Skip to main content
. 2024 Mar 13;10(6):e28143. doi: 10.1016/j.heliyon.2024.e28143

Table 2.

Multi-model classification–training set results.

Model AUC(SD) Cut off (SD) Accuracy (SD) Sensitivity (SD) Specificity (SD) Positive predictive
value (SD)
Negative predictive
value (SD)
F1 score (SD) Kappa (SD)
XG Boost 1.000 (0.000) 0.873 (0.012) 0.996 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.989 (0.000) 1.000 (0.000) 0.991 (0.000)
logistic 0.789 (0.016) 0.553 (0.036) 0.744 (0.013) 0.784 (0.038) 0.694 (0.034) 0.792 (0.012) 0.679 (0.031) 0.787 (0.016) 0.469 (0.022)
Light GBM 1.000 (0.000) 0.567 (0.024) 0.994 (0.002) 0.997 (0.004) 1.000 (0.000) 1.000 (0.000) 0.985 (0.005) 0.998 (0.002) 0.987 (0.005)
RandomForest 1.000 (0.000) 0.540 (0.037) 0.987 (0.012) 0.997 (0.004) 0.998 (0.004) 1.000 (0.000) 0.970 (0.027) 0.999 (0.002) 0.974 (0.024)
GNB 0.765 (0.017) 0.728 (0.120) 0.734 (0.012) 0.732 (0.027) 0.748 (0.036) 0.812 (0.019) 0.646 (0.018) 0.769 (0.012) 0.460 (0.023)
SVM 0.787 (0.018) 0.602 (0.031) 0.733 (0.015) 0.759 (0.052) 0.705 (0.056) 0.793 (0.021) 0.659 (0.034) 0.774 (0.020) 0.451 (0.027)
KNN 0.834 (0.020) 0.680 (0.098) 0.640 (0.075) 0.743 (0.112) 0.748 (0.127) 0.916 (0.070) 0.541 (0.059) 0.810 (0.046) 0.336 (0.104)
CNB 0.742 (0.022) 0.195 (0.388) 0.700 (0.023) 0.693 (0.062) 0.721 (0.052) 0.787 (0.020) 0.609 (0.029) 0.735 (0.034) 0.395 (0.037)