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Abstract
The aus (Oryza sativa L.) varietal group comprises of aus, boro, ashina and rayada seasonal and/or field ecotypes, 
and exhibits unique stress tolerance traits, making it valuable for rice breeding. Despite its importance, the agro-
morphological diversity and genetic control of yield traits in aus rice remain poorly understood. To address this 
knowledge gap, we investigated the genetic structure of 181 aus accessions using 399,115 SNP markers and 
evaluated them for 11 morpho-agronomic traits. Through genome-wide association studies (GWAS), we aimed to 
identify key loci controlling yield and plant architectural traits.

Our population genetic analysis unveiled six subpopulations with strong geographical patterns. Subpopulation-
specific differences were observed in most phenotypic traits. Principal component analysis (PCA) of agronomic 
traits showed that principal component 1 (PC1) was primarily associated with panicle traits, plant height, and 
heading date, while PC2 and PC3 were linked to primary grain yield traits. GWAS using PC1 identified OsSAC1 
on Chromosome 7 as a significant gene influencing multiple agronomic traits. PC2-based GWAS highlighted the 
importance of OsGLT1 and OsPUP4/ Big Grain 3 in determining grain yield. Haplotype analysis of these genes in the 
3,000 Rice Genome Panel revealed distinct genetic variations in aus rice.

In summary, this study offers valuable insights into the genetic structure and phenotypic diversity of aus rice 
accessions. We have identified significant loci associated with essential agronomic traits, with GLT1, PUP4, and SAC1 
genes emerging as key players in yield determination.
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Background
Asian cultivated rice (Oryza sativa L.) is a crucial staple 
food crop for more than one half of global population 
(Khush 2005). Being one of the earliest domesticated 
crops and a model organism, the phylogenetic and geo-
graphic origins of rice is well studied (Molina et al. 2011; 
Gross and Zhao 2014; Gutaker et al. 2020). Based on 
ecology, genetics and genomics, O. sativa is broadly clas-
sified into indica, aus, temperate japonica, tropical japon-
ica and aromatic groups (Glaszmann 1987; Garris et al. 
2005; Zhao et al. 2011; Wang et al. 2018). The aus group 
which was initially geographically assigned to South and 
West Asia (Glaszmann 1987), is now suggested to have 
originated from central India or Bangladesh based on 
comprehensive genomic data (Civáň et al. 2015). The aus 
group comprises of two seasonal ecotypes: aus and boro 
(Li et al. 2014; Alexandrov et al. 2015) distributed in both 
Bangladesh and India (Travis et al. 2015). The ‘boro’ indi-
cates the cropping season spanning December to May, 
while ‘aus/ahu’ refers to April to August. Both these eco-
types have been traditionally selected to complete the life 
cycle in a short period and to have tolerance to abiotic 
stresses like drought, cold and heat. Furthermore, the 
aus group also includes deep-water cultivars (referred as 
‘ashina’ in Glaszmann 1987) from Assam and Bangladesh, 
as well as the ‘rayada’ cultivars originating from a small 
geographical area along the Madhumati river in Bangla-
desh (Rubaiyath Bin Rahman and Zhang 2013). All these 
aus cultivar types have been categorized as circum-aus in 
Wang et al. (2018). In this paper, we have the term ‘aus’ in 
italic font to referrer to the genetic group, while ‘aus’ in 
non-italic font refers to seasonal ecotype.

Aus cultivars group has immense potential for utiliza-
tion in breeding due to its tolerance many abiotic stress 
factors. While stress tolerance studies have tradition-
ally focused on the Japonica variety Nipponbare, which 
benefits from available genetic resources and a refer-
ence genome, recent advancements in de novo refer-
ence genomes for aus cultivars like N22 and Kasalath 
offer valuable insights into aus-specific genes and path-
ways. Genetic analysis of the 3,000 Rice Genome Project 
(3K-RGP) accessions (Li et al. 2014) revealed a greater 
abundance of ‘private’ alleles in aus compared to other 
rice groups, particularly around major domestication 
genes like Sh4, sd1, Wx, and Rc that control traits such as 
grain shattering, semi-dwarf height, grain amylose con-
tent, and pericarp colour, respectively (Wang et al. 2018) 
Moreover, considerable population structural diversity 
within aus (Norton et al. 2018) can be exploited suitably 
for rice improvement.

A range of crucial stress tolerance genes such as 
OsSub1, SNORKELs, OsPSTOL1, and Dro1, were first 
reported in aus genotypes (Bin Rahman and Zhang 2018). 
Notably, these genes are absent from the Nipponbare 

reference sequence. This underlines the potential of aus 
germplasm for unveiling novel allelic variations associ-
ated with crucial agronomic traits to safeguard rice pro-
duction from the progressive changes in global climate 
causing frequent extreme weather events like drought, 
flooding, and high temperature. With high-quality SNP 
data accessible for diverse rice germplasm panels like 
BAAP and 3  K-RGP (Rice SNP-seek database; https://
snp-seek.irri.org), genome-wide association studies 
(GWAS) offers a compelling approach to uncover natu-
ral variations pertaining to agronomic, grain quality, and 
stress tolerance traits (Norton et al. 2018; Bhandari et al. 
2020).

To date, the morphological diversity of aus rice has not 
been evaluated on a global scale. Therefore, it is interest-
ing to explore the genetic basis of the phenotypic diver-
sity which will help better utilization of aus germplasm 
in rice breeding. In this study we evaluated 181 aus rice 
from the 3 K-RGP panel for 42 agro-morphological traits 
with following objectives: (i) to understand how well the 
agro-morphological diversity correlates with the popula-
tion genetic structure, and how it relates to the origin and 
distribution of aus cultivars, (ii) to determine the genetic 
factors associated with the agronomical features of aus 
rice using GWAS, and compare those with earlier reports 
on diverse rice germplasm.

Materials and Methods
Plant Materials and Growth Conditions
A total of 181 aus rice accessions from the 3000 Rice 
Genome Project (3 K-RGP) (Li et al. 2014) were included 
in the study (Dataset S1). Originally, there were 214 aus 
accessions in the 3 K-RGP, but we could obtain seeds of 
181 accessions from the IRRI genebank. The passport 
data on the origin of accessions were obtained from 
Genesys (https://www.genesys-pgr.org/). The geographic 
distribution of the aus accessions is shown in Fig. 1.

During the wet season (June-November) of 2020, 181 
aus accessions were cultivated at Hazaribag, Jharkhand 
(23.9596 °N, 85.3739 °E, 600 m) under rainfed conditions. 
Each accession was grown under puddled transplanted 
conditions in a 2.5 m × 1.5 m plot with a spacing of 20 cm 
(row-to-row) and 15  cm (plant-to-plant) following an 
augmented block design. Three check varieties: Vandana, 
Sahbhagi Dhan and IR64 were included. Standard pro-
duction practices were followed to manage the crop.

