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Abstract

We consider the problem of estimating common community structures in multi-layer stochastic 

block models, where each single layer may not have sufficient signal strength to recover the 

full community structure. In order to efficiently aggregate signal across different layers, we 

argue that the sum-of-squared adjacency matrices contain sufficient signal even when individual 

layers are very sparse. Our method uses a bias-removal step that is necessary when the squared 

noise matrices may overwhelm the signal in the very sparse regime. The analysis of our method 

relies on several novel tail probability bounds for matrix linear combinations with matrix-valued 

coefficients and matrix-valued quadratic forms, which may be of independent interest. The 

performance of our method and the necessity of bias removal is demonstrated in synthetic data and 

in microarray analysis about gene co-expression networks.
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1 Introduction

A network records the interactions among a collection of individuals, such as gene 

co-expression, functional connectivity among brain regions, and friends on social media 

platforms. In the simplest form, a network can be represented by a binary symmetric matrix 

A ∈{0,1}n×n where each row/column represents an individual and the (i, j)-entry of A 
represents the presence/absence of interaction between the two individuals. In the more 

general case, Aij may take values in ℝ1 to represent different magnitudes or counts of the 

interaction. We refer to Kolaczyk (2009), Newman (2009), and Goldenberg et al. (2010) for 

general introduction of statistical analysis of network data.

In many applications, the interaction between individuals are recorded multiple times, 

resulting in multi-layer network data. For example, in this paper, we study the temporal 

gene co-expression networks in the medial prefrontal cortex of rhesus monkeys at ten 
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different developmental stages (Bakken et al., 2016). The medial prefrontal cortex is 

believed to be related to developmental brain disorders, and many of the genes we study are 

suspected to be associated with autism spectrum disorder at different stages of development. 

Other examples of multi-layer network data are brain imaging, where we may infer one 

set of interactions among different brain regions from electroencephalography (EEG), 

and another set of interactions using resting-state functional magnetic resonance imaging 

(fMRI) measures. Similarly, one may expect the brain regions to form groups in terms of 

connectivity. The wide applicability and rich structures of multi-layer networks make it an 

active research area in the statistics, machine learning, and signal processing community. 

See Tang et al. (2009), Dong et al. (2012), Kivelä et al. (2014), Xu and Hero (2014), Han et 

al. (2015), Zhang and Cao (2017), Matias and Miele (2017) and references within.

In this paper, we study multi-layer network data through the lens of multi-layer stochastic 

block models, where we observe many simple networks on a common set of nodes. The 

stochastic block model (SBM) and its variants (Holland et al., 1983; Bickel and Chen, 

2009; Karrer and Newman, 2011; Airoldi et al., 2008) are an important prototypical class 

of network models that allow us to mathematically describe the community structure and 

understand the performance of popular algorithms such as spectral clustering (McSherry, 

2001; Rohe et al., 2011; Jin, 2015; Lei and Rinaldo, 2015) and other methods (Latouche et 

al., 2012; Peixoto, 2013; Abbe and Sandon, 2015). Roughly speaking, in an SBM, the nodes 

in a network are partitioned into disjoint communities (i.e., clusters), and nodes in the same 

community have similar connectivity patterns with other nodes. A key inference problem in 

the study of SBM is estimating the community memberships given an observed network.

Compared to an individual layer, a multi-layer network contains more data and hopefully 

enables us to extract salient structures, such as communities, more easily. On the other 

hand, new methods must be developed in order to efficiently combine the signal from 

individual layers. To demonstrate the necessity for these methods, we plot the observed gene 

co-expression networks collected from Bakken et al. (2016) in Figure 1. The three networks 

correspond to gene co-expression patterns within the medial prefrontal cortex tissue of 

rhesus monkeys collected at different stages of development. We plot only the sub-network 

formed by a small collection genes for simplicity. A quick visual inspection across the 

three networks suggests that the genes can be approximately divided into four common 

communities (i.e., clusters that persist throughout all three networks), where genes in the 

same community exhibit similar connectivity patterns. However, different gene communities 

are more visually apparent in different layers. For example, in the layer labeled as “E40” 

(for tissue collected 40 days of development in the embryo), the last three communities 

are indistinguishable. In contrast, in the layer labeled as “E90,” the first community is less 

distinguishable, and in the layer labeled “48M” (for the tissue collected 48 months after 

birth), nearly all of the communities are indistinguishable. These qualitative observations 

are of scientific interest since these time-dependent densely-connected communities are 

evidence of “gene coordination,” a biological concept that describes when a community 

of genes is synchronized in ramping up or down in gene expression at certain stages of 

development (Paul et al., 2012; Werling et al., 2020). Hence, we can infer two potential 

advantages of analyzing such multi-layer network data in an aggregated manner. First, an 

aggregated analysis is able to reveal global structures that are not exhibited by any individual 
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layer. Second, the common structure across different layers can help us to better filter out the 

noise, which allows us to obtain more accurate inference results. We describe the analysis in 

more detail and return to analyze the full dataset in Section 6.

The theoretical understanding of estimating common communities in multi-layer SBMs is 

relatively limited compared to those in single-layer SBMs. Bhattacharyya and Chatterjee 

(2018) and Paul and Chen (2020) studied variants of spectral clustering for multi-layer 

SBMs, but the strong theoretical guarantee requires a so-called layer-wise positivity 

assumption, meaning each matrix encoding the probability of an edge among the 

communities must have only positive eigenvalues bounded away from zero. In contrast, 

Pensky and Zhang (2019) studied a different variant of spectral clustering, but established 

estimation consistency under conditions similar to those for single-layer SBMs. These 

results only partially describe the benefits of multi-layer network aggregation. Alternatively, 

Lei et al. (2019) considered a least-squares estimator, and proved consistency of the 

global optima for general block structures without imposing the positivity assumption for 

individual layers, but that method is computationally intractable in the worst case.

The first main contribution of this paper is a simple, novel, and computationally-efficient 

aggregated spectral clustering method for multi-layer SBMs, described in Section 2. 

The estimator applies spectral clustering to the sum of squared adjacency matrices after 

removing the bias by setting the diagonal entries to 0. In addition to its simplicity, this 

estimator has two appealing features. First, summing over the squared adjacency matrices 

enables us to prove its consistency without requiring a layer-wise positivity assumption. 

Second, compared with single-layer SBMs, the consistency result reflects a boost of signal 

strength by a factor of L1/2, where L is the number of layers. Such a L1/2 signal boost 

is comparable to that obtained in Lei et al. (2019), but is now achieved by a simple 

and computationally tractable algorithm. The removal of the diagonal bias in the squared 

matrices is shown to be crucial in both theory (Section 3) and simulations (Section 5), 

especially in the most interesting regime where the network density is too low for any single 

layer to carry sufficient signal for community estimation. Interestingly, similar diagonal-

removal techniques have also been discovered and studied in other contexts, such as 

Gaussian mixture model clustering (Ndaoud, 2018), principal components analysis (Zhang 

et al., 2022), and centered distance matrices (Székely and Rizzo, 2014).

Another contribution of this paper is a collection of concentration inequalities for matrix-

valued linear combinations and quadratic forms. These are described in Section 4, which are 

an important ingredient for the aforementioned theoretical results. Specifically, an important 

step in analyzing our matrix-valued data is to understand the behavior of the matrix-valued 

measurement errors. Towards this end, many powerful concentration inequalities have been 

obtained for matrix operator norms under various settings, such as random matrix theory 

(Bai and Silverstein, 2010), eigenvalue perturbation and concentration theory (Feige and 

Ofek, 2005; O’Rourke et al., 2018; Lei and Rinaldo, 2015; Le et al., 2017; Cape et al., 

2017), and matrix deviation inequalities (Bandeira and Van Handel, 2016; Vershynin, 2011). 

