
I’m not sure that curve means what you think it means: Toward 
a [more] realistic understanding of the role of eye-movement 
generation in the Visual World Paradigm

Bob McMurray1,2,3,4

1Department of Psychological and Brain Sciences, 278 PBSB, University of Iowa, Iowa City, IA 
52242, USA

2Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA

3Department of Linguistics, University of Iowa, Iowa City, IA, USA

4Department of Otolaryngology, University of Iowa, Iowa City, IA, USA

Abstract

The Visual World Paradigm (VWP) is a powerful experimental paradigm for language research. 

Listeners respond to speech in a “visual world” containing potential referents of the speech. 

Fixations to these referents provides insight into the preliminary states of language processing as 

decisions unfold. The VWP has become the dominant paradigm in psycholinguistics and extended 

to every level of language, development, and disorders. Part of its impact is the impressive 

data visualizations which reveal the millisecond-by-millisecond time course of processing, and 

advances have been made in developing new analyses that precisely characterize this time 

course. All theoretical and statistical approaches make the tacit assumption that the time course 

of fixations is closely related to the underlying activation in the system. However, given the 

serial nature of fixations and their long refractory period, it is unclear how closely the observed 

dynamics of the fixation curves are actually coupled to the underlying dynamics of activation. 

I investigated this assumption with a series of simulations. Each simulation starts with a set of 

true underlying activation functions and generates simulated fixations using a simple stochastic 

sampling procedure that respects the sequential nature of fixations. I then analyzed the results 

to determine the conditions under which the observed fixations curves match the underlying 

functions, the reliability of the observed data, and the implications for Type I error and power. 

These simulations demonstrate that even under the simplest fixation-based models, observed 

fixation curves are systematically biased relative to the underlying activation functions, and they 

are substantially noisier, with important implications for reliability and power. I then present a 

potential generative model that may ultimately overcome many of these issues.
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Introduction

In the past 25 years, few empirical methods in cognitive science have had the wide-ranging 

impact of the Visual World Paradigm (VWP; Tanenhaus et al., 1995) on language research 

(Magnuson, 2019; Salverda et al., 2011, for reviews). The VWP starts from a simple 

premise. Subjects are situated in a visual world. This could be as simple as four pictures on 

a computer screen or as complex as a real-world conversation over real objects. They then 

hear spoken language referring to those objects. Objects represent possible interpretations 

of the speech. While they perform this task (or just scan the scene), eye movements are 

monitored. Since eye movements unfold continuously as the subjects interpret the speech, 

they thus provide insight into the degree to which listeners consider various interpretations 

over time.

This was initially applied to sentence processing (Eberhard et al., 1995) and word 

recognition (Allopenna et al., 1998). However, the ultimate impact of the VWP was 

inconceivable in 1995. It rapidly spread down the language chain to speech perception 

(McMurray et al., 2002), and up to pragmatics (Hanna & Tanenhaus, 2004; Keysar et al., 

2000). It has become important in understanding development (Fernald et al., 1998; Rigler et 

al., 2015; Snedeker & Trueswell, 2004), and bilingualism (Spivey & Marian, 1999), and for 

characterizing language comprehension in clinical populations including people who have 

dyslexia (Desroches et al., 2006), autism (Brock et al., 2008), schizophrenia (Rabagliati et 

al., 2019), developmental language disorder (McMurray et al., 2010), and brain damage 

(Mack et al., 2013; Mirman et al., 2011). It has even been applied outside of spoken 

language, to reading (Hendrickson et al., 2021) and speech production (Griffin, 2001).

The VWP is not a panacea. There are limits on the types of words or objects that can 

be studied (picturable nouns), and it can be difficult to map complex sentences onto a 

visual scene while preserving some kind of task for the subject. There are ongoing concerns 

about whether the visual scene constrains linguistic processing (Magnuson, 2019). Such 

constraints could be theoretically important as a marker of the embodiment and interactivity 

of language and vision (Spivey, 2007). They could also be a confound, as in arguments that 

fixations in the VWP only reflects objects that have been “prenamed” in working memory 

(see Huettig et al., 2011, for a discussion), though concern has been ruled out empirically at 

least for word recognition (Apfelbaum et al., in press). Despite these ongoing concerns, the 

VWP has remained highly influential for three reasons.

First, unlike techniques such as priming, the task of the VWP is natural: understanding 

language. Thus, it is more ecological and more suitable for populations who may lack the 

meta-linguistic awareness needed for tasks like lexical decision. Second, most alternatives—

including reaction times, but also neuroimaging approaches like MRI and ERPs—make only 

indirect inferences about language processing by identifying conditions in which processing 
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is difficult. In contrast, the VWP offers more direct access to what interpretations are 

considered during processing: If a subject is fixating a referent (more than unrelated object), 

they are considering it.

Perhaps the most important reason for the VWP’s impact is time. The VWP has long been 

touted as a “real-time” measure, estimating the state of the system while processing unfolds. 

It is not the first real-time method, but it is richer than many. In prior approaches like 

cross-modal priming or response deadlines, the researcher defines a small number of time 

points of interest, and these are probed on distinct trials. For example, if one wanted to use 

priming to assess processing at 200 and 500 ms after word onset, one would present the 

orthographic target 200 ms after the word on half the trials, and 500 ms on the other half. 

Each trial assesses one time point, and the number of total time points that can be measured 

is limited. In contrast, VWP has been claimed to assess processing nearly continuously in 

time on all trials. This is an inconceivably large advance in the richness of the data.

Part of this claim rests on the temporally rich visualizations of the data. From the beginning, 

researchers adopted visualizations like Fig. 1 (Allopenna et al., 1998) to depict the time 

course of fixations (termed “fixation curves” here). Multiple studies have illustrated a close 

correspondence between these kinds of visualizations and continuous output from models 

such as TRACE (McClelland & Elman, 1986) and TISK (Allopenna et al., 1998; Dahan et 

al., 2001; Hannagan et al., 2013; McMurray et al., 2009). And this is not mere observation

—one can manipulate parameters of the model and show systematic distortions that mimic 

differences among people with language disorders or brain damage (Dahan et al., 2001; 

McMurray et al., 2010; Mirman et al., 2011). This has yielded a collective sense that these 

curves fairly precisely characterize the time course of processing.

The power of these visualizations has led to an explosion of techniques for making precise 

statistical estimates about the dynamics of the fixation curve (Cho et al., 2018; McMurray 

et al., 2010; Porretta et al., 2018; Seedorff et al., 2018). These approaches offer evermore 

mathematically and statistically precise ways to characterize these nonlinear functions, and 

the factors that affect them. All of these approaches—including ones I helped develop—

assume the face validity of the fixation curve. This validity has not been questioned.

This manuscript starts from the premise that all of these approaches fail to take seriously 

the nature of the fixation record as a stochastic series of discrete and fairly long-lasting 

physiologically constrained events. A model of this process is implemented to determine 

whether the form of this stochastic process alters the observed fixation curves that one 

should expect from a given underlying function. The short answer to this question is 

that the regularities of this stochastic process have both systematic and unpredictable 

effects on the observed fixation curves; they add not only noise but also bias. As a 

result, the fixation curves do not always resemble the underlying dynamics of the system, 

and this may necessitate alternative statistical models and caution in interpreting existing 

models. Critically, as the field moves to issues of power, reliability, and replicability, 

understanding the contributions of this stochastic component to the data is critical for 

designing experiments, identifying indices of psychological constructs in the fixation record, 

and evaluating the rigor of VWP studies more broadly.
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This manuscript starts with a brief review of current analytic approaches. It then turns to 

a detailed discussion of how fixation curves are derived and the linking hypotheses that 

conceptualize the relationship between the underlying activation in the system and observed 

fixations before presenting the simulations.

Analytic approaches to the VWP

This project’s goal is not to evaluate analytic approaches, but its questions are motivated by 

current analysis methods. Three broad classes of analytic approaches have been used.

Fixation-driven approaches—The earliest studies used fixation-driven approaches, 

which emphasize specific properties of the fixation record: the number of fixations to an 

object, the duration, the likelihood of transition from one object to another, and so forth 

(e.g., see McMurray et al., 2008a, 2009; Spivey & Marian, 1999; Tanenhaus et al., 1995). 

Such approaches are historically related to work done on eye-movement control in reading, 

which has led to fixation-driven measures tied to theoretical constructs (e.g., first fixation 

duration, regressions; cf. Rayner et al., 1998). These measures are highly physiologically 

grounded and straightforward to estimate. However, there are several limits.

