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Abstract

Background: A quantitative measurement of serum proteome biomarkers that

would associate with disease progression endpoints can provide risk stratifica-

tion for persons with multiple sclerosis (PwMS) and supplement the clinical

decision-making process. Materials and Methods: In total, 202 PwMS were

enrolled in a longitudinal study with measurements at two time points with an aver-

age follow-up time of 5.4 years. Clinical measures included the Expanded Disability

Status Scale, Timed 25-foot Walk, 9-Hole Peg, and Symbol Digit Modalities Tests.

Subjects underwent magnetic resonance imaging to determine the volumetric mea-

sures of the whole brain, gray matter, deep gray matter, and lateral ventricles. Serum

samples were analyzed using a custom immunoassay panel on the OlinkTM platform,

and concentrations of 18 protein biomarkers were measured. Linear mixed-effects

models and adjustment for multiple comparisons were performed. Results: Sub-

jects had a significant 55.6% increase in chemokine ligand 20 (9.7 pg/mL vs.

15.1 pg/mL, p < 0.001) and neurofilament light polypeptide (10.5 pg/mL vs.

11.5 pg/mL, p = 0.003) at the follow-up time point. Additional changes in CUB

domain-containing protein 1, Contactin 2, Glial fibrillary acidic protein, Myelin

oligodendrocyte glycoprotein, and Osteopontin were noted but did not survive

multiple comparison correction. Worse clinical performance in the 9-HPT was

associated with neurofilament light polypeptide (p = 0.001). Increases in several

biomarker candidates were correlated with greater neurodegenerative changes as

measured by different brain volumes. Conclusion: Multiple proteins, selected

from a disease activity test that represent diverse biological pathways, are associ-

ated with physical, cognitive, and radiographic outcomes. Future studies should

determine the utility of multiple protein assays in routine clinical care.

Introduction

Multiple sclerosis (MS) is a chronic, inflammatory, demy-

elinating, and degenerative disease of the central nervous

system (CNS) resulting in progressive accrual of physical

and cognitive disability.1 People with multiple sclerosis

(pwMS) have heterogeneous clinical presentation and

multiple demographic, clinical, and paraclinical risk fac-

tors have been associated with poorer long-term

outcomes.1 Over the last three decades, a plethora of

highly effective disease modifying therapies (DMTs) have

been developed that can significantly lessen the long-term

disability.1 They generally range from highly effective but

immunosuppressive therapies to moderately effective
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immunomodulators with lower rate of adverse events.2

Therefore, development of attainable and cost-effective

biomarkers can provide risk stratification for pwMS and

supplement the clinical decision-making process.

In addition to validated imaging biomarkers such as

lesion pathology and whole brain atrophy, recent develop-

ments in proteomic assay technology have allowed detec-

tion and measurement of picomolar concentrations of

blood biomarkers.3 These biomarkers can provide proxy

measures regarding the occurrence and extent of patho-

logical changes in the CNS.4 For example, higher blood

levels of neurofilament light chain (NfL), an intermediate

filament present in neurons, can indicate greater neuroax-

onal destruction, and higher levels of glial fibrillary acidic

protein (GFAP) can indicate glial cell activation, both

indicative of presence of disease activity.5,6 Although these

individual biomarkers have already emerged as candidate

outcomes measures in MS, a single-protein biomarker

can have limited ability in capturing changes within mul-

tiple parallel pathophysiological MS pathways.7 When

compared to MRI measures, blood-derived analyses are

less costly, more accessible, and can be bundled together

with routine clinical blood work.8

The multiple sclerosis disease activity (MSDA) is a

recently developed and analytically validated9 panel of 18

biomarkers that represent changes within four main path-

ophysiological pathways of neuroinflammation, immuno-

modulation, myelin biology, and neuroaxonal integrity.9

In the first clinical validation study, the MSDA platform

was trained and tested as a predictor for presence of

gadolinium-enhancing lesions or new/newly enlarging T2

lesions in a cohort of 614 samples.10 The multi-protein

scores outperformed the best individual protein (NfL)

with area under curve change from 0.726 to 0.781.10

Determining the relation of the MSDA panel to long-term

disability outcomes and examining the longitudinal pre-

dictive properties of such an assay are essential for clinical

adoption and wide-spread clinical utility.

The aims of this study were to determine the relation-

ship between the multiple proteomic biomarkers and

cross-sectional and longitudinal MS outcomes, including

physical disability, cognitive performance, and conven-

tional MRI outcomes. We hypothesize that more than

one proteomic biomarker from multiple pathophysiologi-

cal pathways would correlate with long-term clinical and

MRI outcomes in a heterogenous group of pwMS.

Methods

Study population

A total of 202 patients were assessed in these analyses and

derived from a larger longitudinal, study to explore the

role of cardiovascular, environmental, and genetic risk

factors in multiple sclerosis patients (CEG-MS).11 In par-

ticular, for this study, the pwMS were enrolled at Depart-

ment of Neurology, University at Buffalo, State University

of New York at baseline between 2009 and 2012 and

returned for a follow-up visit in years 2014–2017. The

inclusion criteria were as follows: (1) baseline age of 18–
75 years old; (2) diagnosed with either MS or clinically

isolated syndrome (CIS), defined by the 2010-revised

McDonald criteria (which was current at the time of

enrollment)12; (3) availability of either baseline or follow-

up serum sample, MRI, clinical and neuropsychological

assessments within 30 days of each other. The exclusion

criteria were as follows: (1) having clinical relapse or

receiving intravenous corticosteroid therapy within

30 days before the MRI and serum sampling, (2) not able

to undergo any of the aforementioned study procedures,

and (3) pregnant or nursing mothers. The CEG-MS study

and the retrospective proteomic analyses were approved

by the University at Buffalo Institutional Review Board

(IRB), and all subjects provided a signed consent form.