The matrix Bernstein inequality and related results (Tropp, 2012) are also applicable to 

linear combinations of noise matrices with scalar coefficients. In order to provide technical 

tools for our multi-layer network analysis, we extend these matrix-valued concentration 
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inequalities in two directions. First, we provide upper bounds for linear combinations of 

noise matrices with matrix-valued coefficients. This can be viewed as an extension of the 

matrix Bernstein inequality to allow for matrix-valued coefficients. Second, we provide 

concentration inequalities for sums of matrix-valued quadratic forms, extending the scalar 

case known as the Hanson–Wright inequality (Hanson and Wright, 1971; Rudelson and 

Vershynin, 2013) in several directions. A key intermediate step in relating linear cases to 

quadratic cases is deriving a deviation bound for matrix-valued U-statistics of order two.

2 Community Estimation in Multi-Layer SBM

Throughout this section, we describe the model, theoretical motivation, and our estimator for 

clustering nodes in a multi-layer SBM. Motivated by such multi-layer network data with a 

common community structure as demonstrated in Figure 1, we consider the L-layer SBM 

containing n nodes assigned to K different communities,

Aℓ, ij Bernoulli(ρBℓ, θiθj) for 1 ≤ i < j ≤ n, 1 ≤ ℓ ≤ L,

(1)

where ℓ is the layer index, θi ∈{1,...,K} is the membership index of node i for i ∈ {1,...,n}, 

ρ ∈(0,1] is an overall edge density parameter, and Bℓ ∈[0,1]K×K is a symmetric matrix of 

community-wise edge probabilities in layer ℓ. We assume Aℓ is symmetric and Aℓ,ii = 0 for all 

ℓ ∈{1,...,L} and i ∈{1,...,n}.

Our statistical problem is to estimate the membership vector θ = (θ1,...,θn)∈{1,...,K}n given 

the observed adjacency matrices A1,...,AL. Let θ ∈ 1, …, K n be an estimated membership 

vector, and the estimation error is the number of mis-clustered nodes based on the Hamming 

distance,

d(θ, θ) = min
π

∑
i = 1

n
1(θi ≠ π(θ i)),

(2)

for the indicator function 1(·), where the minimum is taken over all label permutations 

π:{1,...,K} ↦ {1,...,K}. An estimator θ  is consistent if n−1d(θ, θ) = oP(1).

The assumption of a fixed common membership vector θ can be relaxed to each layer 

having its own membership vector but close to a common one. The theoretical consequence 

of this relaxation is discussed in Remark 1, after the main theorem in Section 3. We assume 

that K is known. The problem of selecting K from the data is an important problem and will 

not be pursued in this paper. Further discussion will be given in Section 7.

When L = 1, the community estimation problem for single-layer SBM is well-understood 

(Bickel and Chen, 2009; Lei and Rinaldo, 2015; Abbe, 2017). If K is fixed as a constant 

while n → ∞, ρ → 0 with balanced community sizes lower bounded by a constant fraction 

of n, and B is a constant matrix with distinct rows, then the community memberships can 

Lei and Lin Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be estimated with vanishing error when nρ → ∞. Practical estimators include variants of 

spectral clustering, message passing, and likelihood-based estimators.

As mentioned in Section 1, in the multi-layer case, consistent community estimation has 

been studied in some recent works. The theoretical focus is to understand how the number 

of layers L affects the estimation problem. Paul and Chen (2020) and Bhattacharyya and 

Chatterjee (2018) show that consistency can be achieved if Lnρ diverges, but under the 

aforementioned positivity assumption, meaning that each Bℓ is positive definite with a 

minimum eigenvalue bounded away from zero. Such assumptions are plausible in networks 

with strong associativity patterns where nodes in the same communities are much more 

likely to connect to one another than nodes in different communities. But there are networks 

observed in practice that do not satisfy this assumption, such as those in Newman (2002) 

and Litvak and Van Der Hofstad (2013). See Lei (2018) and the references within for 

additional discussion on such positivity assumptions in a more general context. To remove 

the positivity assumption, Lei et al. (2019) considered a least-squares estimator, and proved 

consistency when L1/2nρ diverges (up to a small poly-logarithmic factor) and the smallest 

eigenvalue of ∑ℓBℓ
2 grows linearly in L. A caveat is that the least-squares estimator is 

computationally challenging, and in practice, one may only be able to find a local minimum 

using greedy algorithms.

In the following subsections, we will motivate a spectral clustering method from the least-

squares perspective, investigate its bias, and derive our estimator with a data-driven bias 

adjustment.

2.1 From least squares to spectral clustering

In this subsection, we motivate how least-squares estimators is well-approximated by 

spectral clustering, which lays down the intuition of our estimator in Section 2.3. Let ψ 
∈{1,...,K}n be a membership vector and Ψ = [Ψ1,...,ΨK] be the corresponding n × K 
membership matrix where each Ψk = (Ψ1,k,...,Ψn,k) is an n×1 vector with Ψi,k = 1(ψi = k). 

Let Ik (ψ) = {i ∈{1,...,n} : ψi = k} and nk (ψ) = |Ik (ψ)|, the size of the set Ik (ψ).

The least-squares estimator of Lei et al. (2019) seeks to minimize the residual sum of 

squares,

θ = argmin
ψ ∈ 1, …, K n

∑
ℓ = 1

L
∑

1 ≤ i < j ≤ n
(Aℓ, ij − Bℓ, ψiψj(ψ))2

(3)

where

Bℓ, kl(ψ) =

∑i, j ∈ Ik(ψ)Aℓ, ij

nk(ψ)(nk(ψ) − 1) when k = l,

∑i ∈ Ik(ψ), j ∈ Il(ψ)Aℓ, ij

nk(ψ)nl(ψ) when k ≠ l,
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is the sample mean estimate of Bℓ under a given membership vector ψ. Recall that the 

total-variance decomposition implies the equivalence between minimizing within-block 

sum of squares and maximizing between-block sum of squares. Hence, if we accept the 

approximation nk(ψ)(nk(ψ) − 1) ≈ nk
2(ψ), then after multiplying the least-squares objective 

function (3) by 2 and using the total-variance decomposition, the objective function becomes

max
ψ ∈ 1, …, K n

∑
ℓ = 1

L
∑

1 ≤ k, l ≤ K
(Ψk

TAℓΨl)2
nk(ψ)nl(ψ) ,

which is equivalent to

max
ψ ∈ 1, …, K n

∑
ℓ = 1

L
∑

1 ≤ k, l ≤ K
(Ψk

TAℓΨl)
2 = max

ψ
∑

ℓ = 1

L
ΨTAℓΨ F

2
,

where ‖·‖F denotes the matrix Frobenius norm, and Ψ = Ψ1, …, ΨK  with Ψk = Ψk/ nk(ψ) is 

the column-normalized version of Ψ where each column of Ψ has norm 1. This means Ψ is 

orthonormal, i.e., ΨTΨ = IK. The benefit of considering orthonormal matrices is that for any 

orthonormal matrix U ∈ ℝn × K and symmetric matrix A ∈ ℝn × n,

UTAU F
2

= tr(UTAUUTAU) ≤ tr(UTA2U) .

The right-hand side of the above inequality is maximized by the leading K eigenvectors 

of A, where the eigenvalues ordered by absolute value. For this U, the inequality becomes 

equality. Additionally, under the multi-layer SBM, the expected values of adjacency matrices 

{P1,...,PL} (where Pℓ = EAℓ for ℓ ∈{1,...,L}) share roughly the same leading principal 

subspace as determined by the common community structure. Putting all these facts 

together, we intuitively expect U = Θ to correspond to an approximate solution of the 

original least-squares problem, where Θ is the column-normalized version of the true 

membership matrix Θ.