SNP Genotypic Data and Filtering
The genotypic data for the 181 accessions were obtained 
from the data repository of 3  K-RGP (https://snp-seek.
irri.org/). The raw genotypic data we considered from 
3  K-RP Base SNP dataset which contained 18,128,777 
SNPs. The Base SNP dataset was originally created 
from ~ 29  million biallelic SNPs by removing SNPs with 

https://snp-seek.irri.org
https://snp-seek.irri.org
https://www.genesys-pgr.org/
https://snp-seek.irri.org/
https://snp-seek.irri.org/
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excess of heterozygous calls. The marker set was then fil-
tered using nucleotide variation missing rate < 0.20 and a 
minor allele frequency (MAF) > 0.01 using PLINK (Pur-
cell et al. 2007).

Population Structure
The MAF-filtered data was further thinned by applying 
a two-step LD pruning using PLINK (“indep-pairwise 
10 kb 1 0.8” and “indep-pairwise 50 1 0.8”). The resulting 
set of 399, 115 SNP (referred to as 399 K set) was then 
used for population structure analysis.

The population structure of 181 aus genotypes was 
assessed using ADMIXTURE v. 1.3.0 (Alexander et al. 
2009). Sub-populations from K = 1 to 8 were tested. Since 
the cross-validation error barely differed between K val-
ues beyond K = 6, we defined K = 6 as optimal clusters 
in aus germplasm (Fig. S1). An 80% threshold of cluster 
membership was used to assign cultivars into population 
sub-groups. Furthermore, population structure analysis 
of aus genotypes from India (71 accessions) and Bangla-
desh (76 accessions) was assessed independently using 
similar criteria. The Principal component analysis (PCA) 
for all accessions was done using TASSEL5 (Bradbury et 
al. 2007). A neighbour-joining tree was built by calcu-
lating the pairwise genetic distances between samples 
using the VCF2Dis software (https://github.com/BGI-
shenzhen/VCF2Dis). From the genetic distance matrix, 
a neighbor-joining tree was built using the programme 
FastME (Lefort et al. 2015).

Phenotype Data Recording and Statistical Analysis
Forty-two phenotypic traits comprising of 11 agronomi-
cal and 30 qualitative morphological variables, were 
evaluated following standard procedure (IRRI 2013); for 
details see Dataset S2). Data on agronomical variables 
were recorded from 15 randomly chosen plants in each 
plot (excluding the border rows) and grain yield data was 
recorded from plot yield as yield per m2 after threshing 
and drying the seed to around 14% moisture content.

The phenotyping data for agronomic (quantitative) 
variables were analyzed using an augmented block design 
with the R package augmentedRCBD (R Core Team 
2021). Adjusted means, range, skewness, kurtosis, coef-
ficient of variation (CV), genetic coefficient of variation 
(GCV), phenotypic coefficient of variation (PCV), broad 
sense heritability (hBS) and frequency distribution were 
calculated.

The 181 aus accessions were classified into seven 
genetic clusters: K1 to K6, and ‘admix’, based on Admix-
ture analysis results. A univariate analysis using a gen-
eral linear model for quantitative traits was performed 
for seven genetic cluster in SPSS Statistics v.21 (IBM, 
Armonk, NY). The ANOVA was calculated to find the 
significance of difference among the groups means. In 
addition, the comparison of means within each group 
was carried out using Tukey’s test at P < 0.05.

To investigate the relationships among agronomical 
variables and the factors underlying the trait variation, a 
principal component analysis (PCA) was carried out for 
11 traits using GraphPad Prism v. 9.0. The variables were 
standardized to have a mean of 0 and standard deviation 
(SD) of 1 before analysis, and the principal components 

Fig. 1  Geographical distribution ofausrice accessions used in the study. A few accessions from other parts of the world have not been shown here. 
Each point indicates the geolocation of the cultivar as given in https://www.genesys-pgr.org. The colour of the points indicates to which aus sub-group 
the accession belongs (see Fig. 2) based on population structure analysis at K = 6
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(PCs) were selected based on parallel analysis which per-
forms 1000 Monte Carlo simulations on “random data” of 
equal dimension to the input data, and finally selects PCs 
with eigen values greater than those from the simulations 
at 95% percentile level.

Genome-wide Association Analysis
The three principal components (PCs) obtained 
from PCA of 11 agronomical traits, along with the 
log10-transformed values of individual traits were 
included in GWAS (Dataset S3). We used a separate 
larger set of 458, 615 SNPs (referred as 458 K set) of 181 
aus genotypes which was filtered from the base SNP set 
using the criteria: missingness (0.25) and MAF (0.05) 
and LD pruning (indep-pairwise 2  kb 1 0.8). The Fixed 
and Random Model Circulating Probability Unification 
(FarmCPU) model (Liu et al. 2016) in the R package of 
Genomic Association and Prediction Integrated Tool 
(GAPIT) (Wang and Zhang 2021) was used for GWAS 
analysis. The FarmCPU model is a multi-locus linear 
mixed model (MLMM) that improves statistical power 
and reduces both false positives and false negatives (Liu 
et al. 2016; Kaler et al. 2019). Population structure was 
accounted for by using a kinship matrix to reduce the 
occurrence of false positives and spurious associations. 
Quantile–quantile (Q-Q) plots of the estimated and 
observed P-values for marker–trait associations were 
generated to evaluate the model fit.

The critical P-value for explaining a significantly associ-
ated marker was the rather conservative Bonferroni cor-
rection, calculated by the–log10(p-value of 0.05/ΣSNPs), 
which corresponds to -log10(0.05/458,615) = 6.96. The 
percentage of total phenotypic variance (PVE) explained 
by significant MTAs was generated in GAPIT. The PVE 
of the markers is calculated in GAPIT as their corre-
sponding variance divided by the total variance, which is 
the sum of residual variance and the variance of the asso-
ciated markers, calculated using the R/lme4 package.

Linkage Disequilibrium and Prediction of Candidate Genes
Linkage disequilibrium (LD) decay was measured by cor-
relation coefficients (r2) for all pairs of SNPs with a slid-
ing window approach with the following parameters: 
-MaxDist 500-MAF 0.05-Het 0.88-Miss 0.999 using 
PopLDdecay v3.27 (Zhang et al. 2019). The LD decay 
distance was determined when the LD r2 fell to 0.1. Con-
sidering the LD decay distance, we defined the interval 
of significantly associated SNP(s) ± LD decay distance as 
QTL regions.

The identified QTL regions covered by significant SNPs 
were searched for candidate genes or QTLs using the Rice 
SNP seek database (https://snp-seek.irri.org/_jbrowse.) 
which integrates various databases like QTARO, Ory-
zabase and MSU databases. For trait-associated SNPs, 

contingency tables between SNP alleles and pheno-
type were made and visually inspected to examine the 
associations.

The LDBlockshow (Dong et al. 2020) was used to esti-
mate the local LD blocks within the QTL/ gene. Gene 
haplotype analysis was performed using all SNPs within 
the coding sequence region ignoring the synonymous 
SNPs. Haplotype analyses were done for the aus germ-
plasm as well as the 3,020 accessions in the 3 K-RG using 
the Rice SNP-Seek database. Significant phenotypic dif-
ferences among the haplotypes were determined using 
Tukey’s multiple comparisons test in one-way ANOVA 
using GraphPad Prism v. 9.0.