First, there are many such measures in principle. In reading, measures like first fixation 

time or the likelihood of refixation are linked to theoretical concepts about reading, lexical 

access, and sentence processing, permitting a hypothesis-driven approach. However, eye-

movement control in reading may be somewhat simpler than in the VWP. In reading, 

eye-movement control is routinized (overpracticed) and largely directed by the problem of 

extracting information. However, in the VWP, eye movements simultaneously reflect visual 

information uptake, language processing (matching lexical activation to the scene), and 

response planning (and this may differ as the task/decision unfolds; Magnuson, 2019). With 

no clear theory to guide variable selection, this can lead to too many researcher degrees of 

freedom.

Second, this problem is exacerbated by the fact that an effect on the underlying 

decision function may be spread across multiple fixation variables. For example, increased 

competitor activation could increase the probability of fixating an object, extend the 

fixation’s duration, or increase the likelihood of returning to it. Any single measure may 

lack power to detect effects.

Finally, fixation-driven measures are not always temporally precise, and there are 

fundamental limitations on this. Consider a simple measure like the likelihood of fixating 

the competitor. One might like to estimate this at multiple times (e.g., between 100 and 200 

ms, 200 and 300). However, given the low likelihood of fixating the competitor overall, there 

may be very few trials to contribute to any individual bin for a given subject.1

Fixation curves: Indices—Using the fixation curves (Fig. 1) as the basis of analysis 

overcomes some of these limits. When the VWP was developed, we lacked statistical tools 

to fully characterize these functions in time. Consequently, many studies started from these 

1Though this may be achievable with Bayesian and/or mixed-model methods.
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curves as a visualization tool but derived individual indices to assess aspects of them. An 

example is area under the curve (AUC), in which one simply averages over the time span of 

interest and uses that as a measure of how much the subject is fixating a given object.

Index approaches offer some advantages over fixation-based ones. First, the fixation curve 

is simultaneously affected by many properties of the fixation record (likelihood of fixating, 

transitions, duration, and so forth). These would all be independent Dependent Variables 

(DVs) in a fixation-based analyses (with lower power). In contrast, the fixation curves 

functionally collapse across these properties to a single DV. A subject could have a higher 

AUC because fixations were longer, they were more likely to look at the competitor, or they 

fixated it twice. Thus, indices may overcome some of the degrees of freedom associated 

with fixation-based approaches. Of course, they add their own degrees of freedom. AUC, for 

example, requires the researcher to specify a time window. However, recent approaches like 

permutation-based clustering (Maris & Oostenveld, 2007) and BDOTS (Oleson et al., 2017) 

can detect that there is a difference and also the time window over which it occurs.

Second, these measures can be much more temporally specific than fixation-based measures. 

They do not rely on having some quantity of fixation that precisely starts or stops at certain 

times, and the temporal precision is limited only by the sampling period.

Third, index approaches are not limited to the overall degree of looking. This can lead 

to measures that are highly theoretically informed, provided we accept the validity of the 

fixation curves. For example, indices have been identified to determine when the fixation 

curve crosses a threshold (Ben-David et al., 2011), to estimate the peak looking to a 

competitor, or the duration over which competitor fixations were above threshold (Rigler 

et al., 2015). Perhaps the most sophisticated approach is an onset detection technique 

developed by me and my colleagues (Galle et al., 2019; McMurray et al., 2008b; and see 

Reinisch & Sjerps, 2013). These combine both target and competitor fixations to estimate 

when the fixations record is biased by different factors in the input.

In the best versions, indices are hypothesis driven; some (like onset detection) have been in 

use sufficiently across papers that they are fairly standard (minimizing researcher degrees 

of freedom [d.f.]). Such indices can serve as a confirmatory hypothesis test in which the 

researcher proposes a measure—in advance—and tests only that DV. However, at worst, they 

can also be unconstrained.

These approaches have fallen out of favor, but not for the reasons you think. In their 

heyday, questionable research practices were not the concern that they are now. Instead, 

researchers saw a different glaring weakness: While they start from the fixation curves, 

index approaches do not model the full time course. To many (including me), this felt like a 

missed opportunity.

Time course analyses—In the past decade, new approaches have been developed to 

more precisely model the fixation curve. The first used polynomial growth curves in a 

mixed model (Mirman et al., 2008). Shortly later, my lab introduced nonlinear curvefitting 

(Farris-Trimble & McMurray, 2013; McMurray et al., 2010) to more intuitively capture the 
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shape of the fixation curve, though only when it fit a predefined form. Newer approaches 

offer more flexibility and precision. generalized additive mixed models (GAMMS; Porretta 

et al., 2018) use “smoothing” functions to capture virtually any nonlinear effect of time. 

Cho et al. (2018) propose a more radical auto-regressive framework in which time is not 

an explicit factor. Rather, the proportion of fixations at each time is modeled as a function 

of the proportion at the previous time. These approaches offer even more flexibility and 

can accommodate curves of virtually any shape, and in a mixed-model framework that can 

handle cross-random effects.

The current zeitgeist—as seen in the evolution of these statistical approaches—is to model 

the precise time course of fixations with evermore precision and rigor. These precise 

specifications are then interpreted as reflecting precise read outs of cognitive states. 

However, this rests on the assumption of a direct linking function between underlying 

decision dynamics and measurable fixation curves. This linking function has not been 

explicitly investigated.

What are fixation curves, and where do they come from?

Typical fixation curves appear to be continuous and smooth, but they are actually built from 

discontinuous and “chunky” data. Saccades are relatively ballistic, and fixations are discrete. 

Listeners can only fixate one thing at a time, and once they get there, there is a roughly 

200-ms refractory period until they can move. Figure 2 shows a schematic of how these 

smooth curves are built from this data. In this example, the visual display (Fig. 2a) might 

contain a target object (sandal, in purple), a cohort (sandwich, in blue), a rhyme (candle, 

in red), and an unrelated object (necklace, in gray). On each trial, subjects make a series 

of discrete fixations to these objects (Fig. 2b). On Trial 1, for example, they may look at 

the correct object and stay there, while on Trial 3, they may briefly fixate the cohort before 

moving to the target.

To construct the fixation curves, the researcher averages across trials, within times, to 

compute the proportion of trials on which subjects were fixating a class of referents (Fig. 

2c).2 Two-hundred ms is marked here as a rough estimate of the time it takes to plan and 

launch an eye movement (Viviani, 1990)—fixations initiated before then are not thought to 

be driven by the auditory input, and a saccade launched at 600 ms (for example) was likely 

planned at 400 ms. It also thus represents the refractory period before the subject can make 

another fixation.

These curves are used to make inferences about activation that is presumed to be 

continuous over time. The typical (unspoken) assumption in analyzing these data can 

be termed the high-frequency sampling (HFS) assumption. Under this assumption, the 

underlying activation of a word or interpretation determines the probability of fixating the 

corresponding object. If the researcher is sampling at 4 ms intervals, the fixation curve thus 

derives from a probabilistic sample every 4 ms. To account for the oculomotor delay, the 

2Oddly, these curves are colloquially described as the proportion of fixations, but as this description makes clear, they really represent 
the proportion of trials (on which the subject was fixating a given object at a given time).
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likelihood of fixating an object at a given time is a function of the underlying probability 

200 ms prior.

The HFS sampling assumption is most clear in studies using the Luce Choice rule to 

generate VWP predictions from continuous activation models (Allopenna et al., 1998; 

Dahan et al., 2001; Hannagan et al., 2013; McMurray et al., 2010; Mirman et al., 2011). 

Here, the underlying activation is given by a model (TRACE or TISK), and this activation is 

transformed into a likelihood of fixating each object at each timestep. This is done with no 

attempt to model the intervening fixations (though see Chapter 7 in Spivey, 2007). To be fair, 

this works well; these studies show a very high concordance between model predictions and 

fixation curves.

The labs that have used HFS in this explicit way typically treat HFS as a simplifying 

assumption that enables one to make theoretical claims about underlying decision dynamics 

from the data. It has never been treated as a strong theoretical claim about how fixations 

are linked to underlying activation. In fact, the HFS assumption is patently untrue. Subjects 

cannot move their eyes every 4 ms. Once a subjects’ gaze lands on something, they must 

stay there for about 200 ms; and saccades (which typically last 30–50 ms) can only be 

altered in flight in rare circumstances. Moreover, the duration of fixations to competitors can 

be related to experimental conditions (such as the degree of phonemic ambiguity: McMurray 

et al., 2008a), and people are more likely to look at some screen locations (e.g., top left 

> top right > bottom left; Salverda et al., 2011), or are more likely to make transitions 

between nearby objects but not more distal (e.g., diagonal). The common defense is that 

when sampling across a reasonably large number of trials, the precise timing and duration 

of eye movements is fairly random. Consequently, it is reasonable to treat each time slice as 

an independent sample from the underlying activation function 200 ms prior. But is it safe to 

assume that noise across trials uniformly smears over the discrete nature of fixations?