Therefore, a relaxation of the approximate version of the original problem (3) is

max
U ∈ ℝn × K:UTU = IK

tr UT ∑
ℓ = 1

L
Aℓ

2 U ,

(4)

which is a standard spectral problem. For this reason, we often call U the “spectral 

embedding.” The community estimation is then obtained by applying a clustering algorithm 

to the rows of U, a solution to (4).
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2.2 The necessity of bias adjustment

Let Pℓ = EAℓ denote the expected adjacency matrix, meaning that Pℓ is the matrix obtained 

by zeroing out the diagonal entries of P ℓ = ρΘBℓΘT . We now show that ∑ℓAℓ
2 is a biased 

estimate of ∑ℓPℓ
2, and that we can correct for this bias by simply removing its diagonal 

entries. Let Xℓ = Aℓ − Pℓ be the noise matrix. Then

∑
ℓ = 1

L
Aℓ

2 = ( ∑
ℓ = 1

L
Pℓ

2) + ( ∑
ℓ = 1

L
(XℓPℓ + PℓXℓ)) + S,

(5)

where S = ∑ℓXℓ
2. The first term is the signal term, with each summand close to 

P ℓ
2 = ρ2ΘBℓ

2ΘT , and will add up over the layers, because each matrix Bℓ
2 is positive semi-

definite. The second term is a mean-0 noise matrix, which can be controlled using matrix 

concentration inequalities developed in Section 4 below.

The third term S = ∑ℓXℓ
2 is a squared error matrix and will also add up over the layers, 

which may introduce bias if the overall edge density parameter ρ is too small.

We use a simple simulation study to illustrate the necessity of bias adjustment in spectral 

clustering applied to the sum of squared adjacency matrices. We set K = 2 and consider two 

edge-probability matrices,

B(1) = 3/4 3/8
3/8 1/2

, and B(2) = 7/8 3 3/8
3 3/8 1/8

.

These two matrices are chosen such that spectral clustering applied to the sum of the 

adjacency matrices and the sum of squared adjacency matrices would be either sub-optimal 

or inconsistent in the very sparse regime. We set n = 200 nodes with 100 nodes in each 

community, the number of layers to be L = 30, and for each layer ℓ, Bℓ is randomly and 

independently chosen from B(1) and B(2) with equal probability. We use five different values 

of the overall edge density parameter ρ between 0.02 and 0.06. For each value of ρ, we 

generate a multi-layer SBM according to (1) and apply spectral clustering to three matrices: 

(1) the sum of adjacency matrices without squaring (i.e., “Sum”), (2) the sum of squared 

adjacency matrices (i.e., “SoS”), and (3) a bias-adjusted sum of squared adjacency matrices 

(i.e., “Bias-adjusted SoS”), which will be introduced in the next subsection. The results 

across 100 trials are reported in Figure 2. By construction, the “Sum” method performs 

poorly since the sum of adjacency matrices has only one significant eigen-component, 

meaning the result is sensitive to noise when K = 2 eigenvectors are used for spectral 

clustering. In fact, as described in Example 1 below, it is also easy to generate cases 

in which the sum of adjacency matrices carries no signal at all. The “SoS” method 

also performs poorly. This is because although the sum of squared adjacency matrices 

contains signal for clustering, the aforementioned bias is large when ρ is small. In contrast, 

our method “Bias-adjusted SoS” performs the best. A more detailed simulation study is 

presented in Section 5.
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2.3 Bias-adjusted sum-of-squared spectral clustering

We are now ready to quantify the amount of bias, and to describe our aforementioned 

bias-adjusted sum-of-squared method to cluster nodes in a multi-layer SBM. From (5), we 

see that the diagonal entries of the squared error term S have positive expected value and 

hence may cause systematic bias in the principal subspace of ∑ℓAℓ
2. Now consider a further 

decomposition S = S1 + S2 where S1 and S2 correspond to the off-diagonal and diagonal 

parts of S, respectively. Observe that only the diagonal entries of S have positive expected 

value, so our effort will focus on removing the bias caused by S2. Towards this end, observe 

that by construction, we have

(S2)ii = Sii = ∑
ℓ = 1

L
∑

j = 1

n
Xℓ, ij

2

= ∑
ℓ = 1

L
∑

j = 1

n
Pℓ, ij

2 1(Aℓ, ij = 0) + (1 − Pℓ, ij)21(Aℓ, ij = 1)

≤ Ln max
ℓ , ij

Pℓ, ij
2 + ∑

ℓ = 1

L
dℓ, i

(6)

where dℓ, i = ∑jAℓ, ij is the degree of node i in layer ℓ. The expected value of ∑ℓdℓ, i is 

∑ℓ , jPℓ, ij ≍ Lnmaxℓ, ijPℓ, ij. In the very sparse regime, maxℓ,ij Pℓ,ij is very small so ∑ℓdℓ, i is the 

leading term in (S2)ii.

Combining this calculation with a key observation that ∑ℓdℓ, i can be computed from the 

data, we arrive at the following bias-adjusted sum-of-squared spectral clustering algorithm. 

Let Dℓ be the diagonal matrix consisting of the degrees of Aℓ where (Dℓ)ii = dℓ,i. The 

bias-adjusted sum of squared adjacency matrices is

S0 = ∑
ℓ = 1

L
(Aℓ

2 − Dℓ) .

(7)

The community membership is estimated by applying a clustering algorithm to the rows of 

the matrix whose columns are the leading K eigenvectors of S0 given in (7).

3 Consistency of bias-adjusted sum-of-squared spectral clustering

We now describe our theoretical result characterizing how multi-layer networks benefit 

community estimation. The hardness of community estimation is determined by many 

aspects of the problem, including number of communities, community sizes, number of 

nodes, separation of communities, and overall edge density. Here, we need to consider all of 

these aspects jointly across the L layers. To simplify the discussion, we primarily focus on 

the following setting but discuss additional settings in later remarks.

Assumption 1.
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a. The number of communities K is fixed and community sizes are balanced. That 

is, there exists a constant c such that each community size is in [c−1n / K, cn / K].

b. The relative community separation is constant. That is, Bℓ = ρBℓ,0 where Bℓ,0 is a 

K × K symmetric matrix with constant entries in [0,1].

Furthermore, the minimum eigenvalue of ∑ℓBℓ, 0
2  is at least cL for some constant 

c > 0.

Part (a) simplifies the effect of the community sizes and the number of communities. This 

setting has been well-studied in the SBM literature for L = 1 (Lei and Rinaldo, 2015). Part 

(b) puts the focus on the effect of the overall edge density parameter ρ, and requires a 

linear growth of the aggregated squared edge-probability matrices in terms of the minimum 

eigenvalue. This is much less restrictive than the layer-wise positivity assumption used in 

other work mentioned in Section 2 which require each Bℓ,0 to be positive definite. We give 

two examples in which Assumption 1(b) is satisfied but the layer-wise positivity is not.

Example 1 (Identicially distributed random layers). Consider a theoretical scenario in which 
the Bℓ,0 ‘s have i.i.d. Uniform(0,1) entries subject to symmetry. It is easy to verify that the 
expected sum matrix E∑ℓBℓ is a constant matrix with each entry being Lρ / 2. Therefore it 

is impossible to reconstruct the block structure from the sum of adjacency matrices ∑ℓAℓ

when ρ is small.

Example 2 (Community merge and split). Consider a more realistic scenario in which for {Bℓ 
:1 ≤ ℓ ≤ L}, some layers ℓ and community indices k, k′ have Bℓ,kj = Bℓ,k′j for all j. This can 
be interpreted as the merge of communities k and k′ at layer ℓ. In such cases, each layer may 
not contain full community information, and we must aggregate the layers to recover the 
full community structure. In our real data example, we actually observe that in most layers, 
all but one or two communities merge with a large, null community, and each non-null 
community is active in one or two layers.