Results
Genetic Structure and Subgroupings Within aus rice
The patterns of the genetic structure of 181 aus acces-
sions were analyzed using the 399 K SNP set. Using the 
cross-validation error values generated in ADMIXTURE 
by varying sub-groupings (K) from 1 to 8 (Fig. S1A), we 
found six subgroups (at ≥ 80% cut-off) designated as K1 
to K6 (Fig.  2A). At K = 6, the aus germplasm from Ban-
gladesh is mostly comprised of two clusters, whereas, 
the Indian germplasm exhibited a richer diversity with 
five clusters (Fig S1B-C; Dataset S1). The distinctness of 
six aus subgroups is also apparent in the PCA (Fig. 2B). 
To check the genetic differentiation of aus and boro eco-
types, we examined the clustering at K = 2. Interestingly, 
at this level, aus and boro ecotypes appeared to be geneti-
cally close as both were included in the same cluster 
(Dataset S1). However, at K = 6, the boro cultivars showed 
some degree of differentiation and all are grouped under 
K5 (Fig. 2B).

Genetic distance-based analysis revealed considerable 
geographical structuring (Figs. 1 and 2C and D). First, the 
genetic groups identified through ADMIXTURE analy-
sis seem to be clustering geographically well. K1, K5 and 
K6 are close to each other on the map and these popula-
tions have low FST values (Table S1). K1 is mostly (87%) 
of Indian origin, while K5 and K6 are predominantly 
(86% and 75%, respectively) originating from Bangladesh. 
Overall, Among the subgroups, K3 and K6 are the closest 
(FST = 0.162), while K2 and K5 are the most distant (FST = 
0.518).

Interestingly, although K3 has low overall FST with 
K1, K5 and K6, yet is geographically distant (located 
in North West India, Pakistan and Sri Lanka). As K3 
included many early maturing drought-tolerant acces-
sions (assessed in our separate study), it is possible that 
this groups was further extended geographically for their 
drought tolerance. The K2 represented by the rayada cul-
tivar from Bangladesh along with the accessions from 
central India, Sri Lanka and the countries outside the 
Indian subcontinent had greater genetic distance than 

https://snp-seek.irri.org/_jbrowse
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all other aus clusters. This is consistent with the previ-
ous reports that rayada cultivars are genetically distinct 
from most other aus cultivars (Wang et al. 2014). Overall, 
the geographical distribution and selection of accessions 
for specific ecologies seem to have played crucial roles in 
shaping the population structure of aus rice.

Overall Agro-morphological Variability of aus rice
The analysis of agronomic traits revealed high pheno-
typic variability within aus population (Table S2; Fig. S2). 
Deviations from the normality have been observed from 
most of the traits except 1000-grain weight and grain 
yield plot− 1. Overall, as compared to check varieties, the 
aus genotypes exhibited early heading, taller plant height, 

fewer tiller, longer flag leaves, lesser grain weight, as well 
as lower yield and harvest index. Accessions such as P335 
(342), Vaikatharyan (305), ARC 10,100, Begum, AUS177, 
Han Nuo, Jashure aus, Malagkit, and ARC13276 recorded 
higher (> 200) grains panicle− 1. Although a single acces-
sion, AUS177, showed higher yield than the best check 
Sahbhagi dhan (1375.2 g), there were ten other accessions 
which showed a higher yield than the second best check 
i.e., IR64 (1200.59 g). Noteworthy accessions with higher 
yield and harvest index were R762, PR106, Rantnagiri 
45 − 2, Jabor sail, I Kung Pao, N22, NCS 840, Bhut muri, 
Herath banda, and Narikel badi. The correlation among 
the traits in aus germplasm is shown in (Fig. S3). Largely, 
the late maturing genotypes seems to have greater values 

Fig. 2  Population structure ofausrice.A The plot of ADMIXTURE subpopulation membership coefficients at K = 6. The cross-validation error values at 
different K indicates K = 6 as the most ideal sub-groups, B Biplot of first two PCA axes of 181 aus accessions colour coded according to the ADMIXTURE 
classification at K = 6, C Biplot of first two PCA axes of 181 aus accessions colour coded according to their geographical association. D NJ tree based on 
pairwise genetic distance. The accessions were colour coded according to the ADMIXTURE grouping (branch colour) as well as geographic origin as given 
in B and C
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of plant height, panicle length, spikelet number, panicle 
weight and yield.

Phenotypic Diversity Among aus Genetic Subgroups
We have analyzed the agro-morphological differences 
between the aus subgroups identified through ADMIX-
TURE analysis. There are significant differences for most 
of the agronomical traits except flag leaf length and har-
vest index (Fig. 3; Dataset S4). However, for 30 qualitative 
traits, we have found considerable overlapping among 
the subgroups for many of the traits (Fig. S4-S5).

The K1, represented mostly by Assam rice accessions, 
is poor yielding due to lower tillering despite bearing 
higher number of spikelets per panicle. K2, the geneti-
cally most distinct subgroup, has the highest yield poten-
tial resulting from heavier panicles with higher spikelet 
numbers. K3 subgroup is early maturing with a moder-
ate yield level. The accessions belonging to K4 have low 
yield potential largely due to delayed flowering and tall 
plants, despite having the most desirable panicle traits. 
The boro and deep-water cultivars grouped in K5 showed 
wide variation for days to heading, taller plants, high til-
lering ability, and inferior panicle traits resulting in a 
moderate level of grain yield. The K6 included drought 
tolerant cultivars having earliest to flowering, shortest 
plant height, and smaller panicles with lesser but heavier 
grains, resulting in a moderately high yield level (Fig. 3). 
Overall, the phenotypic variability of the genetic groups 
showed substantial linkage with their growing ecology or 
geographical distribution.

The frequency distribution of 30 qualitative mor-
phological variables within different aus subgroups 
indicated considerable overlapping among the genetic 
groups for most of the traits. Purple colouration of basal 
leaf sheaths, internodes, apiculi, and auricles occurred 
in higher frequency in K6 and K5, and less in K4. The 
accessions of K5 and K6 subgroups showed spreading 
type plant architecture in higher frequency. The pres-
ence of awnned cultivars was noted in all subgroups, but 
occurred in higher frequency in K5, K3 and K4. Red seed 
coat colour is most frequent (90%) in K6. The glutinous 
endosperm was mostly frequent in the accessions of K1 
and K2 which explained by their geographical distribu-
tion in Northeastern India and southeast Asian countries 
where glutinous rice is preferred.