Current statistical approaches attack this issue around the edges. For example, one of the 

consequences of the fact that fixations unfold as a series of discrete events is that the 

fixation curve at each step is related to prior steps, since adjacent samples are likely to be 

influenced by the same fixation. Models then may be improved by assuming autocorrelated 

errors (Oleson et al., 2017), or by modeling the mean in terms of this autocorrelation (Cho 

et al., 2018). However, this still assumes each time point is an independent draw from the 

underlying probability function (even though the mean or variance of that distribution might 

be related to prior times).

The open question addressed here is whether these systematic effects on fixations can be 

treated as noise or if they bias the fixation curves away from the underlying decision curves 

that generated them. If HFS does not hold, this may not be a major problem for index 

approaches as these do not attempt to precisely capture the entire time course. However, 

the goal of all existing time-course-based approaches is to extract precise estimates of when 

the fixation curves affected by experimental conditions. If the HFS does not hold, this 

raises a conundrum. These approaches may be more accurate at modeling the data, but the 

fine-grained dynamics they purport to capture may not accurately reflect the underlying 

dynamics we wish to assess.
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Goals of the present study

As psychology and cognitive science have begun to pay more attention to methodological 

rigor, it has become clear that in addition to issues of statistical impropriety and researcher 

degrees of freedom (Bakker et al., 2012; Open Science Collaboration, 2015; Stroebe et 

al., 2012), one contributor to the replication crisis is poor theoretical specificity (Oberauer 

& Lewandowsky, 2019). There is a chain of assumptions that allow researchers to derive 

predictions of behavioral data from a theory that is rarely couched in behavioral terms 

(Meehl, 1990; Scheel et al., 2021). Fleshing out this derivation chain and validating its 

components are essential for generating accurate empirical predictions from theory. Without 

confidence in what a theory predicts, a theory could be true, but this cannot be detected 

by available empirical evidence. Or conversely, it may be falsely assumed to be true on the 

basis of invalid predictions. In this context, understanding how the sequential and chunky 

nature of the fixation system contributes to the smooth fixation curves is an essential 

component of the derivation chain for the VWP.

To accomplish this, a series of Monte Carlo simulations were run, in which an underlying 

activation function for a given “subject” was known, and a series of fixations were generated 

using both the HFS model as well as more sophisticated models that capture the chunkiness 

of the fixation system. The observed fixation curves were then related to the underlying 

activation to characterize the role of the fixation-generating system in shaping this common 

visualization.

This study addressed six key questions. However, it is important to note the context. Many 

VWP experiments ask essentially either/or questions. For example, they might ask whether 

listeners fixate a competitor more or less in some or are faster to converge on the target 

in conditions than others. These are referred to as ordinal questions. For these coarser 

questions, perhaps the HFS assumption is close enough. But even in this case, there are three 

questions that remain relevant to ordinal designs.

First, do the assumptions about the underlying generating function lead to differences in the 

statistical properties of the fixation curves? Does the stochasticity lead to reduced power or 

create the possibility of a Type I error?

Second, and relatedly, as the VWP is increasingly applied to individual differences 

or correlational designs, its reliability is of concern (though this is also relevant for 

experimental work: Hedge et al., 2018; Schmidt, 2010). Reliability is clearly a function 

of the task itself, but in any system in which results are sampled stochastically, some portion 

derives from the laws of probabilistic sampling. This is particularly unpredictable in a 

complex system such as the saccade system. Thus, we ask if some portion of the reliability 
of the VWP derives from the fixation system? This is essential for knowing the upper limit 

of efforts to improve reliability by improving items, task properties, and so on.

Third, since the data are probabilistic, power, Type I error, and reliability are all likely 

shaped by the number of samples (trials).
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Understanding these factors are important for designing more rigorous experiments, 

planning power, identifying the cause of null effects, and avoiding spurious significant 

effects. Moreover, fixation-generating function clearly accounts for some proportion of the 

variance. To the extent that this can be understood or even modeled, we can attain a more 

complete characterization of the data (and this may help reveal small effects).

There is also increasing interest in going beyond simple differences, to use the fixation 

curves to make fine-grained claims about the time course of processing using what I term 

termed continuous-in-time experiments. This is seen in evermore sophisticated statistical 

approaches (Cho et al., 2018; Mirman et al., 2008; Porretta et al., 2018). Such designs raise 

new questions.

Fourth, we ask whether it is necessary to model the time course with such accuracy, or 

conversely, if failing to do so leads to Type I error or loss of power.

Fifth, theoretical accounts have argued that different aspects of the fixation curves mean 

different things. For example, we have proposed that typical development is reflected 

in differences in the slope of the target function (reflecting increasing rate of spreading 

activation) while language disorders are reflected in the asymptote (reflecting failure to 

resolve competition; McMurray et al., 2022a). Thus, it is important to understand the degree 

to which specific assertions such as these can be tested: Can a difference in the underlying 

slope appear as a difference in the asymptote because of the fixation-generating system? Are 

some aspects of the curves more corrupted by the fixation-generating functions than others?

Sixth, studies are increasingly time locking analysis of the fixation curves (and theoretical 

claims) to the time of linguistic events in the real world. For example, they may analyze 

fixations prior to a particular event to document anticipation (Altmann & Kamide, 1999; 

Salverda et al., 2014), or they may examine only fixations after a particular event to ask 

if information or decision processes persist (Dahan & Gaskell, 2007; McMurray et al., 

2009). However, it is possible that the inherent dynamics of the fixation system could 

systematically bias the ability to map the time of change in the fixation curve to real time. 

Thus, it is important to know the circumstances under which such inferences can be made.

More broadly, the VWP is often used to make claims like an effect occurs as soon as 

incoming speech hits the language system, or that competitor activation persists surprisingly 

long. This is supported by modeling work showing a close time-locking of VWP results 

to computational models (Allopenna et al., 1998; Hannagan et al., 2013; McMurray et 

al., 2010; Mirman et al., 2011). This modeling work—and these colloquial assumptions—

assume a linear mapping from time in the world to the timing of the fixation curves. But 

this assumption may not be guaranteed given the nature of the fixation system. A broader 

investigation could either support this conceptualization or raise the need for more cautious 

interpretations of VWP data.

Simulation 0: Stochastic sampling

Before discussing simulations of actual fixation curves, it is helpful to consider the simple 

math of random sampling. If one flips a coin four times, the most likely value is to get 
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two heads and two tails. But that is only likely to occur on 37.5% of the “runs.” That is, 

less than half the time, the outcome of this experiment does not reflect the true underlying 

probability (it has low validity). If one were to perform this twice (test–retest reliability), 

reliability would be poor: On many tests, you might get three heads on one run but two on 

another. In fact, the chances of observing two heads on two consecutive runs is only 14%! 

However, in a run of 100 flips, things might look quite different—one is much more likely 

to get an observed value close to 50%, and to be to obtain something close to that twice 

in a row. These properties are also a consequence of the probability. What if the coin were 

loaded such that likelihood of a head is only 0.25? Here, if the coin is flipped four times, 

the most likely outcome is one head and three tails. That will occur slightly more often than 

the mostly likely outcome for a fair coin (42.2%) and the chances of getting it twice in a 

row is higher (17%). Thus, validity and reliability are lawful consequences of the number of 

coin-flips or draws and the probability.

The stochastic generation of eye movements must obey these simple principles. For 

example, the underlying probability of a cohort fixation may be quite low, whereas the 

target could be closer to 50%. This will clearly influence the reliability and power of an 

experiment that relies on the target or the competitor; and such considerations should be 

taken into account when choosing the number of trials. Thus, it was important to visualize 

the consequences of these simple principles of stochastic sampling before considering the 

more complex consequences of an eye-movement generating function.

Virtually all tests based on accuracy fall prey to this issue. However, I have found 

no published descriptions of the relationship between number of samples, the baseline 

probability, and the validity/reliability of a measure. Thus, a simple simulation (see 

Supplement S1 for methods) was conducted in which an underlying probability was chosen, 

some number of draws were performed, and the mean was saved. This was done twice, 

and the whole process repeated for 50 subjects. The correlation (across subjects) between 

the mean and the original probability, and between the means from the two runs was then 

computed. This was done for a range of underlying probabilities, from low values like.15 

(typical of cohort fixations) to higher values like.8 (typical of target fixations). This was 

done with a range of draws (from 5 to 300), even though typical VWP experiments might 

only include 15–30 trials (repetitions) per condition.