Based on these assumptions, in the asymptotic regime n → ∞ and ρ → 0, it is well-known 

that consistent community estimation is possible for L = 1 when nρ → ∞. Hence, in the 

multi-layer setting when L → ∞, one should expect a lower requirement on overall density 

as we aggregate information across layers. This is shown in our following result.

Theorem 1. Under Assumption 1, if L1/2nρ ≥ C1 log1/2(L + n) and nρ ≤ C2 for a large 
enough positive constant C1 and a positive constant C2, then spectral clustering with a 
constant factor approximate K-means clustering algorithm applied to S0, the bias-adjusted 

sum of squared adjacency matrices in (7), correctly estimates the membership of all but a

C 1
n2 + log(L + n)

Ln2ρ2

proportion of nodes for some constant C with probability at least 1−O((L + n)−1).
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An immediate consequence of Theorem 1 is the Hamming distance consistency of the 

bias-adjusted sum-of-squared spectral clustering, provided that L1/2nρ / log1/2(L + n) → 
∞. This demonstrates the boost of signal strength by a factor of L1/2 made possibly due to 

aggregating layers (up to a poly-logarithmic factor) that we alluded to in Section 1.

The proof of Theorem 1 is given in Appendix D, where the main effort is to establish 

sharp operator norm bounds for the linear noise term ∑ℓXℓPℓ and the quadratic noise term 

∑ℓ (Xℓ
2 − Dℓ). A refined operator norm bound for the off-diagonal part of ∑ℓ (Xℓ

2 − Dℓ) plays 

an important role (Theorem 5). Once the operator norm bound is established, the clustering 

consistency follows from a standard analysis of the K-means algorithm (Lemma D.1). These 

concentration inequalities indeed hold for more general classes of matrices, and we provide 

a systematic development in the next section.

Theorem 1 is stated in a simple form for brevity. It can be generalized in several directions to 

better suit practical scenarios with more careful bookkeeping in the proof. We describe some 

important extensions in the remarks below, where ‖·‖ denotes the operator norm (i.e., largest 

singular value).

Remark 1 (Varying membership across layers). Theorem 1 can be extended to accommodate 
varying membership across the layers. In particular, assume that the ℓ th layer has 
membership matrix Ψℓ ∈{0,1}n×K, such that each Ψℓ is close to a common membership 
matrix Ψ ∈{0,1}n×K,

Ψℓ − Ψ ≤ ϵℓ n,

(8)

for some positive constant ϵℓ. Then we have the following generalization of Theorem 1.

Corollary 2 (Consistency under varying membership). Assume the multilayer adjacency 
matrices A1,...,AL are generated from individual membership matrices Ψ1,...,ΨL satisfying 
(8) for some sequence ϵ1,...,ϵL and common membership matrix Ψ. Under the same 

condition as in Theorem 1, if in addition ϵ: = L−1∑ℓϵℓ ≤ C3 for some positive constant 

C3, then the error bound of the bias-adjusted sum of squared spectral clustering is no more 
than

C 1
n2 + ϵ2 + log(L + n)

Ln2ρ2

with high probability.

Remark 2 (Other regimes of network density). The condition L1/2nρ ≥ C1 log1/2(L + n) is 
required in order for the error bound in Theorem 1 to imply consistency, and is suitable for 
the linear squared signal accumulation assumed in Part (b) of Assumption 1. If we assume 
a different growth speed of the minimum eigenvalue of ∑ℓBℓ, 0

2 , this requirement needs to 

be changed accordingly. Second, the condition nρ ≲ 1 is used for notational simplicity. 
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The regime nρ ≫ 1 would allow for consistent community recovery even when L = 1. For 
multilayer models, if nρ ≥ C2 for some constant C2, the error bound in Theorem 1 becomes

C 1
n2 + log(L + n)

Lnρ .

for some constant C with high probability. Detailed explanations of this claim are given in 
Appendix D.

Remark 3 (More general conditions on community sizes). Let nmin = min1 ≤ k ≤ K Ψ ⋅ k 1 be the 

size of the smallest community, and denote α = nmin / n. Our analysis can also allow 
the number of communities, K, and α to change with other model parameters (n, L, ρ). 
In particular, the lower bound of the signal term in (5) will be multiplied by α since the 
operator norm of is Ψ proportional to α. All the matrix concentration results, such as 
Theorem 5 and Lemma C.1 still hold as they do not rely on any block structures. Therefore 
under the same setting as Theorem 1, if we allow K and α to vary with (n, L, ρ), but have 
αL1/2nρ ≥ C1 log1/2(L + n) for some constant C1, then with high probability, Theorem 1 
holds with error bound

CKα−2 1
n2 + log(L + n)

Ln2ρ2 .

4 Matrix Concentration Inequalities

We generically consider a sequence of independent matrices X1, …, XL ∈ ℝn × r with 

independent mean-0 entries. The goal is to provide upper bounds for operator norms of 

linear combinations of the form ∑ℓXℓHℓ with Hℓ ∈ ℝr × m for ℓ ∈{1,...,L}, and quadratic 

forms ∑ℓXℓGℓXℓ
T with Gℓ ∈ ℝr × r for ℓ ∈{1,...,L}. Here, Hℓ and Gℓ are non-random. To 

connect with the notations in previous sections, let Hℓ = Pℓ, then an operator norm bound of 

∑ℓXℓPℓ will help control the second term in (5). Let Gℓ = Ir be the r × r identity matrix, then 

∑ℓXℓGℓXℓ
T corresponds to the third term in (5). Our general results cover both the symmetric 

and asymmetric cases, as well as more general entries of Xℓ beyond the Bernoulli case.

Concentration inequalities usually require tail conditions on the entries of Xℓ. A standard tail 

condition for scalar random variables is the Bernstein tail condition.

Definition 1. We say a random variable Y satisfies a (v, R)-Bernstein tail condition (or is (v, 

R)-Bernstein), if E |Y |k ≤ v
2k!Rk − 2 for all integers k ≥ 2.

The Bernstein tail condition leads to concentration inequalities for sums of independent 

random variables (van der Vaart and Wellner, 1996, Chapter 2). Since we are interested not 

only in linear combinations of Xℓ ‘s, but also the quadratic forms involving XℓGℓXℓ
T, we need 

the Bernstein condition to hold for the squared entries of X1,...,XL. Specifically we consider 

the following three assumptions.
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Assumption 2. Each entry Xℓ,ij is (v1, R1)-Bernstein, for all ℓ ∈ {1,...,L} and i, j ∈{1,...,n}.

Assumption 3. Each squared entry Xℓ, ij
2  is (v2, R2)-Bernstein, for all ℓ ∈{1,...,L} and i, j 

∈{1,...,n}.

Assumption 3’. The product Xℓ, ijXℓ, ij is (v2′, R2′)-Bernstein, for all ℓ ∈{1,...,L} and i, j 

∈{1,...,n}, where Xℓ is an independent copy of Xℓ.

There are two typical scenarios in which such a squared Bernstein condition in Assumption 

3 holds. The first is the sub-Gaussian case: If a random variable Y satisfies the sub-

Gaussian condition EeY 2/σ2 ≤ 2 for some σ > 0, then we have EY 2k ≤ 2σ4(σ2)k − 2k!, and 

hence Y2 is (4σ4, σ2)-Bernstein. The second scenario is centered Bernoulli: If a random 

variable Y satisfies ℙ(Y = 1 − p) = 1 − ℙ(Y = − p) = p for some p ∈[0,1 / 2], then we have 

EY 2k = p(1 − p)2k + (1 − p)p2k ≤ p, and hence Y2 is (2p,1)-Bernstein. Our proof will also use 

the fact that if Y2 is (v2, R2)-Bernstein, then the centered version Y 2 − Es(Y 2) is also (v2, 

R2)-Bernstein (Wang et al., 2016, Lemma 3).