We performed a PCA using 11 quantitative agronomic 
traits to investigate the relationships among traits and the 
factors underlying the trait variation. Altogether, three 
principal components, PC1, PC2 and PC3, were selected 
which explained 24.4%, 16.8% and 13.9% of the trait vari-
ance, respectively (Fig. 4A). The PC1 explained variation 
in agro-morphological traits arising from plant archi-
tecture and flowering as it was positively loaded with 
days to flowering, plant height, panicle length, panicle 

weight and spikelets per panicle. This result suggested 
that accessions with high PC1 scores exhibited larger and 
heavier panicles, taller plants and longer days to heading. 
The grain weight and tiller number loaded negatively on 
PC1, indicating a trade-off relationship between grains 
per panicle and 1000-grain weight, as well as between 
tiller number and panicle size. Similarly, PC2 mostly 
explained variation in traits directly related to grain yield 
by showing positive loading by panicle weight, grain yield 
and harvest index. On PC2 days to heading and tiller 
number showed negative loading on PC2, suggesting a 
negative correlation between days to flowering and har-
vest index which is consistent with the observation that 
prolonged vegetative growth due to late heading leads to 
a reduced harvest index. The PC3 also explained varia-
tion for grain yield. The accessions with high PC3 scores 
mostly exhibited higher grain yield.

The correspondence between the patterns of genetic 
and morphological diversity was checked by perform-
ing a biplot analysis of PC1 and PC2 (Fig. 4B). The boro 
and deep-water accessions (belonging to K6) were found 
to be morphologically distinct from the drought tolerant 
cultivars of K5. However, the genetic distance between 
these two groups is less (FST = 0.183). The rayada cultivar 
remained distinct from the rest of the aus both geneti-
cally and agronomically. The genetic distinctness of cul-
tivars of K4 was also reflected in their morphological 
clustering. These results indicated that the selection of 
diverse stress tolerant and high yielding aus cultivars is 
feasible for breeding programmes.

GWAS for PC Scores
We conducted GWAS using the first three PCs (PC1 to 
PC3) as well as 11 traits using a 458 K SNP set to iden-
tify the key loci controlling agronomic characteristics of 
aus rice. The normality of the PCs and individual traits 
was checked using the Kolmogorov-Smirnov test. PC1 
showed slight deviation from normality (P = 0.0117), 
while PC2 and PC3 showed normal distribution. Among 
the 11 morpho-agronomic traits, except for 1000-grain 
weight and yield plot− 1, we found significant deviations 
from the normal distribution. This result corroborates 
with earlier observations (Yano et al. 2019) that PCA can 
transform skewed data to a normal distribution, which is 
useful to improving the statistical power of GWAS.

Except for PCs, grain weight and yield, we used 
log10-transformed values of the rest of the traits to con-
duct GWAS using the FarmCPU model with corrections 
for kinship bias (Fig.  5; Fig. S6-S7). GWAS from PCs 
identified 18 peaks (PC1 = 8, PC2 = 5 and PC3 = 5) with 
a -log10(P)- value that exceeded the Bonferroni cut-off. 
The significant associations detected for all three PCs 
are listed together along with their phenotypic vari-
ance (Table 1). Interestingly, some of the peaks detected 
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for different PCs on Chr1 (Chromosome1), Chr5, Chr5, 
Chr8 and Chr11 were found to be coinciding, indicating 
that these peaks may represent a common flanking region 
(Table  1). We defined the QTL regions corresponding 
to the significant SNPs by expanding the upstream and 
downstream flanking regions according to the chromo-
some-wide LD decay distance analyzed in this study (Fig. 
S8).

DtF, Days to 50% flowering; Ht, Plant height, PnL, 
Panicle length, PnW, Panicle weight, SpkN, Spikelets per 
panicle; Yld, Yield; HI, Harvest index; Tn, Tiller number, 

GW, 1000-grain weight; Chr, Chromosome; MAF, Minor 
allele frequency; PVE, Phenotypic variation explained %.

The PCA indicated that PC1 is representative of plant 
architecture and flowering, while both PC2 and PC3 are 
representative of grain yield. In this study, we focussed on 
the genetic loci responsible for plant architecture or grain 
yield as a trait rather than focusing on specific traits. 
Therefore, we focussed on the results of GWAS using 
PCs. The significant associations identified for each PC 
were colocalized with several previously reported QTLs 
for yield and agronomic traits when searched in databases 
(Fig. 5). Notably, the significant marker-trait associations 

Fig. 3  Differences for quantitative morphological traits among theaussubgroups. Multiple comparison of Trait means of subgroups was done 
using the Tukey’s HSD test. The trait means of subgroups with the same letters above the violin plots are not significantly different. The traits not signifi-
cantly differing among the subgroups are not shown here
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(MTAs) identified in the current study were overlapping 
with many cloned genes such as, for PC1, OsGI (GIGAN-
TEA) regulating days to heading, OsGPX1 (Plant Gluta-
thione peroxidases 1) influencing plant height, spikelet 
number and root development, OsMADS15 influenc-
ing flowering time and plant architecture, and WFP/ 
IPA1 (WEALTHY FARMERS PANICLE/ IDEAL PLANT 
ARCHITECTURE 1) controlling yield and plant architec-
ture. For PC2, important genes coincided with the index 

SNPs were OsGLT1 (NADH-glutamate synthase 1) con-
trolling yield, dep2/SRS1 (DENSE AND ERECT PANICLE 
2) regulating panicle size, fzp (frizzy panicle) influencing 
panicle and yield traits, and SP1 (Os11g0235200, SHORT 
PANICLE 1) for panicle traits.

Important genes identified for PC3 were: OsDOS 
(DELAY OF SENESCENCE) regulating crop maturity, 
SE13 (PHOTOSENSITIVITY 13) controlling heading 
date and yield, GS3 and qGL3 for grain traits, and OsIPT7 

Table 1  QTLs for morpho-agronomic traits identified in GWAS using principal components in 181 aus rice germplasm
Trait QTL Chr Flanking region (Mb) Peak SNP position Ref allele -Log10(P) MAF Effect PVE
PC1 (DtF, Ht, PnL, PnW, SpkN) qPC1-1.1 1 4.36–4.68 4,521,776 G 9.30 0.10 -0.69 5.06

qPC1-1.2 1 29.49–29.81 29,651,634 C 8.38 0.21 0.53 1.47
qPC1-2.1 2 24.78–24.90 24,835,927 G 7.18 0.30 -0.38 2.05
qPC1-4.1 4 27.76–27.85 27,801,414 G 8.59 0.20 0.37 2.05
qPC1-5.1 5 19.42–19.81 19,616,683 G 7.32 0.23 0.42 5.80
qPC1-7.1 7 0.73–1.05 888,054 A 15.81 0.16 -1.04 7.97
qPC-8.1 8 17.81–18.19 18,001,305 A 7.63 0.16 -0.56 5.13
qPC1-8.2 8 21.12–21.51 21,316,516 T 9.30 0.13 0.76 1.11

PC2 (PnW, Yld, HI) qPC2-1.1 1 27.93–28.25 28,087,887 T 9.85 0.15 0.44 10.53
qPC2-7.1 7 21.54–21.86 21,700,005 T 7.61 0.27 0.33 2.58
qPC2-7.2 7 26.45–26.77 26,611,742 C 7.62 0.12 0.50 1.23
qPC2-11.1 11 3.35–3.48 3,412,660 G 10.30 0.48 -0.34 3.98
qPC2-11.2 11 4.49–4.62 4,552,359 T 7.99 0.15 -0.54 1.60

PC3 (Tn, GW, Yld) qPC3-1.1 1 4.62–4.94 4,789,451 G 7.69 0.07 0.46 6.20
qPC3-1.2 1 41.66–41.98 41,821,709 A 7.45 0.33 0.39 6.51
qPC3-3.1 3 17.99–18.45 18,218,891 C 7.18 0.06 -0.55 2.07
qPC3-5.1 5 13.96–14.35 14,156,143 G 10.16 0.17 0.48 5.86
qPC3-5.2 5 27.71–28.10 27,904,519 C 7.04 0.35 0.26 0.37

DtF, Days to 50% flowering; Ht, Plant height, PnL, Panicle length, PnW, Panicle weight, SpkN, Spikelets per panicle; Yld, Yield; HI, Harvest index; Tn, Tiller number, GW, 
1000-grain weight; Chr, Chromosome; MAF, Minor allele frequency; PVE, Phenotypic variation explained %.