Figure 3 shows the results. At low numbers of repetitions (5–10 trials), validity is poor and 

only greater than 0.6 when the underlying probability was near the middle of the range. 

Reliability was extremely poor and did not crest 0.5 in even the best of circumstances. 

In fact, at low or high underlying probabilities, reliability didn’t cross 0.2! At a more 

reasonable 50 trials, when the underlying probability was 0.5, validity (r >.9) and reliability 

(r ~.8) were strong. But, at more extreme values typical of the VWP, both fell precipitously. 

And only with more than 150 repetitions were validity and reliability reasonable at all 

underlying probabilities.

Of course, a fixation analysis is more complex than this simple simulation—typical 

measures for the VWP pool across multiple samples and extract complex values (e.g., the 

slope). This could enhance reliability and validity (since each trial effectively contributes 
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multiple draws) or threaten it (from compounding noise). Thus, this simulation offers only 

a baseline for validity and reliability; it is unclear to what extent the fixation model may 

impact these psychometric properties.

Overview and methods of simulations

To investigate the role of the fixation-generating model, a series of simple simulations 

were developed.3 These simulations started by first selecting a function that describes the 

probability of fixating the target (or a competitor) over time. Parameters of this function 

are then randomly selected to simulate a single subject. This is termed the underlying or 

generating function. I next randomly generated a series of fixations from this underlying 

function using various assumptions about how eye movements are generated. This was then 

done for 300 trials, and the data were averaged to produce a fixation curve for that subject. 

Next, new parameters of the underlying function were selected for 1,000 subjects, and the 

process was repeated. Finally, results were analyzed, using a curvefitting technique, and the 

estimated fixation curves were compared with the underlying functions.

For both the generating (underlying) function and the analysis of the derived data, a 

nonlinear curvefitting approach (McMurray, 2017; McMurray et al., 2010) was used for 

several reasons. First, it was easy to randomly select the parameters to describe a single 

subject (e.g., the slope and asymptotes) and still get reasonable curves (e.g., between 0 and 

1). This would have been harder with polynomial growth curves (for example), where the 

parameters do not map clearly onto the shape of the resulting function, nor is the function 

limited to be between 0 and 1.

Second, this approach can precisely characterize the data in a way that is independent of 

the full data set. In contrast, mixed-model approaches like growth curves or GAMMs cannot 

analyze subjects individually. When a subject-specific parameter (e.g., a subject’s slope) is 

estimated, values are not based only on that subject’s data and are biased toward the mean 

(shrinkage). While this is a strength for analysis, it makes the interpretation of results less 

clear here, where the goal is to ask if a subject’s observed data matches their underlying 

function.

Finally, the parameters of the nonlinear function are meaningful descriptors of the fixation 

curves. Parameters like slope and asymptote are meaningful descriptors—even if researchers 

use a different approach for statistical modeling—because they describe readily observable 

aspects of the functions. This allows clear questions such as whether a particular fixation 

model makes the slope of the target function shallower than the underlying function.

3These simulations build on simulations presented in (Spivey, 2007, p. 191) who modeled a process in which a discrete series of 
fixations were generated from activations in TRACE coupled to a normalized recurrence network. That model is conceptually similar 
to the fixation-based sampling (FBS) model presented below; however, Spivey included no variability in the duration of the fixations, 
which I show to be crucial; he also did not attempt to compare multiple fixation models; nor did he quantitatively compare the 
observed and underlying curves as his goal was not to determine whether the fixation model challenges this analytic approach.
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Methods

Source code for all of the simulations presented here is available online (https://osf.io/

wbgc7/). Curvefitting was performed using functions in McMurray (2017, Version 24), 

available as a standalone package at (https://osf.io/4atgv/).

Target and competitor fixations were modeled with separate functions. Each describes the 

(binomial) probability that the subject fixated the target (or competitor) at that time or 

not. This is an oversimplification: In a real experiment, probabilities would be related in a 

multinomial distribution (e.g., if the subject fixates the target, he or she cannot be fixating 

the competitor). However, the binomial case is a reasonable starting place as most studies 

analyze fixations to each object separately. Supplement S3 presents a multinomial model 

showing similar results.

Target fixations

Target fixations were modeled with a four-parameter logistic (Equation 1, Fig. 4a), as in 

McMurray et al. (2010):

p(target) = max − b
1 + exp 4 ⋅ s

max − b(xo − t)
+ b .

(1)

This function starts from a lower asymptote or baseline (b), and transitions to an upper 

asymptote (max). The transition is at xo (crossover), and the slope (s) is the derivative at the 

crossover.

Parameters for the underlying function were selected randomly for each run of the model. 

Each parameter was selected from a random normal distribution whose means and standard 

deviations were based on the normal hearing participants in (Farris-Trimble et al., 2014). 

Some constraints were put on these functions to ensure the resulting fixation function took a 

reasonable form (e.g., the crossover was between 0 and 2,000). See Supplement S2.

Competitors

Competitors were modeled with the asymmetric Gaussian (Equation 2, Fig. 4b):

p(competitor) =
exp μ − t 2

−2σ1
2 ℎt − b1 if t < μ

exp μ − t 2
−2σ2

2 ℎt − b2 if t ≥ μ
.

(2)

This function consists of two Gaussians, each with their own asymptotes (b1 and b2) and their 

own slopes (onset slope σ1  and offset slope σ1 ). They share a common peak height (ℎt) and 

a common time at which peak is reached (peak time, μ).
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As before, parameters for the underlying functions were drawn from constrained normal 

distributions whose means and variances were taken from prior work (Farris-Trimble et al., 

2014). Constraints were designed to keep the values in a reasonable range (e.g., competitors 

should peak below 0.4, and above the baselines).

Fixation generation

After selecting the parameters of the underlying function, a series of fixations were 

generated for a set number of trials to simulate an experiment. These models started 

from the underlying function as the probability of fixating the object, and models made 

progressively more sophisticated assumptions about the fixation-generating system. Data 

were then averaged to compute a fixation curve for that subject.

Analysis

Fixation curves were fit using a constrained gradient descent procedure used in prior studies 

(Farris-Trimble & McMurray, 2013; Farris-Trimble et al., 2014; McMurray et al., 2010). 

This uses a constrained gradient descent technique to find the parameters that minimize the 

least squared error between the observed fixation curve and the predicted function. There is 

no analytic solution to this problem, so suboptimal fits (local minima) can occur. Typically, 

one should visually inspect fits, and poor fits can often be corrected with hand-selected 

starting parameters. However, with the large number of fits here, this was impossible. 

Thus, three steps were taken. First, starting parameter estimates were improved with new 

techniques. Second, around 100 fits for each simulation were manually inspected to ensure 

fits were good. Finally, any fit whose correlation to the observed data was below 0.8 (across 

all runs) was dropped.

After obtaining fits, the parameters of the function (e.g., the slope, crossover, peak height) 
were the unit of analysis. Since these parameters were of the same form as the generating 

function, this permitted simple analyses asking whether the observed and underlying 

parameters were correlated, if there was bias, and so forth.

Overview of simulations

Our first simulation examined the high-frequency sampling (HFS) assumption. While this 

assumption is unrealistic (and one might say, inconceivable), these simulations document 

what the results of this Monte Carlo procedure look like under ideal circumstances. 

Simulation 2 turns to a simple fixation-based sampling (FBS) model in which fixations 

are a series of discrete units. Simulation 3 follows that up with a slightly more complex 

sampling scheme that acknowledges that eye movements may persist longer than average 

on activated objects (fixation-based sampling with enhanced target duration [FBS+T]), 

and Simulation 4 (Supplement S3) generalizes these to a multinomial model. The next 

simulations investigate the consequences of these models for measurement: Simulation 5 

investigates test–retest reliability, and Simulation 6 investigates power and Type I error. 

Finally, Simulation 7 presents an exploratory new analysis that builds a fixation-generating 

model into the analysis.
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Simulation 1: Stochastic high-frequency sampling

Approach—Figure 5 shows an overview of the approach. First, the parameters of a 

subjects’ underlying function were randomly generated. Next, 300 trials were generated. At 

each 4-ms time slice, the probability of fixating the target or competitor was computed from 

the subject’s underlying function (Eqs. 1 or 2, respectively). This probability was used to 

determine whether the subject was looking at the object or not at that time at each 4-ms time 

slice. To simulate the assumed 200-ms oculomotor delay, when computing the likelihood of 

fixating, the time was shifted by 200 ms. Thus, the likelihood of fixating the target at 600 

ms was based on the logistic function at 400 ms. The series of fixations was then averaged 

across trials to generate the observed fixation curve. This was curvefit and compared with 

the underlying parameters.