Physical and cognitive disability measures

A board-certified neurologist evaluated patients for global

disability using the Expanded Disability Status Scale

(EDSS) score,13 a board-certified neuropsychologist over-

saw a clinical assessment that included assessment of

quantitative mobility and leg function, using the Timed

25 Foot Walk Test (T25FWT),14 quantitative finger dex-

terity using the 9-Hole Peg Test (9HPT),15 and cognitive

efficiency and speed performance using the Symbol Digit

Modalities Test (SDMT) and the Paced Auditory Serial

Addition Test (PASAT).16 Due to the long follow-up

time, we do not expect significant training effects in the

neuropsychological performance. Moreover, alternate test

forms were used to minimize the practice effect any fur-

ther. A structured questionnaire was also used to collect

demographic and clinical information. According to the

clinical presentation and disease history, pwMS were cate-

gorized as CIS, relapsing–remitting MS (RRMS), progres-

sive MS (PMS) (further categorized to primary (PPMS),

or secondary progressive (SPMS)).17

Presence of disability progression (DP) over the follow-

up was defined using standard criteria of changes in EDSS

scores: (1) An increase of 2 or more points if the baseline

EDSS was zero; (2) an increase of 1.5 or more points if

the baseline EDSS was 0.5, (3) an increase of ≥1 point if

the baseline EDSS is between 1.0 and 5.0, and (4) an

increase of equal or greater than 0.5 point if the baseline

EDSS was ≥5.5.18 Worsening in T25FWT and 9HPT was

defined as an increase of greater than or equal to 20%

from baseline to follow-up.14,15 Worsening in SDMT
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performance was defined using several previously used

criteria: (1) decrease of 4 or more points from baseline to

follow-up16; (2) decrease of 8 or more points from base-

line to follow-up; (3) being classified as cognitively

impaired based with |z-scores| > 1.5 derived from a

healthy control population published in the literature

with mean and standard deviation of 55.49, 13.06,

respectively.5,19 Due to addition of cognitive assessment

of the cohort late into the start of the study, a signifi-

cantly smaller number of subjects received baseline neuro-

psychological assessment when compared to all subjects at

the 5-year follow-up visit, Table S1.

Proteomics analyses

During the active study recruitment, the blood samples

were processed into serum using serum separator tubes

according to manufacturer specifications within 24 h of

acquisition by the School of Pharmacy and Pharmaceuti-

cal Sciences at University at Buffalo. They were stored at

�80°C until further use. After the conclusion of the

study, all samples were sent to Octave Bioscience (Menlo

Park, CA, USA) for proteomic analysis using the MSDA

assay panel and they were analyzed as a single batch.9

Inclusion criteria between development studies for MSDA

and the CEG cohort were consistent. Proteomic analysis

was performed blinded to the demographic, clinical, and

MRI data. The MSDA assay uses Proximity Extension

Assay (PEA) methodology and is performed on the

OlinkTM platform. Twenty-one proteins that are associated

with key biological pathways of MS pathophysiology were

selected for inclusion on the panel based on results from

discovery analyses investigating relative expression of

1196 proteins in previously characterized MS cohorts.9

For clarification, we did not utilize the pathway or disease

activity scores generated by the MSDA panel in our

models. Instead, our analysis concentrated exclusively on

the concentration levels of the individual protein bio-

markers within the MSDA panel. This distinction is

important as our primary focus here is on the progression

of the disease, which differs from disease activity and

necessitates a distinct analytical approach. The complete

list of proteins (with commonly used aliases and their

abbreviations) are shown in Fig. 1 and Table S8.

MRI acquisition and analyses

At baseline and follow-up visits, pwMS underwent an

MRI examination using the same 3 T Signa Excite 12

Twin-Speed scanner (GE Healthcare, Milwaukee, WI,

USA) and eight channel head and neck coil. The standard

sequences utilized in these analyses were two-dimensional

(2D) fluid attenuated inversion recovery (FLAIR), 2D T1-

weighted spin echo with and without use of 0.2 mL/kg

gadolinium (Gd) contrast acquired 5 min postinjection,

and high-resolution 3D T1-weighted imaging. The

sequence parameters are explained in details elsewhere.20

Lesion analysis was performed in a blinded manner

with respect to the patient clinical and proteomics status.

T2 lesion volume (LV), T1-LV, and Gd-LV were obtained

using a semi-automated contouring/thresholding tech-

nique using Java Image Manipulation (JIM) version 6.0

(Xinapse Systems Ltd, http://www.xinapse.com/, Essex,

UK). The cross-sectional and longitudinal changes in vol-

umes of brain regions of interest (ROIs) of whole brain

(WB), white matter (WM), gray matter (GM), all normal-

ized for head size, were measured using the SIENAX and

SIENA algorithms (FMRIB Software Library, http://www.

Figure 1. The Octave Bioscience Multiple Sclerosis Disease Activity

(MSDA) test was developed using Proximity Extension Assay (PEA)

methodology on the OlinkTM. The custom assay panel measures the

concentrations of 21 proteins, and utilizes an algorithm to determine

4 disease pathways scores (immunomodulation, neuroinflammation,

myelin biology, and neuroaxonal integrity) and an overall disease

activity score. Only 18/21 proteins are used in the MSDA algorithm.

GH was excluded due to diurnal variability reasons, COL4A1 due to

high intra- and inter-assay coefficients of variation, and VCAN

because it did not have strong statistical correlations with endpoints

of disease activity and was not determined to be associated with the

four biological pathways reported by the MSDA test. In this study, we

are using the 18 proteins plus VCAN as we are utilizing the custom

assay panel to investigate endpoints beyond disease activity. The full

names of the proteins corresponding to the abbreviations are given in

Table S8.