Fig. 4  Principal component analysis for morpho-agronomic traits in 181auscultivars.A Summary of first three PCs for 11 traits. B PCA biplot show-
ing the distribution of aus accessions based on the trait loadings (shown in the inset) on the first two PCs. The accessions were colour coded according 
to their classification into six genetic subgroups based on 399 K SNP dataset
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Fig. 5  GWAS for morpho-agronomic traits inausrice. Manhattan plots of PC1, PC2 and PC3 are shown. Horizontal red dotted lines represent the 
significant threshold for the study. The colocalization of previously identified QTLs (blue font) and genes (black font) are indicated by black arrows. The 
red arrows indicate the peaks we studied further
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(Adenosine phosphate isopentenyltransferase 7) influenc-
ing yield traits. Furthermore, on Chr4 prominent peaks 
were detected at position ~ 3.540  Mb for both PC1 and 
PC3. This association corresponds to the QTL qSNP-4a 
and spp4-2, both reported for spikelets panicle− 1. On 
Chr6 another prominent peak was observed for PC1 at 
position ~ 10.116 Mb which has been identified as a QTL 
hotspot region harbouring QTLs like qSNP6 and gp6 
(spikelet number), gw6 (1000-grain weight), qTN2-6-
1 (tiller number at maturity), qPH2-6-1 and Ph6 (plant 
height at maturity), qGY6.1 (grain yield), and qHD6-1 
(heading date). An important gene present in this region 
is Hd1 responsible for regulating photoperiodic flower-
ing in rice. Furthermore, we observed that none of the 
GWAS signals identified for PCs were identified when 
performing GWAS using individual traits except for 
qPC1-2.1, which is a hit for spikelet number.

Phenotypic Effect of the Allelic Variations of MTAs
Among the eight QTLs identified for PC1, significant dif-
ferences in PC scores were observed between the acces-
sion groups with the reference (‘ref ’) and alternate allele 
for all QTLs except for qPC1-1.2 and qPC1-1.2, possibly 
due to their low MAF and smaller effect size, respec-
tively (Fig. S9; Table 1). The loci identified for PC1 have 
shown significant allelic differences for days to heading 
and many of the plant architectural traits supporting our 
assumption for PC1 (Fig. S9). However, QTLs like qPC1-
1.1, qPC1-5.1, qPC1-8.1 and qPC1-8.1 also explained the 
variation for grain yield. Except for qPC2-11.2, the rest 
of the QTLs identified for PC2 showed significant dif-
ferences in PC2 scores (Fig. S10). All the PC2 QTL have 
explained variation for grain yield traits as expected from 
the trait loadings on PC2. Whereas, some of these QTL 
have also explained variation for flowering and archi-
tectural traits. We found significant differences in PC3 
scores for two QTLs – qPC3-1.2, and qPC3-5.1. Both 
these QTL have explained variation for yield traits as we 
all as days to heading and spikelet number. Although the 
rest of the PC3 QTLs did not show significant variation 
in PC scores, but these QTLs have influenced 1000-grain 
weight and yield. Overall, these results indicated that 
the GWAS using PCs could identify QTLs for the traits 
which showed lesser loadings on a particular PC.

Haplotype Analysis of Potential QTLs
The qPC2-1.1 (peak SNP Chr1: 28,087,887) explained the 
highest variance for PC2 which represents grain yield, 
panicle weight and harvest index. We examined this QTL 
for genes that could influence grain yield and component 
traits. The QTL region was delineated to 27.93–28.25 Mb 
and contained 374 SNPs (Fig.  6A). In total, 58 genes 
including two retrotransposons are present in qPC2-1.1 
(www.rapdb.dna.affrc.go.jp; Dataset S5). Among these 

genes, Os01g0681900, located 3,321  bp downstream 
of the peak SNP, and Os01g0680200, located 90.3  kb 
upstream of the peak SNP, were reported to be associated 
with grain yield and other yield-related traits.

Os01g0681900 (synonymous OsNADH-GOGAT1 or 
GLT1), annotated as glutamate synthase or NADH-
DEPENDENT GULTAMATE SYNTHASE 1, influences 
grain yield by affecting panicle number, tiller number, 
tillering ability. It also regulates nitrogen-carbon metab-
olomes (Yang et al. 2016), and plays a key role in the tran-
scriptional regulation of ammonium-responsive genes 
(Kojima et al. 2023). The LD plot based on 12 SNPs within 
GLT1 indicated strong linkage among the SNPs (Fig. 6B). 
We identified four haplotypes (named Hap-1 to Hap-4) 
using the six non-synonymous SNPs in the current 181 
aus panel (Fig.  6C). Hap-2 was most frequent (present 
in 72% of the accessions), while Hap-4 was detected in 
a single accession. The average PC2 score for the acces-
sions carrying Hap-2 was significantly higher than those 
with either Hap-1 or Hap-3 (Fig.  6D), indicating that 
GLT1 is associated with PC2. The haplotypes exhibited 
significant differences for most of the agro-morpholog-
ical traits except for panicle weight and yield (P = 0.051) 
(Fig.  6D). The Hap-3 accessions showed significantly 
longer days to heading as well as taller plants than both 
Hap-1 and Hap-2 accessions (Fig.  6D). Although there 
were non-significant differences in grain yield among 
the haplotypes, Hap-2 showed considerably higher level 
of yield and recorded the highest 1000-grain weight and 
harvest index among the haplotypes. Interestingly, acces-
sions with Hap-3 showed the highest tiller number but 
the lowest harvest index, indicating that those may had 
either low spikelet fertility or had produced many non-
productive tillers. In the aus panel, Hap-1 was predomi-
nant in accessions from India, Bangladesh and Sri Lanka. 
While, Hap-3 accessions are mostly confined in Bangla-
desh and adjoining Assam. Grouping two ‘diga’ (known 
to be of deep-water ecology) cultivars in Hap-3 suggested 
that this haplotype is primarily unique to deep-water 
accessions. The average elongation ability under submer-
gence stress of the six accessions belonging to Hap-3 was 
149.3% (data from a separate study).