Results and discussion

Target—Figure 6 shows 10 representative subjects.4 Shown in black is the underlying 

function for that subject, and in gray is the observed data. To facilitate comparison to the 

underlying curves, red curves show the observed data after accounting for the oculomotor 

delay (200 ms). Fitted functions are shown in blue, also shifted for the oculomotor delay. 

Fits were good with an average correlation of 0.997 between the fits and the data, and no fits 

were dropped for poor correlations to the observed data.

The fitted curves were almost uniformly on top of the underlying curves (the reason you 

cannot see the black curves in Fig. 6). This is supported by the high correlations between 

the underlying parameter values and the fitted values (Table 1, Column 1): the baseline, 

peak, and crossover were all at 1.0 and slope was at 0.998. A high correlation could still 

be observed even if the data were systematically biased (e.g., if fitted crossovers were 

consistently later than the true crossovers). Thus, for each run, a difference score was 

computed (underlying − observed). Table 1 shows the average bias. As Fig. 7 shows, these 

were near zero for all parameters except crossover, which had a bias of −200 ms (the 

oculomotor delay), and standard deviations were very small. Finally, the correlation among 

observed parameters (Table 1) was computed to determine whether anything about our 

sampling procedure was imposing structure on the data that was not there in underlying 

latent functions (the underlying parameters were uncorrelated). Cross-correlations among 

the observed parameters were very low and always less than.05.

Competitor fixations—A similar pattern was observed for competitor fixations. Figure 8 

shows representative subjects. Fits were good with an average correlation of.919 (68/1,000 

fits were dropped5). Again, observed fixations curves showed a very close match to the 

underlying curves, with the blue curves masking the black in virtually all conditions, and 

very high correlations between the observed and underlying parameters (Table 2; all rs >.94, 

and 5 were >.98). Examination of the difference scores (underlying − observed) showed 

4These panels (and the corresponding ones for later simulations) show the frst 10 runs of the model, and results are not cherry picked. 
The goal was to illustrate possible patterns and the range of variation observed. The reader is encouraged to generate more of this 
using the mc_valid.m script available in the source code.
5Sixty-seven of these were dropped for r < .8; an additional run was dropped on inspection of the scatter plots for having an extreme 
onset slope (σ1)
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little bias. The mean bias was very low, except for peak time, which was biased at −200 ms 

(again, the oculomotor delay). Histograms (Fig. 9) were centered where expected. Standard 

deviations of the bias were very low—μ, for example, scaled in ms, and had a standard 

deviation of only 11.7 ms.

Discussion—These simulations largely validate the modeling approach. When data were 

explicitly generated using an HFS model, underlying parameters of both targets and 

competitors could be reliably estimated. Estimates had low variance, were unbiased, and the 

curvefitting approach does not impose correlations on the estimated parameters. Moreover, 

validity was stronger than what would be expected based on the number of trials alone—

even cohort asymptotes, with a mean of.05 showed correlations of greater than 0.996 (by 

comparison, Fig. 2 suggests these should be at.95). This is likely because these curvefit 

parameters are implicitly pooling across many draws (successive samples). HFS is, of 

course, implausible. However, this offers a picture of what results should look like when the 

assumptions of the analysis hold.

Simulation 2: Fixation-based sampling

Approach—Simulation 2 developed a rudimentary fixating generating model. The 

fixation-based sampling (FBS) model derives fixation curves from a series of discrete 

fixations with a reasonable refractory period. This model treats the fixations as primarily 

a read out of the unfolding decision. While this ignores the role of the fixation as an 

information gathering behavior, this is consistent with some views of the VWP that treat the 

fixation as primarily reflecting motor preparation (which is based on the unfolding decision), 

the parallel contingent independence assumption of Magnuson (2019). This is not intended 

as a complete model of fixations in the VWP. Rather, this model asks if the ballistic and 

chunky nature of the saccade/fixation system alone is sufficient to create noise and/or bias in 

the observed fixation curves. If even this minimal model shows enhanced noise and bias in 

the observed data, any more complex model is likely to as well.

In the FBS model (Fig. 10), the underlying curves for each subject were randomly generated 

in the same way as Simulation 1. Unlike that model, data on each trial is generated as 

a series of fixations whose duration were randomly determined from fixation to fixation. 

Once a fixation was “drawn,” the subject was presumed to be fixating on a single object 

throughout this time. The likelihood of fixating the target (or competitor) or not over this 

fixation was again determined by the underlying time-course function (either the logistic or 

asymmetric Gaussian), using the onset of the previous fixation as the time parameter. This 

assumes that at fixation onset, the subject immediately plans whether or not to look at the 

next object, but then wait through the fixation (the refractory period) before fixating it.

In addition to each subject’s own parameters for the underlying curves, each subject had 

their own unique distribution of fixation durations (the mean and SD), randomly chosen 

for that subject. These distributions (Table 3) were based on an analysis of the normal 

hearing participants (N = 37 subjects, 290 trials each) of Farris-Trimble et al. (2014). Across 

subjects, the mean fixation duration (to nontarget objects) was about 200 ms for nontarget 

objects, and subjects did not vary substantially (SD ~ 30 ms). Fixations were longer to the 
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target than to other objects (or to nothing). Simulation 2 ignored this to create a minimal 

contrast with the HFS model (but Simulation 3 tests this). The mean duration was thus set to 

the average of the three nontarget objects (the last row). This was 204 ms, a close analogue 

to conventional estimates of the oculomotor planning time. Each subject also had their own 

trial-to-trial variability. These were estimated from the within-subject standard deviation in 

duration (Table 3, the within-subject-columns). These standard deviations were high, with 

individual fixations varying by 90–100 ms (the mean of SD column). Both the mean and 

within-trial standard deviation were chosen randomly and fixed for that subject.

The random duration of a specific fixation, and the general properties of a subject (e.g., their 

mean distribution), were generated from a gamma distribution. This distribution (unlike a 

Gaussian ) is zero bounded with a long tail, so it matches the distribution of real fixations 

well. It has two free parameters—shape and scale. To convert means and standard deviations 

of the empirical data to shape and scale, shape was set to M2/SD2 and scale to SD2/M.

Once a subject’s underlying distribution of fixations was selected, a series of trials was 

simulated. On these trials, fixations were simulated sequentially, so the second fixation 

was not randomly selected until after the first. For each fixation, the duration was selected 

randomly from a gamma distribution with the subject’s shape and scale. Whether or not a 

fixation was directed to the object (e.g., to the target or not) was based on the time of the 

onset of the prior fixation.

After generating a series of trials, data were averaged and analyzed as in Simulation 1. For 

display, when adjusting for the oculomotor delay, time was shifted by the mean fixation 

duration for that subject (which on average was about 200 ms).

Results and discussion

Target—Figure 11 shows representative subjects for the target simulation. Fits were good, 

with an average correlation of.998 and no excluded fits. Asymptotes generally lined up fairly 

well between the observed and underlying function. However, FBS created a much larger 

delay between the raw data (in gray) and the underlying function (in black) than the HFS 

model: Even after adjusting for that subject’s mean fixation duration (red for data, blue for 

fits), the observed curves were still delayed relative to the underlying curves. Slopes and 

crossovers were not only delayed but also less consistent. For example, in Fig. 11a, the 

delay was carried by a difference in crossover (slope was the same between observed and 

underlying), while in Fig. 11b, slope was shallower in the observed data. These observations 

are mimicked in the validity estimates (Table 4). While correlations between the observed 

and underlying values were above 0.98 for the asymptotes, they were lower (but still high) 

for crossover (r = .855) and slope (r = .751).

Bias (Fig. 12) showed a similar pattern. The asymptotes were unbiased, with means near 

zero and fairly low variance. In contrast, the crossover was significantly biased; on average, 

the underlying crossover was 327.5 ms earlier than the observed. This was substantially 

more than one would have expected given the mean fixation duration of 203.7. Slope 

was also biased downward, as observed data showed generally shallower slopes than the 

underlying.
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Bias was highly related to the mean and standard deviation of the subject’s fixation 

durations. The bias in the crossover was correlated at r = −.897 with the mean duration: 

Subjects with longer fixations tended to have crossovers that were even later than the 

underlying crossover. To understand this, consider a fixation that was initiated at 500 ms—a 

time when the underlying probability function is just starting to rise. Whether or not it was 

directed to the target, however, is not dictated by the probability function at 500 ms, but by 

the function at 300 ms (when it was planned). However, for a participant with even longer 

fixation durations, it would have been planned even earlier (when the function was even 

lower). This would then slow the ultimate rise of the fixation curve. Moreover, once the 

subject decides to look (or not) that outcome is locked for the duration of the fixation, even 

if the underlying curve rises during that time. Thus, a long mean fixation duration acts as a 

drag, delaying the growth of the observed fixation curve. In contrast, the bias in slope was 

not highly related to the mean duration (r = .045) but was moderately related to the standard 

deviation (r = .269): Greater variability in the durations tended to smooth out the functions, 

resulting in slopes that were shallower than expected.