ª 2024 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 731

K. Jalaleddini et al. Proteomic Analyses in a Longitudinal MS Study

http://www.xinapse.com/
http://www.fmrib.ox.ac.uk/fsl


fmrib.ox.ac.uk/fsl).21 A lesion inpainting technique was

used to avoid tissue misclassification.22 Total deep GM

(DGM) volume and specific volume of the thalamus were

obtained with FMRIB’s Integrated Registration and Seg-

mentation Tool (FIRST, https://fsl.fmrib.ox.ac.uk/fsl, ver-

sion 1.2). The number of patients who had baseline and

follow-up samples are described in Table S1. Lastly, path-

ological change in whole brain volume was determined as

an annualized percent brain volume reduction of greater

than or equal to 0.4%23 and pathological lateral ventricle

volume change if an annualized percent volume expan-

sion of greater than or equal to 3.5%.24

The counts presented in Table S1 correspond to

patients who have had both baseline and follow-up blood

samples. The table provides demographic information for

these patients at different time points and endpoints.

Note that all 202 patients in the study cohort who under-

went assessments did indeed have baseline blood samples

collected.

Statistical analyses

We employed both Python and R, leveraging Python’s

versatility for data manipulation and R’s specialized statis-

tical packages for rigorous mixed-effects modeling and

post hoc power analysis, ensuring a comprehensive and

robust analytical approach. Data and statistical analyses

were performed using Python version 3.8.10, SciPy 1.9.3,

pandas 1.5.2, pingouin 0.5.3, and NumPy 1.24.1. Ordi-

nary and mixed-effects models were estimated using R

version 4.1.3. Logistic regression models were estimated

with Python statsmodels package version 0.13.2. Retro-

spective power analysis was done using R simr version

1.0.7.

Student’s t-test and analysis of covariance (ANCOVA)

were used for statistical analysis of parametric continu-

ous variables, and longitudinal analysis was performed

using the paired nonparametric Wilcoxon test. Ordinary

least-squares were used to estimate cross-sectional uni-

variable models; linear mixed-effects regression models

were used to estimate models on longitudinal data; lin-

ear logistic regression models were used to estimate

dichotomous outcomes (e.g., pwMS disability progres-

sion yes/no).

MRI-based brain volumes, EDSS, and neuropsychological

test outcomes were used as dependent variables, and age, sex,

BMI, and all proteomic measures as independent predictors

(outcome score = age + sex + body mass index

(BMI) + biomarker concentration) and for the linear mixed-

effects model, subject ID was set as random effect (outcome

score = age + sex + BMI + time point + biomarker

concentration + (1|patient ID). For entry into the regression

models, the proteomic data, MRI-based brain volumes,

EDSS, and neuropsychological test scores were trans-

formed using log (10) and all the statistical tests were

applied to the log-transformed data. Logistic regression

models were similarly used if the dependent variable was

of categorical nature. Outcomes such as R2 for ordinary

and mixed-effects regression, McFadden’s pseudo-R2 for

logistic regression, standardized b and p-values were

reported. Adjusted p-values lower than 0.05 were consid-

ered statistically significant. The regression and correlation

p-values underwent false discovery rate (FDR) correction

(multiple comparison correction) using the Benjamini–
Hochberg procedure. Retrospective power analysis was

performed by simulating 1000 new datasets based on the

fitted linear mixed-effects model and assessing the true

positives.

Data were visualized using Python matplotlib 3.4.2,

seaborn 0.12.1, and plotly 5.12.0 packages. The data dis-

tribution was determined using visual inspection of histo-

grams and Q-Q plots. Volcano plots were used to

visualize the significance (p-value) versus effect size.

Results

Demographic and clinical characteristics

Table 1 describes the demographics and clinical character-

istics (including DMT status, relapse rate, EDSS, MRI

metrics) of the pwMS. As expected, the pwPMS were sig-

nificantly older, had longer disease duration and higher

EDSS scores both at baseline and follow-up visits

(p < 0.001 for all). We found no statistically significant

difference in the rate of disease progression between indi-

viduals with clinically isolated syndrome (CIS) or

relapsing–remitting multiple sclerosis (RRMS) and those

with progressive multiple sclerosis (PMS) (28.6% vs.

37.5%, p = 0.251). There were no significant differences

in terms of baseline and follow-up DMT use. As expected,

the pwPMS had significantly greater pathology measured

by conventional MRI measures of T2-LV and T1-LV

(p < 0.001 and p = 0.015) and global measures of WBV,

WMV and GMV (p < 0.001). The pwCIS/RRMS had on

average significantly more Gd lesions when compared to

the PMS group (p < 0.001). Figure S1 depicts the distri-

bution of disease phenotypes at baseline and transition

over the follow-up. In our study, 73 patients experienced

relapses during the follow-up period. Out of which, 15

patients experienced relapses within 90 days of serum

measurement. On average, the time difference between

serum measurement and the nearest relapse for this sub-

group was 801.51 with a standard deviation of

620.68 days. Among these 15 patients, the average time

difference was 51.31 days, with a standard deviation of

27.70 days.
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Out of the pwMS with available longitudinal disability

data, 55 out of 181 (30.4%) worsened in EDSS scores, 46

out of 186 (24.7%) had a pathological rate of whole brain

atrophy and only 19 out of 186 (10.2%) had a pathologi-

cal rate of ventricle enlargement, 12 out of 47 (25.5%)

worsened in 9HPT, 21 out of 49 (42.8%) worsened in

SDMT (4-points drop), 10 out of 49 (20.4%) worsened

in SDMT (8-points drop), and 9 out of 47 (19.1%) wors-

ened in T25FWT. In total, 42 patients had progression in

more than one endpoint metric (excluding SDMT-8).

The paired statistical test revealed that all outcomes wors-

ened significantly at the follow-up time point except for

the WMV and PASAT performance (Table S2). Figure S2

visualizes shifts in MRI-based volumes, EDSS, and

neuropsychological scores between the baseline and

follow-up time points. Figures S3 and S4 demonstrate dif-

ferences in MRI-based volumes, EDSS, neuropsychological

scores, and biomarker concentrations between pwCIS/

RRMS and pwPMS subgroups.