The other gene, Os01g0680200 / OsPUP4 (PURINE 
PERMEASE 4 syn. Big Grain 3), in qPC2-1.1 is reported 
to regulate grain size, along with several other traits like 
grain number, secondary branch number, tiller angle, 
days to heading, 1000-grain weight, and plant height. 
PUP4 was suggested to be involved in the long distance 
transport of cytokinin, by reinforcing cytokinin loading 
into vascular bundle cells (Xiao et al. 2019) (Dataset S5). 
We identified three haplotypes (Hap-1 to Hap-3) of this 
gene in the current aus genotypes based on three non-
synonymous SNPs. Hap-1 was present in 90.7% while, 
Hap-3 was found in 3.5% of the aus panel. The haplotypes 

http://www.rapdb.dna.affrc.go.jp
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showed significant differences for PC2 scores along with 
days to heading, plant height, tiller number, panicle 
length and harvest index (Fig.  6E). Accessions possess-
ing Hap-1 of PUP4 were early to flower, shorter in height, 
had lesser tillers with heavier panicles, and higher harvest 
index. Notably, the deep-water accessions having Hap-3 
of PUP4 also carried the Hap-3 of GLT1. These acces-
sions were considerably late maturing and taller with 
lightweight panicles.

On Chr7 the qPC1-7.1 also explained high pheno-
typic variance and had a high effect size for PC1 which 
represents days to flowering and plant architectural 
traits. This QTL was delineated to 0.73–1.05  Mb and 
contained 48 genes (Dataset S6; https://rapdb.dna.affrc.
go.jp/). Among the genes, Os07g0116300, annotated as 
OsSAC1 or SUGAR ACCUMULATION 1, is previously 
reported to influence grain yield, spikelet number, plant 
height, panicle length, 1000-grain weight, starch content, 
and photosynthetic rate (Zhu et al. 2017). The qPC1-7.1, 
identified in the present study, is a novel one as no QTLs 
for yield or plant architectural traits were earlier reported 
in this region (https://snp-seek.irri.org/), except qSS-7a 
for hybrid sterility (Li et al. 2008). LD block analysis of 
qPC1-7.1 based on 342 SNPs revealed 5 large and 6 small 
blocks (Fig. 7A). For SAC1, we identified six haplotypes 
using three non-synonymous SNPs within the gene. Out 
of these, each of the haplotypes 5 and 6 were detected 
in a single accession. Hence, we presented the results of 
haplotypes 1 to 4 (Hap-1 to Hap-4) (Fig. 7B). Hap-1 was 
the most frequent, detected in 77% of the accessions. 
While, Hap-4 was the least frequent and observed in 
5% of the accessions. The accessions belonging to Hap-3 
had the highest average PC1 score, and thereby, also had 
the highest values for days to flowering, panicle length, 
panicle weight, spikelets panicle− 1 (Fig. 7C). This haplo-
type also recorded the highest average 1000-grain weight. 
The accessions with OsSAC1 Hap4 showed wide varia-
tion for PC1 score and other traits like panicle length 
and 1000-grain weight. The accessions with Hap-1 and 
Hap-2 were early maturing but recorded lower values 
for panicle weight and spikelets panicle− 1. We found that 
OsSAC1 Hap-3 was prevalent in the accessions belonging 
to the genetic cluster K2 and K4. It has been shown that 
the K2 cluster, which also include the cultivar rayada, 
is characterized by heavier panicles with higher spike-
let number. As well as both K2 and K4 mostly included 
longer duration accessions with longer and heavier pani-
cles, and higher spikelets panicle− 1. The Hap-3 has been 
found to be geographically most widespread while Hap-2 
is mostly confined in Bangladesh. Within the qPC1-7.1 
another gene Os07g0119000 (annotated as OsMAP-
KKK11, MAPK Kinase Kinase 11) seems to have a role 
in rice growth and development (Duan et al. 2014; Guo 
et al. 2018, 2020), in addition to coordinating resistance 

to biotic and abiotic stress responses(Yamada et al. 2017; 
Chen et al. 2021) (Dataset S6).

We further compared the haplotype frequency of 
GLT1, PUP4 and SAC1 among the 3,002 accessions from 
3  K-RG panel using Rice SNP-seek web-based applica-
tions. Three haplotypes were detected for GLT1 based on 
11 SNPs (out of which four appeared in our aus panel). 
The haplotypes showed differential distribution among 
the Oryza sativa subpopulations: Hap-1: indica; Hap-2: 
indica subgroups; aus + indica + aro + tropical japonica; 
and Hap-3: japonica subgroups (Fig. 8A). Similarly, three 
haplotypes were also detected for PUP4. The aus and 
aromatic subpopulations carry separate gene haplotypes 
than both indica and japonica subpopulations (Fig. 8B). 
For SAC1, out of three haplotypes, aus subpopulation 
mostly carries similar haplotypes found in aromatic, tem-
perate japonica, tropical japonica, and indica 1B subpop-
ulations (Fig. 8C).

Discussion
Understanding the genetic structure and origins of mor-
phological and developmental variations in O. sativa is 
vital for bolstering global food security. Extensive inves-
tigations on rice population structure have consistently 
identified two major varietal groups, denoted as sub-spe-
cies: Indica and Japonica (Wang et al. 2018). This classi-
fication has ancient Chinese roots, known as Hisen/Sen 
and Keng/Geng, and was subsequently substantiated by 
morphological and serological distinctions, along with 
the presence of partial reproductive barriers (Kato 1928; 
Morishima and Oka 1981). The Japonica varietal group 
was further divided into tropical japonica and temper-
ate japonica (Oka 1958). Additionally, the Javanica 
group emerged based on gross morphological distinc-
tions and geographical distribution (Morishima and Oka 
1960). Apart from these three primary groups, various 
minor varietal groups, such as aus, ashina, boro, rayada, 
basmati, and sadri, are cultivated across the Indian sub-
continent. While these groups may lack significant mor-
phological disparities compared to Indica and Japonica, 
recent studies employing isozyme loci and molecular 
marker systems have established some as distinct genetic 
groups within O. sativa (Glaszmann 1987; Garris et al. 
2005; Wang et al. 2018).

Glaszmann’s (1987) comprehensive work catego-
rized 1,688 O. sativa accessions into six varietal groups, 
encompassing two major (Indica and Japonica), two 
minor (aus and aromatic), and two satellite (ashina/
deep-water and rayada). Subsequent studies, such as 
Garris et al. (2005), proposed a widely accepted classifica-
tion consisting of indica, aus, aromatic, tropical japonica, 
and temperate japonica. However, these studies omitted 
many accessions from the satellite groups originating in 
Bangladesh and northeastern India (Group III and Group 

https://rapdb.dna.affrc.go.jp/
https://rapdb.dna.affrc.go.jp/
https://snp-seek.irri.org/
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Fig. 6  Haplotype analysis withinqPC2-1.1. A Local Manhattan plot and LD heat map for qPC2-1.1 on Chr 1. The red arrow (Top panel) indicates the 
position of OsGLT1.B LD heat map of LOC_Os01g48960. C Structure and DNA polymorphism of OsGLT1. D Box plots of PC2 score and agro-morphological 
traits for three haplotypes Hap-1 (n = 9), Hap-2 (n = 126) and Hap-3 (n = 6) of OsGLT1. E Box plots of PC2 score and agro-morphological traits for three 
haplotypes Hap-1 (n = 116), Hap-2 (n = 11) and Hap-3 (n = 7) of OsPUP4. Box edges represent the 0.25 and 0.75 quantiles, with the median values shown 
within boxes. Whiskers extend to the most extreme point, which is no more than 1.5 times the interquartile range. Differences between the haplotypes 
were statistically tested using multiple comparisons with Tukey’s t test (ns, not significant, *, **, ***, and **** represent P value < 0.05, < 0.01, < 0.001, and 
< 0.0001, respectively)