Finally, unlike the HFS model, the fixation-generating model appeared to impose 

correlations on the parameter estimates. There were moderate correlations between slope 

and the asymptotes (onset: r = −.155, offset: r = .237; Table 4 for complete matrix). 

Subjects with more extreme asymptotes tended to have larger slopes. Neither of these 

correlations were present in the underlying values (onset: r = .032; offset: r = .021). Thus, 

the fixation-generating model may make it difficult to achieve an unbiased estimate of a 

subject’s underlying fixation curve.

Competitor—Fits were good with an average correlation of 0.958, and 23 dropped runs. 

Figure 13 shows results. Competitors were much less consistent than targets. In some 

cases, the observed and underlying data matched (Fig. 13a); in others, there was a delayed 

onset, but otherwise similar functions (Fig. 13c), and in others the function was stretched 

(Fig. 13b). Some runs showed higher peaks (Fig. 13d), but others, lower (Fig. 13e). Thus, 

even with a large number of trials (300), most FBS runs were unlikely to approximate the 

underlying function.

This was reflected in the correlations between underlying and observed parameters (Table 

5). Here, only parameters directly related to the overall amount of looking (peak height and 

asymptotes) were reasonably correlated with their underlying values (r ~.7). Peak timing (μ) 

was correlated but lower (r = .50), and the slope parameters had only small correlations. This 

lack of validity was not directly related to any of the eye movement parameters. Only peak 

timing was correlated with the mean fixation duration (r = .357; other parameters |r| < .1).

This lack of systematicity was also seen in bias (Fig. 14). While b1 and b2 were unbiased, 

peak timing (μ) was biased well beyond the 200-ms oculomotor delay. Height was biased 

downward, with lower values than the underlying. However, in quite a few runs (139/1,000), 

the observed ht was higher than the underlying value. Onset and offset slopes were generally 

lower (steeper) than the underlying values. Bias was related to the properties of the subject’s 

fixations. Predictably, the bias in peak timing (μ) was negatively related to the mean fixation 

duration (r = −.383): subjects with longer fixation durations showed more delayed peak 
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timing values relative to their underlying values. Bias in peak height (ht) was correlated 

with the variability in a subject’s fixations (r = .248): subjects with more variable fixations 

tended to have lower heights relative to the underlying. Importantly, all parameter estimates 

showed substantially more variance than the HFS model (Fig. 8). Thus, with a more realistic 

fixation model, the observed data are biased in some parameters and there is dramatically 

more noise.

Finally, even as the underlying parameters were uncorrelated, the FBS generating model 

imposed moderate correlations among several observed parameters (Table 5). Onset slope 

(σ1) was strongly correlated with peak timing (μ) and had a small correlation with b1. Offset 

slope (σ2) was also correlated with b2. All of the parameters had small but non negligible 

correlations above 0.1. Thus, the fixation-generating model created spurious correlations 

among estimates.

Discussion—These simulations suggest that assuming even a simple serial fixation model 

has substantial effects on the observed data. Observed target fixations rose more slowly and 

were delayed far beyond the expected 200 ms oculomotor delay. Competitor fixations were 

also delayed. Moreover, there was large variance across subjects, and in many individual 

runs, the competitor fixations did not provide a close fit to the underlying data. One bright 

spot was the asymptotes which tended to be unbiased for both types of fixations (even as the 

variance was higher), which seemed to be reliable even when the FBS model was assumed.

Competitor estimates were noticeably poorer—particularly for parameters related to timing 

(slopes and peak time). To some extent this drop in validity is to be expected. These 

parameters are working from a portion of the underlying curve that is low (e.g., Fig. 3a); but 

these estimates are far lower than would be expected by stochastic sampling alone (with 300 

trials, the lowest correlation in Simulation 0 was still greater than.9). Thus, this suggests that 

the FBS system is creating additional (and complex) noise in the system.

Notably, when the underlying function showed only a small peak (e.g., Fig. 13e–f) the 

fixation curve tended to show an even smaller peak. This is because if the heightened 

underlying activation was short lived, it was less likely that there would be a fixation 

launched in that window (to reflect that). This may explain why Simmons and Magnuson 

(2018) did not find evidence for rhyme activation in one-syllable words and Teruya and 

Kapatsinski (2019) did not observe it for one-phoneme overlap cohorts. It is not that these 

competitors were inactive; rather, the stochastic process of generating fixations made it 

difficult to see it.

Simulation 3: Fixation-based sampling with enhanced target duration

Approach—In the empirical record (Table 3; Farris-Trimble et al., 2014), target fixations 

were about 160-ms longer than fixations to other objects: Once the subject fixated 

something reasonably active, they were more likely to stay. This was not accounted for 

by the FBS model, and it was unclear how this would change the results. It could further 

delay target fixations. However, it also could enhance overall target looking, speeding the 

function.
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This simulation thus implemented a simple modification to the FBS model. Fixations were 

randomly selected as before. However, if a given fixation was to be to the target, its duration 

was drawn from a distribution with longer mean and standard deviation (Table 3). If the 

fixation was to be away from the target, it was drawn from the same distribution as before 

(shorter durations). Since this effect was not observed in competitor fixations, Simulation 3 

only considered targets.

Results—Fits were good averaging r = .998, and no subjects were dropped. Figure 15 

shows representative results. It is noteworthy that many of these functions are no longer 

symmetrical and could have shallower slopes at early times and steeper slopes at later 

ones (Fig. 15b), or the converse (Fig. 15e). This is commonly observed in real data (and 

a limit of using the four-parameter logistic). This finding suggests this asymmetry may 

come in part from fixation sampling issues. The degree of match between underlying and 

observed fixation curves was much more variable. In Fig. 15a, for example, the observed 

data matched the underlying data fairly closely, and do not even show the heightened delay 

seen of the FBS models (see Fig. 11). However, this was not consistent across runs (cf. 

Fig. 15c). For the first time, there was also a significant failure of the observed data to 

preserve the asymptotes. In Fig. 15d, for example the observed lower asymptote is above the 

underlying, while in Fig. 15f, both asymptotes are off. As a result, estimated parameters are 

less correlated with their true values than in Simulation 2 (Table 6). The asymptotes are off 

ceiling (though still high), and crossover (r = .792) and slope (r = .616) are quite a bit lower.

There was bias in all four parameters (Fig. 16). Both asymptotes were systematically shifted 

to be greater than observed values. The crossover was later, and slope was systematically 

higher. We also saw increased variance—particularly in the asymptotes—over Simulation 

2. However, correlations between the estimated parameters were only a little worse than in 

Simulation 2 (Table 6). Slope was highly correlated with the lower asymptotes (but not the 

upper), and crossover and the upper asymptote had a small correlation.

Discussion—This simulation added realism to the FBS model in one small step: If the 

subject fixated the target at a given moment, that fixation was lengthened by about 160 ms. 

Doing so added even more variability—even to the asymptotes—and bias to all parameters.

Simulation 4 (supplement)

The forgoing simulations treated fixations to each object (target or competitor) as deriving 

from a binomial distribution (is the participant fixating the target/competitor or not). This 

is an oversimplification of the true, multinomial process, in which the participant must 

choose which object (of the four) to fixate. Supplement S3 thus constructed a multinomial 

version of Simulations 1–3. Findings were similar with a fairly close alignment between 

the underlying and observed fixation curves under the HFS fixation model and increasing 

variability and bias under more realistic FBS and FBS+T models.