Proteomic characteristics of the study
population

In total, 202 pwMS had serum samples at the baseline

visit and 143 pwMS had serum samples at both the base-

line and follow-up visits. The baseline, follow-up, and

longitudinal change in each of the proteomic biomarkers

(shown as median and interquartile range (IQR)) are

Table 1. Demographic, clinical, and conventional MRI characteristics of the study population.

Demographic and clinical characteristics pwMS (n = 202) CIS/RRMS (n = 148) PMS (n = 54) p-value

Female, n (%) 151 (74.8) 106 (71.6) 45 (83.3) 0.09a

Age at baseline, mean (SD) 47.1 (11.1) 44.1 (10.6) 55.3 (7.9) <0.001b

Time of follow-up, mean (SD) 5.4 (0.6) 5.4 (0.6) 5.5 (0.6) 0.732b

BMI at baseline, mean (SD) 27.5 (5.8) 27.9 (6.2) 26.5 (4.5) 0.1b

Age of disease onset, mean (SD) 32.9 (9.8) 32.6 (9.0) 33.6 (11.8) 0.6b

Disease duration at baseline, mean (SD) 13.4 (10.2) 11.1 (8.5) 21.7 (10.5) <0.001b

EDSS at baseline, median (IQR) 2.5 (1.5–5.0) 1.5 (1.5–2.5) 6.0 (4.0–6.5) <0.001c

EDSS at follow-up, median (IQR) 3.0 (1.6–6.0) 2.0 (1.5–3.5) 6.5 (4.0–6.5) <0.001c

EDSS absolute change, mean (SD) 0.4 (0.9) 0.4 (0.9) 0.4 (0.7) <0.001b

Disability progression, n (%)* 56 (30.9) 38 (28.6) 18 (37.5) 0.251a

Relapse rate over the follow-up, mean (SD) 0.172 (0.369 0.204 (0.4) 0.09 (0.24) <0.001d

DMT at baseline, n (%)

IFN-b 85 (42.1) 60 (40.5) 25 (46.3) 0.271a

Glatiramer acetate 37 (18.3) 24 (16.2) 13 (24.1)

Natalizumab 29 (14.4) 25 (16.9) 4 (7.4)

Off-label DMT 5 (2.5) 3 (2.0) 2 (3.7)

No DMT 46 (22.8) 36 (24.3) 10 (18.5)

DMT at follow-up, n (%)

IFN-b 68 (33.7) 52 (35.1) 16 (29.6) 0.797a

Glatiramer acetate 45 (22.3) 31 (20.9) 14 (25.9)

Natalizumab 15 (7.4) 12 (8.1) 3 (5.6)

Oral DMT 28 (13.9) 22 (14.9) 6 (11.1)

Off-label DMT 12 (5.9) 8 (5.4) 4 (7.4)

No DMT 34 (16.8) 23 (15.5) 11 (20.4)

T2-LV (mL), mean (SD) 13.5 (16.7) 10.3 (14.09) 22.2 (20.1) <0.001b

T1-LV (mL), mean (SD) 3.0 (7.2) 2.2 (6.44) 5.5 (8.6) 0.015b

Gd-LN, mean (SD) 0.05 (3.2) 0.7 (3.7) 0.04 (0.2) <0.001c

Gd-LV (mL), mean (SD) 0.07 (0.4) 0.1 (0.48) 0.01 (0.03) 0.194b

WBV (mL), mean (SD) 1466.4 (94.3) 1490.2 (87.7) 1401.7 (80.8) <0.001b

WMV (mL), mean (SD) 725.9 (62.2) 738.7 (62.1) 689.8 (46.7) <0.001b

GMV (mL), mean (SD) 740.8 (63.9) 751.4 (65.9) 711.9 (48.1) <0.001b

Thirteen (13) CIS/RRMS patients transitioned into PMS over the follow-up. Parametric data are shown as mean (standard deviation), whereas non-

parametric data are shown as median (interquartile range). The specific comparisons were performed using; a – chi-square test, b – Student’s t-

test, c –Mann–Whitney U test, c – Negative binomial regression. p-values lower than 0.05 were considered statistically significant and shown

in bold.

BMI, body mass index; CIS, clinically isolated syndrome; DMT, disease modifying therapy; EDSS, Expanded Disability Status Scale; GMV, gray mat-

ter volume; IFN, interferon; IQR, interquartile range; LN, lesion number; LV, lesion volume; MS, multiple sclerosis; PMS, progressive multiple sclero-

sis; RRMS, relapsing–remitting multiple sclerosis; SD, standard deviation; WBV, whole brain volume; WMV, white matter volume.

*Disability progression was available for 181 out of 202 pwMS due to missing EDSS values at either baseline or follow-up visit.
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shown in Fig. 2 for biomarkers with significant shift

between the time points and detailed analysis is shown in

Table S4. Over the follow-up, pwMS had a significant

56% increase in CCL20 (9.74 pg/mL vs. 15.1 pg/mL,

p = 0.001) and 9.4% increase in NfL (10.5 pg/mL vs

11.5 pg/mL, p = 0.003). There were also significant shifts

in CDCP1, CNTN2, GFAP, MOG, and OPN but they did

not survive multiple comparison correction. Figure S4

illustrates a subgroup analysis showing that among the

measured proteins, NfL concentration at follow-up and

PRTG concentration at baseline were significantly differ-

ent in pwPMS compared to pwCIS/RRMS.

In the pwMS who progressed over the follow-up, there

were several proteins whose levels differed between the

visits. For the patients who progressed in the 9HPT test,

CDCP1 increased by 31% (110 pg/mL vs. 144 pg/mL,

p = 0.003), TNFRSf10A increased by 37% (5.61 pg/mL vs

7.71 pg/mL, p = 0.005), and VCAN increased by 17%

(428 pg/mL vs 500 pg/mL, p = 0.007). The other proteins

in Table 2 did not survive the multiple comparison

correction.