 



Page 13 of 18Sar et al. Rice           (2024) 17:20 

IV of Glaszmann 1987). Research into the population 
structure of Asian rice is often constrained by the limited 
representation of rice cultivars from specific ecological 
regions, which may obscure finer population structures. 
For instance, while the analysis of the 3 K-RG panel, com-
prising millions of SNPs, offered an enhanced resolution 
of within-species diversity, it failed to fully unravel the 
structure within the circum-aus group, encompassing 
aus, boro, ashina, and rayada types (Wang et al. 2018). 
However, another study incorporating various Chinese 
accessions successfully elucidated the structure within 
the circum-aus group (Wang et al. 2014).

In this study, we specifically focussed on comprehend-
ing the finer population structures within the circum-aus 
group by scrutinizing the aus/boro accessions from the 
3  K-RGP dataset, an area where our understanding of 
population genomic diversity is quite limited. Our analy-
sis unveiled the existence of six sub-groups, supporting 

the differentiation of previously identified aus subgroups, 
encompassing aus, ashina, and rayada types. Significantly, 
these sub-groups displayed distinct geographic patterns. 
In prior research by Travis et al. (2015), the genetic struc-
turing of 345 aus cultivars, predominantly originating 
from Bangladesh, Assam, and eastern India, was exam-
ined using 384 SNPs. Travis et al. identified two distinct 
groups within the aus varietal category. Geographically, 
this group is distributed across south and west Asia, 
extending from Iran to Assam along the Himalayas 
(Glaszmann 1987), with its center of diversity situated 
in Bangladesh and the eastern to northeastern regions 
of India (Civáň et al. 2015). These rice varieties are cul-
tivated under a wide range of hydric conditions, from 
irrigated regions in Pakistan to drought-prone uplands in 
Bangladesh and eastern India, as well as deep-water envi-
ronments in Bangladesh and northeastern India. Conse-
quently, they have developed numerous adaptive traits to 

Fig. 7  Haplotype analysis withinqPC1-7.1. A Local Manhattan plot and LD heat map for qPC1-7.1 on Chr 7. The red arrow (Top panel) indicates the 
position of LOC_Os07g02520/ Os07g0116300.B Structure and polymorphism of OsSAC1. Four haplotypes were detected in 147 aus accessions. In the rest 
of the accessions either of the SNPs were missing or in heterozygous condition. (C) Box plots show significant variation among the haplotypes for PC1 
score and agronomic traits. Box edges represent the 0.25 and 0.75 quantiles, with the median values shown within boxes. Whiskers extend to the most 
extreme point, which is no more than 1.5 times the interquartile range. Differences between the haplotypes were statistically tested using Tukey’s test (*, 
**, ***, and **** represent P value < 0.05, < 0.01, < 0.001, and < 0.0001, respectively)
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Fig. 8 (See legend on next page.)
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thrive in these diverse environments, leading to genetic 
variations at the DNA level and intricate fine-scale popu-
lation structures.

Our findings revealed that when assessing genetic dif-
ferentiation between aus and boro ecotypes at K = 2, they 
appeared to be genetically close, sharing a cluster. How-
ever, at K = 6, boro cultivars exhibited some degree of dif-
ferentiation, primarily forming a cluster under K5. This 
suggests that while there is genetic proximity between 
aus and boro ecotypes, finer genetic distinctions become 
apparent when examining a more detailed population 
structure. At both levels of structuring, rayada remained 
at a separate cluster, aligning with previous research find-
ings (Wang et al. 2014; Travis et al. 2015). Interestingly, 
our study found that many deep-water cultivars, catego-
rized as ashina, exhibited a stronger genetic affinity with 
boro cultivars, a phenomenon not previously reported. 
Furthermore, we observed that the majority of aus acces-
sions originating from countries outside the Indian sub-
continent tended to cluster separately, as illustrated in 
Fig.  1. Pairwise genetic distance calculations among the 
genetic clusters (K1-K6) revealed that drought-tolerant 
aus accessions (belonging to K3) may have dispersed 
further to regions like Sri Lanka and Pakistan, likely 
due to their stress tolerance. Similarly, rayada cultivars 
may have also extended beyond Bangladesh to central 
India. However we could not find a possible reason the 
spread of rayada types. Overall, there was a connection 
between the geographical distribution of aus sub-groups 
and agro-ecological diversity in Southern Asia. After 
comparing the distribution of the accessions along the 
five agro-ecological zones (FAO’s global agro-ecological 
zones modified by Gumma et al. 2022), we found that 
K1 is distributed in humid tropics (Zone 5). K2 and K3 
are distributed along the Zones- 1, 2 and 3 representing 
arid tropics, semi-arid subtropics and semi-arid trop-
ics, respectively. K6 is widespread in sub-humid trop-
ics (Zone 4), while K5 is distributed along the transition 
zone of Zones- 4 and 5. Only the accessions of K4 are not 
confined to any agro-ecological zones.

When constructing phylogenetic trees from genome-
wide data, it became evident that aus cultivars cluster 
within the Indica clade, indicating their greater genetic 
similarity with Indica rice. This genetic closeness aligns 
well with their morphological similarities. However, 
several studies have also suggested a distinct origin for 
indica and aus varietal groups (Schatz et al. 2014; Civáň 

et al. 2015). The aus cultivars form a distinct cluster from 
both indica and japonica when neighbor-joining trees 
are constructed from the ‘domestication sweep’ regions 
(Civáň et al. 2015), highlighting the potential for a sepa-
rate origin of aus.

Based on this study and previous evidence, it appears 
that the circum-aus group represents an evolutionary 
development of aus rice. Further genome-wide surveys 
with increased sample sizes of aus, indica, and wild spe-
cies from the Indian subcontinent could provide greater 
clarity on the origin of the aus group. Moreover, the 
wide agro-morphological variations observed within this 
group enhance the potential for utilizing aus accessions 
in rice breeding programs to create novel genetic varia-
tions for yield-related traits.

In our study, we employed high-density marker data 
to unravel the intricate genetics governing yield traits in 
aus rice. This was achieved through mixed-model GWAS 
analyses using principal component (PC) scores derived 
from 11 agro-morphological traits. PCA, a dependable 
approach for extracting the underlying variability from 
numerous correlated traits, was utilized to create PC 
scores, which can be considered as composite variables. 
The application of GWAS with PC scores has proven 
effective in reducing Type I error rates by circumventing 
multiple testing, a method employed in both human and 
plant systems (He et al. 2008). Additionally, PCA normal-
izes skewed individual trait data, improving the reliability 
of GWAS results (Goh and Yap 2009). Notably, in rice, 
GWAS using PC scores has demonstrated higher power 
in detecting loci that might be overlooked when using 
individual traits as dependents (Yano et al. 2019).