We require Assumption 3’ in order to use a decoupling technique in establishing 

concentration of quadratic forms. One can show that if Assumption 3 holds then Assumption 

3’ holds with (v2′, R2′) = (v2, R2). However, when Xℓ,ij ‘s are centered Bernoulli random 

variables with parameters bounded by p ≤ 1 / 2, then Assumption 3’ holds with v2′ = 2p2 

and R2′ = 1, while Assumption 3 holds with v2 = 2p and R2 = 1, so that v2′ can potentially 

be much smaller than v2. We will explicitly keep track of the Bernstein parameters in our 

results for the sake of generality.

4.1 Linear combinations with matrix coefficients

Theorem 3. Let X1,...,XL be a sequence of independent n × r matrices with mean-0 
independent entries satisfying Assumption 2, and Hℓ be any sequence of r × m non-random 
matrices. Then for all t > 0,

ℙ ∑
ℓ = 1

L
XℓHℓ ≥ t

≤ 2(m + n)exp − t2/2
v1(n ∑ℓHℓ

THℓ ∨ ∑ℓ Hℓ F
2 ) + R1maxℓ Hℓ 2, ∞t

.

(9)

A similar result holds, with t2 / 2 replaced by t2 / 8 and 2(m + n) replaced by 4(m + n) 

in (9), for symmetric Xℓ ‘s of size n × n with independent (v1, R1)-Bernstein diagonal and 
upper-diagonal entries and Hℓ of size n × m.

The proof of Theorem 3, given in Appendix B, combines the matrix Bernstein inequality 

(Tropp, 2012) for symmetric matrices and a rank-one symmetric dilation trick (Lemma B.1) 

to take care of the asymmetry in XℓHℓ.
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Remark 4. If n = m = r = 1, then Theorem 3 recovers the well-known Bernstein’s inequality 
as a special case with a different pre-factor.

If n ≥ min{m, Lr}, then n ∑ℓHℓ
THℓ ≥ ∑ℓ Hℓ F

2  and the probability upper bound in 

Theorem 3 reduces to

ℙ ∑
ℓ = 1

L
XℓHℓ ≥ t ≤ 2(m + n)exp − t2/2

v1n ∑ℓHℓ
THℓ + R1maxℓ Hℓ 2, ∞t .

(10)

If n = 1 then n ∑ℓHℓ
THℓ ≤ ∑ℓ Hℓ F

2  and the probability bound reduces to

ℙ ∑
ℓ = 1

L
XℓHℓ ≥ t ≤ 2(m + n)exp − t2/2

v1∑ℓ Hℓ F
2 + R1maxℓ Hℓ 2, ∞t

.

(11)

Remark 5. When L = 1, the setting is similar to that considered in Vershynin (2011). In 

the constant variance case (e.g., sub-Gaussian), v1
1/2 ≍ R1 ≍ 1, Theorem 3 implies a high 

probability upper bound of C log(m + n)( n H + H F), which agrees with Theorem 1.1 of 

Vershynin (2011). The extra log(n + m) factor in our bound is because our result is a tail 

probability bound while Vershynin (2011) provides upper bounds on the expected value. 

However, in the sparse Bernoulli setting, where v1 ≪ R1 = 1, the upper bound in Theorem 

3 is better because it correctly captures the v1 factor multiplied by n H + H F, whereas 

the result in Vershynin (2011) leads to v1
1/4( n H + H F).

4.2 Matrix U-statistics and quadratic forms

Let

S = ∑
ℓ = 1

L
XℓGℓXℓ

T = ∑
ℓ = 1

L
∑

(i, j), (i′, j′)
Xℓ, ijXℓ, i′j′eiei′

TGℓ, jj′

(12)

where the summation is taken over all pairs (i, j), (i′, j′) ∈{1,...,n}2 and ei is the canonical 

basis vector in ℝn with a 1 in the ith coordinate. In this subsection, we will focus on 

the symmetric case because the bookkeeping is harder compared to the asymmetric case. 

The treatment for the asymmetric case is similar and the corresponding results are stated 

separately in Appendix B for completeness.

Because Xℓ has centered and independent diagonal and upper diagonal entries, a term in 

(12) has non-zero expected value only if (i, j) = (i′, j′) or (i, j) = (j′, i′) since this would 

imply Xℓ, ijXℓ, i′j′ = Xℓ, ij
2 . This motivates the following decomposition of S into a quadratic 

component with non-zero entry-wise mean value
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S2 = [ ∑
ℓ = 1

L
∑

1 ≤ i < j ≤ n
Xℓ, ij

2 (eiei
TGℓ, jj + ejej

TGℓ, ii + eiej
TGℓ, ji + ejei

TGℓ, ij)]

+[ ∑
ℓ = 1

L
∑

1 ≤ i ≤ n
Xℓ, ii

2 eiei
TGℓ, ii],

(13)

and a cross-term component with entry-wise mean-0 value

S1 = S − S2 .

(14)

It is easy to check that ES2 = ES and ES1 = 0. Intuitively, the spectral norm of S1 should be 

small since it is the sum of many random terms with zero mean and small correlation, which 

can be viewed as a U-statistic with a centered kernel function of order two. This U-statistic 

perspective is a key component of the analysis and will be made clearer in the proof. For a 

similar reason, S2 − ES2 should also be small. Hence, the main contributing term in S should 

be the deterministic term ES2. To formalize this, define the following quantities,

σ1
2 = ∑

ℓ = 1

L
Gℓ

2,

σ2 = max
ℓ

max Gℓ 2, ∞, Gℓ
T

2, ∞

(σ2
′)2 = ∑

ℓ = 1

L
∑

j = 1

n
Gℓ, jj

2 ,

σ3 = max
ℓ

Gℓ ∞,

where ‖·‖2,∞ is the maximum L2-norm of each row, and ‖·‖∞ is the maximum entry-wise 

absolute value. The following theorem quantifies the random fluctuations of S1, S2 and S
around their expectations.

Theorem 4. If X1,...,XL are independent n × n symmetric matrices with independent 
diagonal and upper diagonal entries satisfying Assumption 2 and Assumption 3’. Let 
G1,...,GL be n × n matrices. Define S = ∑ℓXℓGℓXℓ

T and S1, S2 as in (13) and (14). Then 

there exists a universal constant C such that with probability at least 1−O((n + L)−1),

S1 ≤ C v1n log(L + n)σ1 + v1R1 Ln log3/2(L + n)σ2

+ v2′ log(L + n)( Lσ2 + σ2
′) + (R1

2 + R2
′) log2(L + n)σ3 .

(15)

If in addition Assumption 3 holds, then with probability at least 1−O((n + L)−1),
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S2 − ES2 ≤ C v2 log(L + n)( Lσ2 + σ2
′) + R2 log(L + n)σ3 .

(16)

and consequently,

S − ES ≤ C v1n log(L + n)σ1 + v1R1 Ln log3/2(L + n)σ2

+ v2′ + v2 log(L + n)( Lσ2 + σ2′) + (R1
2 + R2 + R2′) log2(L + n)σ3 .