Relationship between proteomic data and
outcomes in pwMS

Longitudinal models

In Fig. 3, we present significant findings from mixed-

effects models that encompassed both time points and all

pwMS. Six biomarker candidates – GFAP, FLRT2,

CDCP1, TNFRSF10A, CXCL9, and CCL20 – showed asso-

ciations with changes in brain volumes. Notably, GFAP

(p = 0.003), FLRT2 (p = 0.001), CDCP1 (p = 0.004), and

TNFRSF10A (p = 0.003) were linked to reductions in

whole brain volume (WBV) and withstood multiple

Figure 2. Changes in blood serum biomarker concentration between the baseline and follow-up time points for those with p-value < 0.05.

Paired Wilcoxon signed-rank test was used to compare between baseline and follow-up time points. p-value annotation legend: ns: 5.00e-

02 < p < = 1.00e+00, *: 1.00e-02 < p < = 5.00e-02, **: 1.00e-03 < p < = 1.00e-02, ***: 1.00e-04 < p < = 1.00e-03, ****: p < = 1.00e-04.

Note that only CCL20 and NfL survived the multiple comparison correction.

Table 2. Changes in blood serum protein concentrations between baseline and the follow-up for pwMS with worsening in disability measures.

Endpoint Biomarker Baseline median (IQR) Follow-up median (IQR) Percentage Change (%) p-value

EDSS worsening CCL20 11.5 (6.12, 19.3) 15.9 (10.3, 41.5) 38 0.041

CDCP1 108 (81.9, 126) 135 (86.7, 180) 25 0.005

TNFSF13B 4.82 (4.0, 5.95) 5.19 (4.51, 6.27) 7.6 0.008

20% 9HPT worsening CCL20 12.4 (7.68, 19.1) 28.1 (13.9, 42.0) 130 0.027

CDCP1 110 (105, 125) 144 (112, 193) 31 0.003*

CXCL13 51.7 (37.8, 78.1) 61.9 (51.0, 103) 20 0.012

CXCL9 55.7 (39.1, 77.8) 69.1 (43.9, 101) 24 0.042

OPN 20.9 (16.6, 30.6) 25.2 (19.4, 33.5) 20 0.042

TNFRSF10A 5.61 (4.66, 7.65) 7.71 (6.51, 8.5) 37 0.005*

VCAN 428 (393, 473) 500 (460, 571) 17 0.007*

4 Points SDMT Worsening MOG 29.9 (23.0, 38.5) 32.0 (25.2, 43.4) 6.9 0.027

8 Points SDMT Worsening SERPINA9 61.3 (34.3, 77.4) 32.1 (16.1, 59.3) �48 0.01

%0.4 loss in WBV CDCP1 105 (66.3, 132) 107 (83.7, 147) 1.5 0.014

3.5% increase in LVV SERPINA9 73.0 (57.1, 89.5) 64.4 (38.2, 76.6) �12 0.049

For the list of biomarker, abbreviations refer to Table S8. Wilcoxon signed-rank tested the significance in shifts. p-values smaller than 0.05 were

considered significant and are highlighted with bold fonts, and those with asterisks (*) survived the Benjamini–Hochberg correction for false dis-

covery rate (FDR). All measures are shown as pg/mL except for TNFSF13B and OPN that are shown as ng/mL.

EDSS, Expanded Disability Status Scale; LVV, Lateral Ventricular Volume; SDMT, Symbol Digit Modalities Test; WBV, whole brain volume; 9HPT, 9-

Hole Peg Test.
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comparison correction. In the case of white matter vol-

ume (WMV), GFAP emerged as the sole significant pro-

tein (p < 0.001). Additionally, we observed significant

associations with DGM volume, including CCL20

(p = 0.004), CXCL9 (p = 0.001), CDCP1 (p = 0.002),

FLRT2 (p = 0.008), and TNFRSF10A (p = 0.009). In

terms of clinical and cognitive assessments, worsening in

the 9-HPT score was linked to increased NfL (p = 0.001),

and these associations held after multiple comparison cor-

rection. Detailed results, including estimated coefficients,

p-values, and the quality of fit, are provided in Table 3,

which exclusively includes significant biomarkers

(p < 0.05).

Cross-sectional models

Figure 4, Tables 4 and S5 present significant findings

from linear single-protein models evaluated individually

for baseline and follow-up outcomes. At baseline, elevated

GFAP levels correlated with lower WBV (p < 0.001),

GMV (p < 0.001), thalamic volume (p < 0.001), and

DGMV (p < 0.001), and higher LVV (p < 0.001). Fur-

thermore, higher GFAP levels were associated with higher

EDSS scores (p = 0.002).

At follow-up, GFAP levels remained correlated with

lower WBV (p = 0.001), GMV (p = 0.001), and DGMV

(p = 0.002), as well as higher LVV (p < 0.001). Both NfL

(p = 0.001) and GFAP (p = 0.003) were linked to worse

9HPT scores, and NfL also correlated with T25FWT

(p = 0.002) and EDSS scores (p = 0.002).

The association between shifts in biomarker
levels and clinical change

To assess the potential impact of shifts in biomarker con-

centrations on clinical outcomes, we employed a model

with shifts in biomarkers between baseline and follow-up,

alongside age, sex, and BMI as independent predictors,

and shifts in outcome scores as dependent variables.

Notable findings include CDCP1 (p = 0.001), FLRT2

(p = 0.001), PRTG (p = 0.008), TNFRSF10A (p < 0.001),

and TNFSF13B (p < 0.001) as predictors of shifts in

WBV. Additionally, CD6 (p = 0.001) was identified as a

predictor of shifts in DGMV. Further details of these ana-

lyses are presented in Fig. 5 and Table S6.