Simulation 5: Reliability

Approach—Simulations 1–4 suggest that more realistic fixation-generating models lead 

to systematic and unsystematic differences between the observed data and the underlying 
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function. While the systematic differences (bias) pose a problem for interpretating the 

data, unsystematic differences (noise) may impact the psychometric properties of the VWP: 

reliability, power, and Type I error (TIE). For example, in competitor models, the observed 

peak was sometimes higher than underlying and sometimes lower (Fig. 12d–e). This raises 

the question of whether the observed data are reliable. That is, if one generated a series 

of fixations from the same underlying function twice, would the fixation curves from each 

run match? It is possible that even with a reasonable number of trials, there would not be 

sufficient samples to converge on the “true” observed data (e.g., Fig. 3b). In contrast, the 

observed data could be reliable from run to run, and the unpredictability across different runs 

in the prior simulations is stable. This would imply that the mapping between underlying 

and observed functions is lawful, but highly complex.

This is a question of reliability. This issue is being confronted throughout our field as 

experimental measures are adapted to individual difference metrics (Enkavi et al., 2019; 

Hedge et al., 2018). As the replication crisis in experimental psychology has unfolded (Open 

Science Collaboration, 2015), there has been significant attention paid to poor scientific 

(Bakker et al., 2012) and statistical (J. P. Simmons et al., 2011) practices and to small 

effect sizes. However, equally important is reliability: A true effect may fail because 

the empirical measure is not reliable (Schmidt, 2010). This is particularly a problem for 

measures adapted from experimental psychology, which are often optimized to minimize 

within-subject variability (Hedge et al., 2018). In that way a failure to understand (and 

report) the reliability of the VWP is an example of a questionable measurement practice 

(Flake & Fried, 2020).

This is increasingly important for the VWP. As the VWP is applied to clinical populations, 

individual differences and development (Desroches et al., 2006; McMurray et al., 2019b; 

Mirman et al., 2008; Rigler et al., 2015; Yee et al., 2008), its reliability is the upper limit 

of what effect sizes can be detected. If a measure is only correlated with itself at r = .6 

(test–retest reliability), it cannot have a higher correlation than.6 with any other factor. There 

is only one published study of the test–retest reliability of the VWP (though one hopes 

for more; Farris-Trimble & McMurray, 2013). It showed good to moderate (r = .5–.75) 

reliability depending on which aspects of the fixation curves were examined.

Test–retest reliability in the real world is a product of two things. The first is how stable the 

latent trait is. In the framework developed here, this corresponds to the underlying curve. 

Second, reliability is a product of how consistently the test assesses those latent values. 

Usually, we think of measurement accuracy as a function of properties of the test: The items, 

the timing of the stimuli, fatigue, and so on. However, the previous simulations suggest that 

in the VWP substantial noise may derive from the stochastic fixation-generating function. 

If the stochasticity of the eye-movement system also contributes to lack of reliability, there 

may be an upper limit to what can be achieved by optimizing the VWP along traditional 

dimensions (items, trial design, etc.).

Simulation 5 thus ask how much the fixation-generating process contributes to a lack of 

reliability by locking the underlying latent curve and examining reliability solely as a 

function of the stochasticity of the generating process. On each “trial” a subject’s underlying 
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fixation curve was randomly selected. Next, fixations were generated for a fixed number of 

trials and fit as before. After that, a new set of trials was generated from the same underlying 

function. This was done for 1,000 subjects, and the estimated parameters of the fixation 

curve were correlated across test and retest. This was done for all three eye-movement-

generating models (HFS, FBS, and FBS+T), and for three different sizes of experiments (50, 

150, and 300 trials).

Note that these estimates will be higher than empirically estimated reliability, as they only 

reflect a single source of lack of noise (the stochasticity of the eye movements) and assume 

perfect stability of the latent trait. Moreover, these simulations used the Pearson correlation 

to estimate reliability; better estimates would be obtained with the concordance or interclass 

correlations (Bartko, 1966; Lin, 1989), both of which test for a one-to-one relationship 

(rather than mere predictability). The simpler Pearson coefficient was used for comparability 

to the only published work on the reliability of the VWP (Farris-Trimble & McMurray, 

2013). Estimates with the concordance or interclass correlation are likely to be smaller.

Results—Figure 17 shows reliability of each parameter as a function of the number of 

trials, and the fixation-generating function (Table 7 for numerical results). Under the HFS 

assumption (blue lines), reliability was strong for almost all parameters, even with only 

50 trials (r >.89, for all but σ1). Moreover, for targets, the fixation-based generation was 

not a huge factor, as long as there were sufficient trials. At 300 trials, all four parameters 

could be estimated at r >.82, even assuming FBS or FBS+T generating models (though 

that this would be expected from randomness alone: Fig. 3b). With fewer trials, reliability 

was generally preserved at r >.7 levels for baseline, max, and crossover, but not slope. 

Moreover, the difference between the generating models was minimal. Thus, even though 

Simulations 1–3 suggest that FBS and FBS+T models bias the observed data relative to 

the underlying function, this bias is consistent, and properties of the observed data can be 

estimated reliably.

This pattern was not observed for competitors. With the FBS generating model, reliability 

dropped from >0.95 in most cases to.7 or below at 300 trials. They fell off precipitously with 

fewer trials. These estimates (even at 300 trials) are below what one would have expected 

from mere random sampling alone (Fig. 3b). This suggests the fixation-generating function 

added additional noise. The lack of reliability suggests the diverse of patterns of observed 

data in Fig. 13 are not systematic: Sometimes the same underlying function can produce a 

delayed and shallow function, and sometimes a higher peak. This is particularly true with 

few trials.

Discussion—For target fixations the more realistic fixation models reduce reliability but 

only somewhat. The exception was slope at low numbers of trials where reliability was not 

acceptable. Thus, while the observed data may be systematically biased (delayed) by the 

fixation-generating function, the pattern of data is at least reliable. This can also be seen in 

the raw fixation curves data (Supplement S4, Fig. S4.1,2). In the real world, factors like the 

number of trials, the set of items, or the testing conditions may be more important drivers of 

reliability (or lack thereof) than the stochasticity of the oculomotor system.
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In contrast, for competitors, more plausible generating models reduced reliability to well 

below acceptable ranges. This was particularly true when small numbers of trials were 

tested. This was not due to poorly shaped data or to bad fits—I excluded all of the bad 

fits before computing reliability. Rather the same underlying function can give rise to 

differently shaped data. This is also not a function of the statistical analysis—the same 

lack of reliability can be observed in the observed fixation curves, prior to analysis with 

the curvefitter (Supplement Fig. S4.3). This suggests that the stochasticity of the eye 

movements is likely a reason why Farris-Trimble and McMurray (2013) found generally 

lower reliability estimates for most parameters describing cohort and rhyme fixations than 

for those describing target fixations.

These results stand in contrast with the fact that reliability in the HFS model was relatively 

high across all parameters for both targets and cohorts. This is important as it suggests that it 

is not just the random sampling (e.g., the number of trials), driving lower reliability but the 

nature of the fixation-generating scheme.

One caveat is that these reliability estimates are for single indices of the curves (e.g., the 

slope of the target in one condition). This is appropriate for individual difference designs 

(e.g., McMurray et al., 2010); however, in experimental conditions it may be that the 

difference of these estimates (e.g., between conditions) is of greater importance. Reliability 

of differences is likely to be lower as the variance in each condition compounds.

Simulation 6: Power and Type I error

Approach—The prior simulations suggest that the stochasticity of the fixation-generating 

function reduces reliability in some indices—even when the underlying function did not 

change from test to retest. This raises the question of whether power (the likelihood of 

detecting a true effect) or Type I error (TIE, the likelihood of detecting an effect that is not 

there) is affected by the fixation-generating functions. These were investigated in a series of 

simulated experiments.

In experiments assessing power, subjects were tested twice with some difference in the 

underlying parameters to simulate an experimental condition. The size of this difference 

varied randomly across subjects (e.g., as a random slope) to achieve a predefined power. 

Next, data were generated for each condition for each subject and the time course 

functions were fit. The resulting parameters was then analyzed to determine if condition 

was significant. One thousand experiments were run to compute the overall likelihood of 

detecting an effect in some underlying parameter. Separate simulations were run shifting 

each underlying parameter (e.g., a difference in slope, peak etc.), and for each of the three 

fixation-generating models (for target: HFS, FBS and FBS+T; for competitors, HFS and 

FBS). Two experiments were also conducted in which two parameters were shifted together: 

slope and crossover for target, and height and offset baseline for competitors (these are 

commonly correlated in real data).

A second set of experiments assessed Type I error. These used the same procedure as those 

assessing power, with two exceptions. First, the randomly selected experimental difference 
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had a mean of zero, but the variance was the same as in the power analyses. Second, a 

random difference for all parameters was tested in the same experiment.