(17)

The proof of Theorem 4 is given in Appendix B, where the main effort is to control ‖S1‖. 
Unlike the linear combination case, the complicated dependence caused by the quadratic 

form needs to be handled by viewing S1 as a matrix-valued U-statistic indexed by the 

pairs (i, j), and using a decoupling technique due to de la Peña and Montgomery-Smith 

(1995). This reduces the problem of bounding ‖S1‖ to that of bounding ∑ℓXℓGℓXℓ
T

, where 

X1, …, XL are i.i.d. copies of X1,...,XL. The upper bounds in Theorem 4 look complicated. 

This is because we do not make any assumption about the Bernstein parameters or the 

matrices Gℓ. The bound can be much simplified or even improved in certain important 

special cases. In the sub-Gaussian case, where R1 ≍ v1
1/2 ≍ R2

1/2 ≍ v2
1/4, the first term v1n 

log(L + n)σ1 in (15) dominates. This reflects the L1/2 effect for sums of independent 

random variables. For example, in the case Gℓ = G0 for all ℓ and Xℓ are i.i.d., we have 

ES ≈ L X1G0X1
T ≍ v1nL G0 , but when we consider the fluctuations contributed by S1, we 

have S1 ≲ v1nL1/2 G0  ignoring logarithmic factors. In other words, the signal is contained 

in ES2 whose operator norm may grow linearly as L, while the fluctuation in the operator 

norm of S1 only grows at a rate of L1/2.

Additionally, in the Bernoulli case, the situation becomes more complicated when the 

variance v1 is vanishing, meaning that v1 ≍ v2 ≍ (v′)2
1/2 ≪ R1 ≍ R2. In the simple case of Gℓ 

= In, we have σ1 = L1/2, σ2 = σ3 = 1. Thus the second term (v1Ln)1/2σ2 in (15) may 

dominate the first term when nv1 ≪ 1. In this case, we also have σ2′ = (Ln)1/2. Therefore, 

it is also possible that the term v2
1/2σ2 in (16) may be large. It turns out that in such very 

sparse Bernoulli cases, the bound on the fluctuation term ‖S1‖ can be improved by a more 

refined and direct upper bound for ‖∑ℓXℓXℓ
T‖ = S . The details are presented in the next 

subsection.

4.3 Sparse Bernoulli matrices

In this section, we focus on the case where Gℓ = In for all ℓ, and the Xℓ ‘s are symmetric with 

centered Bernoulli entries whose probability parameters are bounded by ρ. Here, ρ can be 

very small. In this case, Assumptions 2, 3 and 3’ hold with v1 = v2 = 2ρ, R1 = R2 = R2′ = 1, 

v2′ = 2ρ2, and the matrices Gℓ satisfy σ1 = L1/2, σ2 = σ3 =1, σ2′ = (Ln)1/2.

Ignoring logarithmic factors, the first part of Theorem 4 becomes
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S1 ≲ C L1/2nρ + (Lnρ)1/2 + 1 ,

where the second term (Lnρ)1/2 can be dominating when nρ is small and Lnρ is large. 

This is suboptimal since intuitively we expect that the main variance term L1/2nρ is the 

leading term as long as its value is large enough, which only requires nρ ≫ L1/2. To 

investigate the cause of this suboptimal bound, observe that (Lnρ)1/2 originates from the 

second term R1(v1Ln)1/2σ2 in (15). Investigating the proof of Theorem 4, this term is 

derived by bounding ∑ℓ Hℓ
THℓ  by ∑ℓ Hℓ

2, which is suboptimal in this sparse Bernoulli 

case when applying the decoupling technique. The following result shows a sharper bound 

in this setting using a more refined argument.

Theorem 5. Assume Gℓ = In for all ℓ ∈{1,...,L} and X1,...,XL are symmetric with centered 
Bernoulli entries whose parameters are bounded by ρ. If L1/2nρ ≥ C1 log1/2(L + n) and nρ ≤ 

C2 for some constants C1, C2, then with probability at least 1−O((n + L)−1),

S1 ≤ CL1/2ρn log1/2(L + n)

(18)

for some constant C.

The proof of Theorem 5 is given in Appendix C where we modify our usage of the 

decoupling technique. At a high level, the decoupling technique reduces the problem to 

controlling the operator norm of S = ∑ℓXℓXℓ
T
 where Xℓ is an i.i.d. copy of Xℓ. Instead of 

directly applying Theorem 3 with Hℓ = Xℓ, we instead shift Xℓ back to the original Bernoulli 

matrix by considering S = ∑ℓXℓAℓ − ∑ℓXℓPℓ, where Aℓ is the original uncentered binary 

matrix and Pℓ = EAℓ. Then Theorem 3 is applied to ∑ℓXℓPℓ and ∑ℓXℓAℓ separately, where 

the entry-wise non-negativity of Aℓ allows us to use the Perron–Frobenius theorem to obtain 

a sharper bound for ∑ℓAℓ
2

.

5 Further simulation study

In the following simulation study, we show that bias-adjusting sum of squared adjacency 

matrices constructed in (7) has a measurable impact on the downstream spectral clustering 

accuracy, and that our method performs favorably against other competing methods. This 

builds upon the simulation initially shown in Section 2.2.

Data-generating process.

We design the following simulation setting to highlight the importance of bias adjustment 

for ∑ℓAℓ
2. We consider n = 500 nodes per network across K = 3 communities, with 

imbalanced sizes n1 = 200, n2 = 50, n3 = 250. We construct two edge-probability matrices 

that share the same eigenvectors,
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W =
1/2 1/2 − 2/2
1/2 1/2 2/2
2/2 − 2/2 0

.

(19)

The two edge-probability matrices are

B(1) = W
1.5 0 0
0 0.2 0
0 0 0.4

W ⊤ ≈
0.62 0.22 0.46
0.22 0.62 0.46
0.46 0.46 0.85

, B(2)

= W
1.5 0 0
0 0.2 0
0 0 −0.4

W ⊤ ≈
0.22 0.62 0.46
0.62 0.22 0.46
0.46 0.46 0.85

.

We then generate L = 100 layers of adjacency matrices, where each layer is drawn by setting 

the edge-probability matrices Bℓ = ρB(1) for ℓ ∈{1,...,L / 2} and Bℓ = ρB(2) for ℓ ∈{L / 2 + 

1,..., L}. Using this, we generate the adjacency matrices via (1), with ρ varying from 0.025 

to 0.2.

We choose this particular simulation setting for two reasons. First, the first two eigenvectors 

in W are not sufficient to distinguish between the first two communities. Hence, methods 

based on ∑ℓAℓ are not expected to perform well since the third eigen-component cancels out 

in the summation. Second, the average degrees among the three communities are drastically 

different, which are 251ρ, 191ρ and 327ρ respectively. This means the variability of degree 

matrix Dℓ ‘s diagonal entries will be high, helping demonstrating the effect of our method’s 

bias adjustment.

Methods we consider.

We consider the following four ways to aggregate information across all L layers, three of 

which were used earlier in Figure 2: 1) the sum of adjacency matrices without squaring (i.e., 

considering M = ∑ℓAℓ, “Sum”), 2) the sum of squared adjacency matrices (i.e., considering 

M = ∑ℓAℓ
2, “SoS”), 3) our proposed bias-adjusted sum of squared adjacency matrices (i.e., 

considering (7), or equivalently M = ∑ℓAℓ
2 and then zeroing out the diagonal entries, “SoS-

Debias”), and 4) column-wise concatenating the adjacency matrices together, specifically, 

considering

M = A1 A2 … AL ∈ ℝn × (Ln) .

(i.e., “Tensor matricization”). This method is commonly-used in the tensor literature (see 

Zhang and Xia (2018) for example), where the L adjacency matrices can be viewed as a 

n × n × L tensor, and the column-wise concatenation converts the tensor into a matrix. 