Baseline biomarker levels as predictors of
follow-up clinical endpoints

We assessed the predictive potential of baseline proteomics

results for subsequent outcomes and disease progression

with significant predictors shown in Fig. 6. While a

Figure 3. Longitudinal single-protein model parameters with adjustment for age, sex, and BMI. The radius of each circle is proportional to the

estimated standardized coefficient of the corresponding protein; red (blue) circles represent proteins with positive (negative) effects in estimating

the second-class label. The opacity of each circle represents the p-value; a p-value of < 0.001 corresponds to full opacity, and a p-value of 0.05

corresponds to the least opacity. Biomarkers that survived the multiple comparison correction are marked with a gold star (*).
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multitude of proteins initially displayed significance with p-

values below 0.05, it is noteworthy that two proteins, GFAP

and PRTG, emerged as particularly robust predictors after

multiple comparison corrections were applied. As shown in

Fig. 6 and Table S7, these proteins consistently exhibited the

ability to forecast important clinical and imaging endpoints,

including EDSS scores and MRI metrics.

Discussion

The findings of this longitudinal proteomics study are

multifold. Firstly, multiple proteomic biomarkers

representing different pathophysiological MS pathways are

differentially associated with phenotypical and macro-

scopic pathological changes. Secondly, worse physical and

cognitive outcomes in pwMS were associated with blood-

based measures of NfL. Thirdly, baseline levels of GFAP

and PRTG are significant predictors of development of

future disability progression (as measured by increase in

EDSS scores) and greater neurodegeneration as measured

by lateral ventricular expansion. Lastly, worse neurode-

generative MRI outcomes were associated with a greater

number of biomarkers including GFAP, CDCP1, CXCL9,

CCL20, APLP1, FLRT2, PRTG, аnd TNFRSF10A. The

Table 3. Parameters of the longitudinal linear mixed-effects model predicting outcome score using single-protein models consisting of biomarker

protein concentration, age, sex, BMI, and time point that passed the significant threshold of p < 0.05.

Endpoint Biomarker Estimate R-squared p-value

Observed statistical power

(95% confidence interval)

DGMV CD6 �0.003 0.15 0.035 (0.524–0.586)

TNFRSF10A �0.004 0.17 0.009* (0.74–0.793)

MOG 0.003 0.18 0.045 (0.493–0.555)

FLRT2 �0.004 0.19 0.008* (0.743–0.796)

CXCL9 �0.005 0.16 0.001* (0.891–0.927)

CDCP1 �0.005 0.18 0.002* (0.864–0.904)

CCL20 �0.003 0.16 0.004* (0.802–0.85)

APLP1 0.004 0.17 0.011* (0.684–0.741)

GMV FLRT2 �0.004 0.27 0.017 (0.629–0.688)

CXCL9 �0.003 0.25 0.04 (0.498–0.56)

CCL20 �0.003 0.26 0.006 (0.748–0.801)

LVV MOG �0.008 0.14 0.031 (0.548–0.61)

OPN �0.007 0.14 0.041 (0.515–0.577)

Thalamus CCL20 �0.003 0.16 0.006 (0.747–0.8)

CXCL9 �0.003 0.15 0.031 (0.553–0.615)

FLRT2 �0.003 0.18 0.037 (0.499–0.561)

CDCP1 �0.005 0.17 0.007 (0.754–0.806)

WMV GFAP �0.008 0.12 <0.001* (0.962–0.983)

TNFSF13B �0.003 0.11 0.046 (0.5–0.562)

WBV CDCP1 �0.003 0.24 0.004* (0.791–0.84)

CXCL9 �0.002 0.23 0.014 (0.666–0.724)

FLRT2 �0.003 0.25 0.001* (0.916–0.948)

GFAP �0.004 0.28 <0.001* (0.956–0.979)

OPG �0.002 0.23 0.05 (0.492–0.554)

TNFSF13B �0.002 0.24 0.028 (0.559–0.621)

TNFRSF10A �0.003 0.24 0.003* (0.801–0.849)

EDSS NfL 0.023 0.24 0.021 (0.607–0.668)

9HPT NfL 0.031 0.21 0.001* (0.886–0.923)

GFAP 0.022 0.2 0.037 (0.525–0.587)

CDCP1 0.02 0.16 0.028 (0.558–0.62)

PASAT GFAP �0.038 0.07 0.012 (0.704–0.76)

CCL20 �0.018 0.02 0.042 (0.488–0.55)

SDMT CDCP1 �0.021 0.11 0.042 (0.498–0.56)

CCL20 �0.017 0.09 0.008 (0.758–0.81)

T25FWT CXCL9 0.041 0.08 0.014 (0.691–0.748)

Refer to Table S8 for the list of protein abbreviations. p-values smaller than 0.05 were considered significant and those with asterisks (*) survived

the Benjamini–Hochberg correction for false discovery rate (FDR).

DGMV, deep gray matter volume; EDSS, Expanded Disability Status Scale; GMV, gray matter volume; LVV, lateral ventricular volume; PASAT,

Paced Auditory Serial Addition Test; SDMT, Symbol Digit Modalities Test; T25FWT, Timed 25-Foot Walk Test; WMV, white matter volume; WBV,

whole brain volume; 9HPT, 9-Hole Peg Test.
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heterogeneous sample of pwMS utilized in this study

aimed at closely mirroring the wide heterogeneity seen in

the real-world settings.

