose (Gy) covering 40 (%) of Rectum 13.0 10.6 / 12.0

Dose (Gy) covering 20 (%) of Urethra 40.3 9.3 / 10.0

Dose (Gy) covering 1 (cc) of Bowel 1.8 4.8 / 5.0

Dose (Gy) covering 0.1 (cc) of Penile Bulb 2.1 3.0 / 3.0

Dose (Gy) covering 50 (%) of Neurovascular Bundles 38.6 1.5 / 3.0

Maximum dose (Gy) inside Right Femoral Head 14.0 2.8 / 3.0

Maximum dose (Gy) inside Left Femoral Head 13.1 2.9 / 3.0

Maximum dose (Gy) inside Skin 10.0 3.0 / 3.0

Maximum dose (Gy) inside Testes 0.3 2.6 / 3.0

Total Plan Score 142.1 / 150.0

Radiother Oncol. Author manuscript; available in PMC 2024 March 26.


	Abstract
	Introduction
	Materials and Methods
	Overview of VTP
	Interfacing VTP with Eclipse environment
	Performance evaluation

	Results
	Discussion
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.