Then, using one of the four construction of the aggregated matrix M, we then apply spectral 

clustering onto M, meaning we first compute the matrix containing the leading K left 

singular vectors of M and perform K-means on its rows.
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Additionally, we consider two methods that developed in Paul and Chen (2020) called 

Linked Matrix Factorization (i.e., “LMF”) and Co-regularized Spectral Clustering (i.e., 

“Co-reg”). These two methods fall outside the framework of the four methods discussed 

above. Instead, they use optimization procedures designed with different so-called fusion 

techniques to solve for an appropriate low-dimensional embedding shared among all L 
layers, and then perform K-means clustering on its rows.

Results.

The results shown in Figure 3 demonstrate that bias-adjusting the diagonal entries of ∑ℓAℓ
2

has a noticeable impact on the clustering accuracy. Using the aforementioned simulation 

setting and methods, we vary ρ from 0.025 to 0.2 in 15 equally-spaced values, and compare 

the methods for each setting of ρ across 100 trials by measuring the average Hamming 

distance (i.e., n−1d(θ, θ) defined in (2)) between the true memberships in θ and the estimated 

membership θ . We observe phenomenons in Figure 3 which all agree with our intuition 

and theoretical results. Specifically, summing the adjacency matrices hinders our ability 

to cluster the nodes due to the cancellation of positive and negative eigenvalues (green 

squares), and the diagonal bias induced by squaring the adjacency matrices has a profound 

effect in the range of ρ ∈[0.08, 0.17], which our bias-adjusted sum-of-squared method 

removes (purple diamonds verses blue circles). We also see that our bias-adjusted sum-of-

squared method out-performs Linked Matrix Factorization (red circles) and Co-regularized 

Spectral Clustering (gray squares). While the LMF method and Co-reg method show some 

improvements over the Sum and SoS methods, respectively, they still behave qualitatively 

similar. This observation suggests that these two methods may have similar difficulty in 

aggregating layers without positivity or removing the diagonal bias.

Intuition behind results.

We provide additional intuition behind the results shown in Figure 3 by visualizing the 

impact of the diagonal terms on the overall spectrum and quantifying the loss of population 

signal due to the bias.

First, we demonstrate in Figure 4 that the third leading eigenvalue of ∑ℓAℓ
2 when ρ = 0.15 

is indistinguishable from the remaining bulk “noise” eigenvalues if the diagonal bias is not 

removed (left), but becomes well-separated if so (middle). Recall by construction (19), all 

three eigenvectors are needed for recovering the communities. Hence, if the third eigenvalue 

of ∑ℓAℓ
2 is indistinguishable from fourth through last eigenvalues (i.e., the “noise”), then we 

should expect many nodes to be mis-clustered. This is exactly what Figure 4 (left) shows, 

where the third eigenvalue (denoted by the left-most red vertical line) is not separated from 

the remaining eigenvalues. However, when we appropriately bias-adjust ∑ℓAℓ
2 via (7), then 

Figure 4 (middle) shows that the third eigenvalue is now well-separated from the remaining 

eigenvalues. This demonstrates the importance of bias-adjustment for community estimation 

in this regime of ρ.

Next, in Figure 4 (right), we show that this lack-of-separation between the third eigenvalue 

and the noise can be observed on the population level. Specifically, we show that the 
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population counterpart of ∑ℓAℓ
2 has considerable diagonal bias that makes the accurate 

estimation of the third eigenvector nearly impossible when ρ is too small. To show this, for a 

particular value of ρ, recall from our theory that the population counterpart of ∑ℓAℓ
2 is

∑
ℓ = 1

L
(Pℓ

2 + Dℓ), for a diagonal matrix Dℓ where Dℓ, ii = ∑
j = 1

n
Pℓ, ij for 1 ≤ i ≤ n,

and Pℓ = EAℓ. Let λ1,...,λn denote the n eigenvalues of the above matrix, dependent on ρ. 

We then plot (λ3 – λ4) / λ4 against ρ in Figure 4 (right). This plot demonstrates that when 

ρ is too small, the diagonal entries (represented by Dℓ ‘s) add a disproportionally large 

amount of bias that makes it impossible to accurately distinguish between the third and 

fourth eigenvectors. Additionally, the raise in the eigengap in Figure 4 (right) at ρ = 0.15 

corresponds to when “SoS” starts to improve in Figure 3 (orange triangles). This means 

starting at ρ = 0.15, the effect of the diagonal bias starts to diminish, and at larger values 

of ρ, the sum of squared adjacency matrices contains accurate information for community 

estimation (both with and without bias adjustment). We report additional results in Appendix 

E, where we report the time needed for each method, visualize the lack of concentration 

in the nodes’ degrees in sparse graphs and its effect on the spectral embedding, and also 

report that the qualitative trends in Figure 3 remain the same when we either consider the 

varying-membership setting (described in Corollary 2) or an additional variant of spectral 

clustering where the eigenvectors are reweighted by its corresponding eigenvalues.

6 Data application: Gene co-expression patterns in developing monkey 

brain

We analyze the microarray dataset of developing rhesus monkeys’ tissue from the medial 

prefrontal cortex introduced in Section 1 that was originally collected in Bakken et al. 

(2016) to demonstrate the utility of our bias-adjusted sum-of-squared spectral clustering 

method. As described in other work that analyze this data (Liu et al. (2018) and Lei 

et al. (2019)), this is a suitable dataset to analyze as other work have well-documented 

that the gene co-expression patterns in monkeys’ tissue from this brain region change 

dramatically over development. Specifically, the data from Bakken et al. (2016) consists of 

the gene co-expression network of ten different developmental times (starting from 40 days 

in the embryo to 48 months after birth) derived from microarray data, where each of the 

developmental time points corresponds to post-mortem tissue samples of multiple unique 

rhesus monkeys. With this data, we aim to show that our bias-adjusted sum-of-squared 

spectral clustering method produces insightful gene communities.

Preprocessing procedure.

The microarray dataset from Bakken et al. (2016) contains n = 9173 genes measured among 

many samples across the L = 10 layers, which we preprocess into ten adjacency matrices 

in the following way in line with other work like Langfelder and Horvath (2008). We use 

these specific set of n genes, following the analysis in Liu et al. (2018), since they map to 

the human genome. First, for each layer ℓ ∈{1,...,L}, we construct the Pearson correlation 
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matrix. Then, we convert each correlation matrix into adjacency matrix by hard-thresholding 

at 0.72 in absolute value, resulting in ten adjacency matrices A1,...,AL. We choose this 

particular threshold since it yields sparse and scale-free networks that have many disjoint 

connected components individually but have one connected component after aggregation, as 

reported in Appendix F. Lastly, we remove all the genes corresponding to nodes whose total 

degree across all ten layers is less than 90. This value is chosen since the median total degree 

among all nodes that do not have any neighbors in five or more of the layers (i.e., a degree of 

zero in more than half the layers) is 89. In the end, we have ten adjacency matrices A1,...,AL 
∈{0,1}7836×7836, each representing a network corresponding to 7836 genes. We note that 

the above procedure of transforming correlation matrices into adjacency matrices is unlikely 

to procedure networks that severely violate the layer-wise positivity assumption commonly 

required by other methods – this hypothetically could happen if many pairs of genes display 

high negative correlations, but this is not typical in genomic data. Nonetheless, we are 

interested in what insights the bias-adjusted sum-of-squared spectral clustering method can 

reveal for this dataset.

Results and interpretation.