The NfL/GFAP relationship with clinical outcomes was

recently demonstrated in a similar longitudinal Swiss

study.25 Over an average follow-up of 7 years, serum

GFAP levels were prognostic of progression independent

of relapse activity (PIRA) and complementary to the

serum NfL data.25 Moreover, NfL levels were prognostic

of atrophy in the WMV, whereas GFAP specifically prog-

nosticate GM atrophy.25 The multi-protein panel

employed in our study was also utilized in a study of 431

unique pwMS and successfully predicted the real-world

disability status (patient-reported disability score and

patient-reported outcomes).26 The proteomic profiles

consistently outperformed individual top-ranking markers

such as NfL and GFAP.26 The fact that the same protein

biomarkers implicated in their stacking classification algo-

rithm (CDCP1, IL-12B, and PRTG) were also seen in our

objective disability findings further validates the utility

and need of multi-protein proteomic assay.26

The stacking of multiple proteomic biomarkers as indi-

cators of different pathophysiological pathways (immuno-

modulation, neuroinflammation, myelin biology, and

neuroaxonal integrity) also provides the potential to strat-

ify pwMS in pathology-based phenotypes. These proteo-

mic phenotypes may potentially differentiate pwMS that

are experiencing disease progression that is driven by

neuroinflammatory or neurodegenerative processes and

allow more specific treatment allocation. As an area of

future work, such patient stratification would be an addi-

tional step toward personalized medicine and improved

treatment decision-making process throughout the entire

MS disease duration. Albeit nonspecific, the assay does

(A) (B)

Figure 4. Cross-sectional single-protein model parameters with adjustment for age, sex, and BMI for baseline (left) and follow-up (right). The

radius of each circle is proportional to the estimated standardized coefficient of the corresponding protein; red (blue) circles represent proteins

with positive (negative) effects in estimating the second-class label. The opacity of each circle represents the p-value; a p-value < 0.001

corresponds to full opacity, and a p-value of 0.05 corresponds to the least opacity. Biomarkers that survived the multiple comparison correction

are marked with a gold star (*).

Table 4. Parameters of the cross-sectional linear model predicting

baseline outcome score using single-protein models consisting of

baseline biomarker protein concentration, age, sex, and BMI that

passed the p = 0.05 significance threshold.

Endpoint Biomarker Estimate R-squared p-value

DGMV FLRT2 �0.008 0.16 0.035

GFAP �0.015 0.19 <0.001*

MOG 0.008 0.15 0.037

GMV CCL20 �0.006 0.25 0.016

GFAP �0.009 0.33 <0.001*

FLRT2 �0.005 0.25 0.036

LVV MOG �0.028 0.19 0.024

GFAP 0.060 0.26 <0.001*

Thalamus MOG 0.011 0.17 0.008

GFAP �0.016 0.18 0.001*

FLRT2 �0.008 0.16 0.043

WMV GFAP �0.008 0.1 0.006

CD6 0.005 0.1 0.048

WBV GFAP �0.009 0.29 <0.001*

FLRT2 �0.004 0.25 0.021

EDSS PRTG �0.034 0.23 0.023

GFAP 0.050 0.24 0.002*

CD6 �0.034 0.23 0.018

9HPT PRTG �0.037 0.25 0.043

PASAT GFAP �0.092 0.11 0.022

APLP1 �0.079 0.09 0.038

SDMT GFAP �0.055 0.18 0.013

T25FWT CXCL13 0.074 0.17 0.017

Refer to Table S8 for the list of protein abbreviations. p-values smaller

than 0.05 were considered significant and those with asterisks (*) sur-

vived the Benjamini–Hochberg correction for false discovery rate

(FDR).

DGMV, deep gray matter volume; EDSS, Expanded Disability Status

Scale; GMV, gray matter volume; LVV, lateral ventricular volume;

PASAT, Paced Auditory Serial Addition Test; SDMT, Symbol Digit

Modalities Test; T25FWT, Timed 25-Foot Walk Test; WMV, white mat-

ter volume; WBV, whole brain volume; 9HPT, 9-Hole Peg Test.
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provide simultaneous information for both CNS-based

pathology (MOG, sNfL, and GFAP) and peripheral

immune activation (CCL20, CXCL9/13, TNFSF13B, and

IL-12B). Therefore, the multidimensional proteomic

information can also be utilized as a potential treatment

response marker and indicator of disease control.

We further expand on the literature by demonstrating

that the similar set of biomarkers (APLP1, CDCP1,

FLRT2, TNFRSF10A, and CCL20) are also relevant to

MRI-based volumetric measures. Of note, the directional-

ity of APLP1-DGMV relationship (decrease in the bio-

marker concentration was associated with decreased

DGMV) was opposite when compared to the remaining

ones. Currently, there are no comprehensive proteomic

studies that investigate associations with MRI measures in

pwMS. The literature most commonly describes individ-

ual associations with one or two proteomic measures

(NfL and GFAP).20,27,28 Despite the high collinearity

between serum NfL and GFAP levels, a cross-sectional

study of 129 pwMS showed that the amount of lesion

pathology (T2-LV) and WM/GM volumes were associated

only with GFAP levels and not with NfL.29 We corrobo-

rate these findings with GFAP remaining a strong predic-

tor all MRI measures acquired in our study (WBV, DGM,

LVV, and thalamic volume). Moreover, early measure-

ment of GFAP may be utilized as a significant predictor

of future neurodegenerative development, as demon-

strated in our study where baseline GFAP was indicative

of future LVV expansion. Serum GFAP levels were also

recently associated with greater microstructural pathology

in 62 pwMS assessed by diffusion tensor imaging.30 Our

results showed that CCL20 has strong association with

the DGM volume and it was increased at the follow-up

time point. This protein was previously shown to be

increased in PwMS and specifically with a progression

index and was higher during remission than in relapse

periods.31,32 The retrospective power analysis revealed that

the power was sufficient for the majority of the

Figure 5. Single-protein model parameters predicting shifts in outcome score using shifts in biomarker concentration with adjustment for age,

sex, and BMI. The radius of each circle is proportional to the estimated standardized coefficient of the corresponding protein; red (blue) circles

represent proteins with positive (negative) effects in estimating the second-class label. The opacity of each circle represents the p-value; a p-value

< 0.001 corresponds to full opacity, and a p-value of 0.05 corresponds to the least opacity. Biomarkers that survived the multiple comparison

correction are marked with a gold star (*).
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biomarkers that survived the multiple comparison correc-

tion. However, the tests were not adequately powered for

biomarkers that did not survive the multiple comparison

correction (Table 3). This suggests that the sample size

and/or effect size could be too small that can have impli-

cations for the replicability of these biomarkers in other

studies.