Our PCA analysis of 11 agro-morphological traits 
unveiled that PC1 explained 24% of the variation in 
flowering and plant architectural traits, while PC2 cap-
tured 17% of the variations in grain yield traits, such as 
panicle weight, yield, and harvest index. PC3 captured 
14% of the variation for grain yield. Utilizing PC scores 
for GWAS proved to be more effective in identifying 
significant associations for yield-related traits com-
pared to using individual traits for GWAS. Moreover, 
several peak SNPs coincided with previously reported 
QTLs and genes, strengthening the reliability of GWAS 
results. For instance, the genes associated with PC1 score 
were linked, either falling within or being in LD with 
OsGI, OsGPX1, OsMADS15, and IPA1, which regulate 
days to flowering, plant height, spikelet number, root 

(See figure on previous page.)
Fig. 8  Gene haplotype distribution in 3,000 rice genome (3 K-RG) panel. (A) frequency of three haplotypes of GLT1 in different rice subgroups. 
(B) frequency of three haplotypes of PUP4 in different rice subgroups. (C) frequency of three haplotypes of SAC1 on Chromosome 7 in different rice 
subgroups. The frequency of each haplotype in 3 K-RG panel is mentioned within the parentheses. Haplotype analysis was performed using the non-
synonymous SNPs within the genes using the Rice SNP-Seek Database (https://snp-seek.irri.org/_snp.zul). Grouping of rice germplasm into 12 subgroups 
was done following Wang et al. (2018). Admix, admixture; Aro, aromatic; Aus, aus; Ind1A, indica 1 A; Ind 1B, indica 1B, Ind2, indica 2; Ind3, indica 3; Indx, 
indica admixture; Japx, japonica admixture; Subtrop, subtropical japonica; Temp, temperate japonica; Trop, tropical japonica. Number of accessions in 
each subpopulation is mentioned on the top of each bar

https://snp-seek.irri.org/_snp.zul
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development, panicle architecture, and grain yield. SNPs 
identified for PC2 were linked to genes such as OsGLT1, 
dep2, fzp, and SP1, while PC3 results revealed associa-
tions with several genes influencing grain size and yield, 
including OsDOS, SE13, GS3, GL3, and OsIPT7.

Further exploration of the identified QTLs (qPC2-1.1 
and qPC1-7.1), explaining higher phenotypic variance 
with larger effect sizes, uncovered potential candidate 
genes for agro-morphological traits in aus rice germ-
plasm. QTL qPC2-1.1, located on Chromosome 1, sig-
nificantly explained variation for PC2, representing grain 
yield, panicle weight, and harvest index. Examination of 
gene models suggested that OsNADH-GOGAT1 (GLT1) 
and OsPUP4 are the likely candidate genes for this 
QTL. GLT1 influences various yield-related traits, and 
nitrogen-carbon metabolism by regulating ammonium-
responsive genes (Funayama et al. 2013), and is expressed 
in roots, young leaves, and grains. Rice GLT1 mutants 
exhibit reduced tillering (Tamula et al., 2010). In aus rice, 
we detected four haplotypes of GLT1, with one particular 
haplotype (Hap-2) present in 72% of the accessions. This 
haplotype was associated with early maturation, higher 
1000-grain weight, and increased harvest index.

Our analysis of the 3 K-RGP showed that aus rice car-
ries a specific GLT1 haplotype, prevalent in indica (Ind3) 
accessions from southeast Asia, as well as in aromatic and 
tropical japonica rice. Haplotypes of GLT1 exhibit signifi-
cant differentiation between rice varietal groups (Yang et 
al. 2016). Another potential gene within qPC2-1.1 is Big 
Grain 3/OsPUP4, which influences various agro-morpho-
logical traits. The PUP4 gene family includes 12 members 
involved in cytokinin transportation. Activating OsPUP4 
results in increased grain size (Xiao et al. 2019). OsPUP7, 
a homolog of OsPUP4, regulates multiple phenotypic 
traits in rice, including plant height, grain size, and days 
to heading. Haplotypes of PUP4 in aus accessions dif-
fered for many traits, suggesting this gene is another can-
didate for qPC2-1.1. The distribution of PUP4 haplotypes 
also varies among indica, aus, and japonica.

The candidate gene for qPC1-7.1 appears to be OsSAC1, 
involved in regulating sugar partitioning in carbon-
demanding juvenile leaves and leaf sheaths. Although 
the function of OsSAC1 is not fully characterized, this 
gene likely contributes to building the carbon skeleton 
in rice plants. Previously, no QTLs for flowering or plant 
architectural traits were reported in the qPC1-7.1 region, 
highlighting the effectiveness of GWAS using PC scores 
in identifying QTLs not detectable through individual 
traits. Haplotype frequencies of OsSAC1 vary between 
indica and japonica, with the dominant gene haplotype 
in aus rice being the most frequent in temperate- and 
tropical-japonica, along with modern indica varieties. 
Overall, from the distribution of haplotype frequencies of 
OsGLT1, OsPUP4, and OsSAC1, it is evident that aus rice 

possesses different gene haplotypes compared to most 
indica rice. These findings support the recent hypoth-
esis of O. sativa evolution, suggesting separate origins of 
indica, aus, and japonica in different geographic regions, 
with aromatic rice likely originating from hybridization 
between aus and japonica (Civáň et al. 2015; Civáň et al. 
2019). It would be interesting to study whether the haplo-
types we have identified in aus also has the same effects 
in other varietal groups, or whether they are modified by 
these differing genetic backgrounds; examining this issue 
may help in providing new breeding material for a wider 
range of rice populations.

Conclusions

 	• Our investigation focused specifically on unravelling 
the finer population structures within the circum-
aus varietal group. We unveiled the existence of 
six aus sub-groups, and highlighted their distinct 
geographic patterns. Our findings emphasized the 
genetic proximity between aus and boro ecotypes, 
while revealing the genetic distinctness of rayada 
cultivars. Notably, many deep-water cultivars 
(categorized as ashina), displayed a strong genetic 
affinity with boro cultivars. Furthermore, our 
research revealed that aus accessions from countries 
outside the Indian subcontinent tend to cluster 
separately, indicating genetic distinctions.

 	• GWAS analyses with PC scores derived from 11 
agro-morphological traits proved more effective in 
identifying significant associations for yield-related 
traits compared to using individual traits in GWAS. 
Our investigations unveiled the potential candidate 
genes for QTLs, such as OsNADH-GOGAT1 (GLT1), 
OsPUP4, and OsSAC1, offering valuable insights into 
the genetic basis of grain yield and other agronomical 
traits.

 	• In conclusion, this research contributes to a deeper 
understanding of the genetic intricacies of aus rice 
and offers insights into its evolutionary history. 
These findings are important for future rice breeding 
programs aimed at improving yield-related traits and 
enhancing global food security.
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