The following results show that bias-adjusted sum-of-squared spectral clustering finds 

meaningful gene communities. Prior to using our method, we select the dimensionality 

and number of communities to be K = 8 based on a scree plot of the singular values 

of the bias-adjusted variant of ∑ℓAℓ
2. We perform our bias-adjusted spectral clustering on 

this matrix with K = 8, and visualize three out of the ten adjacency matrices using the 

estimated communities in Figure 5 (which are the full adjacency matrices corresponding to 

the three adjacency matrices shown in Figure 1). We see that as development occurs from 

40 days in the embryo to 48 months after birth, there are different gene communities that 

are most-connected. This visually demonstrates different biological processes in brain tissue 

that are most active at different stages of development. Labeling the communities 1 through 

8 from top left to bottom right, our results show that starting at 40 days in the embryo, 

Community 1 is highly coordinated (i.e., densely connected), and ending at 48 months 

after birth, Community 7 is highly coordinated. All the genes in Community 8 are sparsely 

connected throughout all ten adjacency matrices, suggesting that these genes are not strongly 

correlated with many other genes throughout development.

To interpret these K = 8 communities, we perform a gene ontology analysis, using the 

cluster- Profiler::enrichGO function on the gene annotation in the Bioconductor package 

org.Mmu.eg.db to analyze the scientific interpretation of each of the K communities of 

genes within rhesus monkeys. Table 1 shows the results. We see the first seven communities 

are highly enriched for cell processes closely related to brain development – we can interpret 

Figure 5 and Table 1 together as which biological systems are most active in a coordinated 

fashion at different developmental stage. Since genes in the eighth community are sparsely-

connected across all developmental time and is not enriched for any cell processes, we 

infer that these genes are unlikely to be coordinated to drive any process related to brain 

development. Together, these results demonstrate that the bias-adjusted sum-of-squared 

spectral clustering is able to find meaningful gene communities. Visualizations of all ten 

adjacency matrices, beyond those shown in Figure 5 and explicit reporting of the edge 
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densities, as well as stability analyses that demonstrate how the results vary when different 

tuning parameters are used, are included in Appendix F.

7 Discussion

While we establish community estimation consistency in this paper, there are two major 

additional theoretical directions we hope our results will help shed light into for future 

work. First, an important theoretical question in the study of stochastic block models is 

the critical threshold for community estimation. This involves finding a critical rate of the 

overall edge density and/or the separation between rows of Bℓ,0, and proving achievability 

of certain community estimation accuracy when the density and/or separation are above this 

threshold, as well as impossibility for non-trivial community recovery below this threshold. 

For single-layer SBMs, this problem has been studied by many authors, such as Massoulié 

(2014), Abbe and Sandon (2015), Zhang and Zhou (2016), and Mossel et al. (2018). The 

case of multi-layer SBMs is much less clear, especially for generally structured layers. The 

upper bounds proved in Paul and Chen (2020) and Bhattacharyya and Chatterjee (2018) 

imply achievability of vanishing error proportion when Lnρ → ∞ under a layer-wise 

positivity assumption. Our results requires a stronger L1/2nρ / log1/2 (L + n) → ∞ condition, 

but does not require a layer-wise positivity assumption. Ignoring logarithmic factors, is a 

rate of L1/2 the right price to pay for not having the layer-wise positivity assumption? The 

error analysis in the proof of Theorem 1 seems to suggest a positive answer, but a rigorous 

claim will require a formal lower bound analysis. We note that the simplified constructions 

such as that in Zhang and Zhou (2016) designed for single-layer SBMs are unlikely to 

work, since they do not reflect the additional hardness brought to the estimation problem by 

unknown layer-wise structures.

Second, the consistency result for multi-layer SBMs also makes it possible to extend other 

inference tools developed for single-layer data to multi-layer data. One such example is 

model selection and cross-validation (Chen and Lei, 2018, Li et al., 2020). The probability 

tools developed in this paper, such as Theorem 3 and Theorem 4 and Theorem B.2, may 

be useful for other statistical inference problems involving matrix-valued measurements 

and noise. For example, our theoretical analyses could refine the theoretical analyses for 

multilayer graphs that go beyond SBMs, such as degree-corrected SBMs or random dot-

product graphs in general (Nielsen and Witten, 2018; Arroyo et al., 2021). Alternatively, in 

dynamic networks where the network parameters change smoothly over time, one may use 

nonparametric kernel smoothing techniques in Pensky and Zhang (2019) and the matrix 

concentration inequalities developed in this paper to control the aggregated noise and 

perhaps obtain more refined analysis in those settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The adjacency matrix (top row, yellow denoting the presence of an edge and blue denoting 

the lack of) and the corresponding network (bottom row) for three different developmental 

times of the rhesus monkey’s gene co-expression in the medial prefrontal cortex based 

on selected set of genes to visually demonstrate the varying network structures. Likewise, 

the ordering of the genes in the adjacency matrices is chosen to visually demonstrate 

the clustering structure, and persist throughout all three adjacency matrices. The three 

developmental times are E40, E90 (for 40 or 90 days in the embryo) and 48M (for 48 

months after birth), corresponding to the pair of plots on the left to the pair of plots on the 

right. The full dataset is analyzed in Section 6.
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Fig. 2. 
The average proportion of mis-clustered nodes for three methods (measured via Hamming 

distance n−1d(θ, θ) shown in (2), averaged over 100 trials), with n = 200 and two equal-sized 

communities among overall edge densites ranging from ρ ∈[0.02, 0.06] and L = 30 layers. 

Three methods’ performance are shown: Sum (green squares), SoS (orange triangles), and 

Bias-adjusted SoS (blue circles).
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Fig. 3. 
The average proportion of mis-clustered nodes for eight methods (measured via Hamming 

distance n−1d(θ, θ) shown in (2), averaged over 100 trials), with n = 500 with three 

unequally-sized communities among overall edge densities ranging from ρ ∈[0.025, 0.2] and 

L = 100 layers. Six methods’ performance are shown: “Sum” (green squares), “SoS” (orange 

triangles), “Bias-adjusted SoS” (blue circles), “Tensor matricization” (purple diamonds), 

“LMF” (red circles), and “Co-reg” (gray squares).
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Fig. 4. 
(Left): For one realization of A1,...,AL given the setup described in the simulation with ρ = 

0.15, a histogram of all 500 eigenvalues of ∑ℓAℓ
2, where the red vertical dashed lines denote 

the second and third eigenvalues. (The first eigenvalue is too large to be shown.) (Middle): 

Similar to the left plot, but showing the 500 eigenvalues of the bias-adjusted variant of ∑ℓAℓ
2

(i.e., setting the diagonal to be all 0’s). (Right): The population eigengap (λ3 – λ4) / λ3 

computed from ∑ℓPℓ
2 + Dℓ for varying values of ρ.
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Fig. 5. 
Three of ten adjacency matrices where the genes are ordered according to the estimated K = 

8 communities. Blue pixels correspond to the absence of an edge between the corresponding 

genes in Aℓ ‘s, while yellow pixels correspond to an edge. The dashed white lines denote 

the separation among the K = 8 gene communities. The adjacency matrices shown in Figure 

1 correspond to the same three developmental times (from left to right), and are formed by 

selecting only the genes in Communities 1, 4, 5, and 7.
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Table 1

Gene ontology of the estimated K = 8 communities of genes. Here, “GO” denotes the gene ontology ID, and 

“p-value” denotes the Fisher’s exact test to denote an enrichment (i.e., significance or over-representation) of a 

particular GO for the genes in said community compared to all other genes.

Community Description GO ID p-value

1 RNA splicing GO:0008380 1.07 × 10−11

2 Nuclear transport GO:0051169 3.15 × 10−5

3 Neuron development GO:0048666 2.08 × 10−8

4 Chromosome segregation GO:0007059 1.31 × 10−8

5 Neuron projection development GO:0031175 1.51 × 10−5

6 Regulation of transporter activity GO:0032409 5.68 × 10−6

7 Anchoring junction GO:0070161 8.86 × 10−5

8 None
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