The multiplex assays could broaden our understanding

of key mechanisms underlying progression by taking a

biological-based approach to objectively quantify disease

progression.33 They have been demonstrated in other

neurological disorders as well.34,35 For example, proteo-

mic data from only 4-Plex assay (NfL, GFAP, tau protein,

and ubiquitin c-terminal hydrolase L1; UCH-L1) better

classified people with traumatic brain injury when com-

pared to only single proteomic measure.34 Similarly, cog-

nitive performance in Alzheimer’s disease and amyloid

PET status can be predicted and classified by a combina-

tion of GFAP, amyloid beta, and neurofilament light

chain.35

While cutoffs of normal versus pathological levels of

NfL in pwMS have been previously published,36,37 this

information is not available for the majority of proteomic

biomarkers utilized in this multi-protein assay. A limited

number of studies report the reference intervals and prea-

nalytical GFAP levels.38,39 For example, a Danish-based

analysis of 371 apparently healthy subjects reported fairly

large ranges with GFAP levels of 25–136 ng/L (20–
39 years old), 34–242 ng/L (40–64 years old), and 4–
438 ng/L (for 65–90 years old).38 Moreover, there was

~10% variability after three freeze–thaw cycles or storing

serum samples at �20 °C for an average of 133 days.38

Significant semidiurnal variations in GFAP have been

reported (9 AM vs. 12 PM vs 9 PM blood draw).40 Based

on these references, none of the median pwMS values

would be considered “pathological.” Other biomarkers

such as contactin-1 may be more susceptible to preanaly-

tical factors and have even greater variability.41 After the

selection of best performing biomarkers and creation of

multi-protein scores, future studies should aim at

Figure 6. Single-protein model parameters predicting clinical outcome score at the follow-up time point using biomarker concentration at the

baseline time point with adjustment for age, sex, and BMI. The radius of each circle is proportional to the estimated standardized coefficient of

the corresponding protein; red (blue) circles represent proteins with positive (negative) effects in estimating the second-class label. The opacity of

each circle represents the p-value; a p-value < 0.001 corresponds to full opacity, and a p-value of 0.05 corresponds to the least opacity.

Biomarkers that survived the multiple comparison correction are marked with a gold star (*).
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determining appropriate cutoffs for best differentiation

between normal and pathological states.

In this study, we employed ordinary and linear mixed-

models (LMM) as the primary statistical approaches to

explore the relationships between serum biomarker con-

centrations and various disease progression metrics in

MS. While these models offer valuable insights into these

associations, we acknowledge that the underlying interac-

tions between biomarkers and disease progression may

exhibit nonlinear or more complex patterns. An area of

future work is to consider regularized and/or nonlinear

regression techniques to capture more complex interac-

tions of serum biomarker concentrations and metrics of

disease progression. In addition, multi-protein regression

approaches in cross-validation studies can be considered

to integrate the predictive power of individual biomarkers

in one model.42 The shifts in DP outcome measures were

not uniform. Such imbalance in the training data can

deteriorate generalizability of the model.43,44 In the future,

it will be of interest to balance the data using up, down

sampling techniques or using weighted learners. The

significantly lower number of available cognitive measures

(only 25% of the pwMS) for the baseline time point

presents as another study limitation. Moreover, the initial

determination of biomarkers within the assay were based

on ability to predict presence of contrast-enhancing

and new/newly enlarging lesions.9 In comparison with

younger more active pwMS from the literature, our popu-

lation was relatively older and had very limited neuroin-

flammatory activity. Future development of a more

comprehensive assay that contains proteins specific to

neurodegenerative changes (vs. neuroinflammation) could

better predict the occurrence of long-term disability wors-

ening. Moreover, the use and change in DMT should be

incorporated in future statistical analyses. An additional

limitation of our analysis is the lack of a third clinical

visit that would allow confirmation of the disease pro-

gression and lack of short-term serial blood samples that

would allow better determination of the temporal changes

in both the proteomic biomarkers and their relationship

with clinical/MRI outcomes. This limitation is particular

important when interpreting the relationships in the con-

current proteomic and clinical changes as shown in our

manuscript. The proteomic changes that occur are at a

significantly smaller timescale when compared to the rate

of disability progression or occurrence of significant neu-

rodegenerative changes that can be captured by the cur-

rent MRI technology. Lastly, the lack of healthy control

data does not allow us to determine pathological protein

cutoffs and risk stratify the pwMS based on healthy

condition.

As part of our future research, we acknowledge the

potential to extend our current findings by developing

predictive models that utilize machine learning

approaches. Specifically, we plan to explore the construc-

tion of predictive models that can harness the informa-

tion contained in baseline biomarker levels to forecast

disease progression in MS patients. This entails the use of

comprehensive machine learning techniques, including

feature selection, model training, and validation, to build

robust predictive models. Moreover, the individual signif-

icant findings in our analysis should only be interpreted

as one component of a repeating pattern of findings

rather than focusing on specific biomarker-outcome cor-

relation. The proteomic levels in the serum can be highly

variable and influenced by many biological factors.

In conclusion, the clinical, cognitive, and MRI-based

outcomes in pwMS are associated with more than one

proteomic biomarker. While sNfL had the strongest asso-

ciations with physical disability such as EDSS scores and

hand dexterity, additional proteomic biomarkers related

to neuroaxonal integrity were associated with cross-

sectional and longitudinal MRI measures of brain atro-

phy. Multi-protein assays may be essential in capturing

the complex MS pathophysiology as part of the disease

stratification, monitoring and potentially utilized as

predictors of future accrual of pathology. Before imple-

mentation into routine clinical practice, future studies

should determine the treatment responsiveness of such

proteomic biomarkers. Moreover, creation of a composite

score out of proteomic biomarkers that have been proven

as good predictors could further ease their clinical

implementation.
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