In addition to using the parameters as DVs, a variety of commonly used single indices like 

AUC, or the peak of the fixation curves were computed (Table 8). The rationale for this 

was that these common indices—though they less precisely characterize the curves—may 

capture more global changes as well as or better than more precise measures. Finally, as our 

prior simulations suggested that some parameters were affected by the mean and variance of 

the fixation durations, for each DV, statistical tests were conducted both with a traditional 

t test and with an analysis of covariance (ANCOVA), which controlled for the mean and 

standard deviation of fixation duration.

All experiments used 300 trials per condition to eliminate the number of trials as a factor 

driving any differences in power. The sample size was 50 subjects. This was chosen as a 

reasonable sample size that could accommodate two covariates. I computed the minimum 

detectable effect (using traditional power analyses) to determine what effect size could be 

detected for a given power. I assumed a power of 0.7—deliberately less than the standard 

0.8—to avoid potential ceiling effects. This suggested an effect size of d = .358, which is 

not an effect of unusual size for the VWP. For simulations manipulating two parameters this 

was divided by the square root of two, leading to a difference of.253 on each individual 

parameter, but a difference of.358 along the diagonal (i.e., in both dimensions together).

To simulate an experimental condition, subjects’ baseline parameters for their logistic or 

asymmetric Gaussian were first selected along with a mean difference for that subject on 

the parameter of interest. This difference came from a normal distribution with a fixed mean 

(specified in advance), and whose standard deviation was the mean difference divided by 

the targeted effect size. As a result, most subjects would have the expected difference, but 

some could have a larger difference and others might have no difference. Random generation 

of the differences was constrained such that parameters could not be outside of the ranges 

in Supplement S2 (e.g., crossover must be between 300 and 1,100). It was also constrained 

in other ways—for example, the height of the competitor fixations could not be lower than 

the baselines. If the randomly selected difference led to an invalid value, it was reselected. 

This tended to alter the variance in unexpected ways, often leading observed power (in the 

underlying parameters) that was lower than the targeted 0.7. To accommodate this, the same 

parameters of the underlying functions were analyzed to capture the true power absent the 

fixation-generating functions.

Results

Power—In none of the analyses was power markedly changed by the inclusion of the 

mean and standard deviation of the fixation durations as a covariate: No individual analysis 

showed more than a.01 increase in power in the ANCOVA over the standard t test, and many 

showed a small decrease. Thus, the ANCOVAs were not considered further.

Figure 18 shows selected results for power simulations using T tests. Each grouping 

shows the results of one type of experiment manipulating a single parameter of the 

underlying function. Black lines show the likelihood of a significant effect on the underlying 
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parameters, absent the noise imposed by the fixation-generating function (α = .05 is also 

marked). Colored lines show the likelihood of detecting an effect in each parameter or index.

Figure 18a–b shows the result for the curvefit parameters (numerical results are too big to 

print, but available as an excel pivot table at https://osf.io/wbgc7/). In the first grouping 

of Fig. 18a, the underlying max was shifted by.358 standard deviations. The green curve 

there shows that a curvefitting approach could reliably detect this shift in the maximum at 

a power of about 0.6 (the same power observed for the underlying maximum assuming no 

fixation-generating model); in contrast, when max was shifted, the crossover (in red) was 

only significant on 0.05 of experiments for all generating functions. This suggests a high 

degree of specificity.

Looking across analyses, when the (unrealistic) HFS eye-movement-generating function 

was assumed (the first point in each grouping), the likelihood of detecting an effect in 

the observed estimates matched the likelihood of the underlying estimates. That is, when 

crossover (for example) was manipulated, and a statistical test was conducted on that 

parameter, the first point in each grouping showed strong power, and the same power if as 

the underlying functions were analyzed. Moreover, the likelihood of detecting a spurious 

effect (e.g., an effect on crossover when peak was shifted) was near.05. This suggests that 

under the HFS model, the analytic approach behaves as expected, with good power and 

specificity.

With more realistic generating functions (the second and third points), a different pattern 

emerged. When peak and crossover of the target were manipulated, this generally showed 

good power and specificity. Differences in peak or crossover were detected at the same 

rate as present in the underlying functions (black lines). Moreover, there were few spurious 

effects (e.g., an effect on max when the underlying difference was in crossover) except 

slope, which responded to changes in underlying peak at greater than.05 (Fig. 18a, first 

grouping, blue line).

In contrast, when the underlying change was in slope, results were markedly different: 

Power dropped off substantially for both the FBS and FBS+T models.

A similar story was observed for the competitors. For peak time, height, and baseline, power 

showed only a small reduction (of about 0.1) with the FBS generating model. However, for 

the slope parameter (σ2), it showed a dramatic reduction.

In both simulations that manipulated multiple underlying parameters (Fig. 18a–b, last 

groupings), power was reduced. This makes sense as the t test only considered an individual 

parameter and the effect size was spread among two. This suggests reduced power when 

of overrelying on single estimates of the curves (particularly when the true effect spans 

multiple parameters). This conclusion was largely unaffected by the nature of the generating 

function.

Next, the nonparametric indices were examined (Fig. 18c–d). This addressed two questions. 

First, do any of these indices offer similar power to parametric approaches? Second, are any 

more robust to the fixation-generating function than the parametric estimates?
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Results were mixed. For targets, maxDeriv (red lines) was only sensitive to changes in 

slope: it showed excellent power when the underlying slope was shifted, and near.05 

when it was not. That may be a reasonable way to detect changes in target slope when 

a parametric approach is not advised. Surprisingly, AUC performed well in different 

situations: AUCearly was sensitive to changes in peak, but also changes in crossover; AUClate 

detected underlying changes in all of the parameters. These may be useful when there 

are no prior hypotheses, as they can detect a variety of more precise changes in the time 

course. The slope+xo composite, timing, was the best option when both slope and crossover 

changed (outperforming all other measures). Surprisingly, it did not suffer when only of 

those two measures changed. Thus, when it is unclear whether effects will appear in slope 

or crossover, this could be useful. Finally, while some of these indices performed well, 

all showed a similar power reduction between HFS and FBS models as the parametric 

estimates. The competitor (Fig. 18d) showed a similar story. Maxtime was highly sensitive 

to peak location and nothing else. All three AUC measures were broadly useful, particularly 

when both height and offset baseline were manipulated. And none of these factors countered 

the loss of power seen in the FBS (though they were not worse).

TIE—Results of the TIE analysis suggest very little effect on Type I error (Table 9, with 

violations of α < .05 shaded in gray). In all cases, TIE was low, under.07 and close to the 

desired alpha of.05. In many cases where TIE was greater than.05, this was often due to 

sampling error. For example, with the FBS generating function, there were 19 cases where 

either the t test, ANCOVA or both yielded TIE >.05 (all less than.06). However, in five of 

those cases that was also true for analysis of the underlying parameters, and in two cases, 

the underlying function violated α < .05, and the observed data did not. Crucially, there 

was little difference between results for the HFS models or the other two generating models. 

Equally importantly, while the power analysis suggested that many single estimate measures 

(e.g., AUC) were sensitive to multiple changes in the underlying function, this was not 

spurious—when there were no true changes, they did not show enhanced TIE.

Discussion

These simulations showed effects of the eye-movement generating function on power. 

Particularly for aspects of the fixation curves involving rate of change, the more realistic 

generating functions yielded far lower than expected power. In contrast, more stable aspects 

such as the time of the crossover or peak competitor, the peak of the competitor, and the 

asymptote of the targets showed no decrement in power with better fixation-generating 

functions. This suggests a need for experimenters to consider which aspect of the fixation 

function they are interested in when planning power for a given study. In contrast, TIE was 

held stable at.05 across all of the generating functions and measures, suggesting the primary 

concern is obtaining sufficient power to detect true effects, not avoiding spurious ones.

Many of the single indices performed well. Some like timing were uniquely suitable when 

the effect spanned several underlying parameters; others like the AUCs could be sensitive 

to multiple changes; and others like the maxDeriv were highly specific. All held TIE at.05. 

This again speaks to the need for thinking about the specific components of the fixation 

function that may be affected by an experimental manipulation when planning a study. 
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These less parametric measures may be useful for confirmatory hypothesis testing when 

the function does not fit a standard form, and there is no evidence that these are any less 

powerful or more TIE prone than parametric measures that intricately capture the time 

course of processing.

Critically, while power was reduced in many cases by fixation-generating function, TIE was 

mostly held constant near α = .05. This is very important as it suggests that we do not 

need worry that a failure to account for the fixation-generating function, or the use of an 

inappropriate analysis (e.g., the nonparametric indices) will lead to false discovery; rather, 

our concern as experiments should be about whether an underpowered design may miss 

effect true effects.

Simulation 7: An (exploratory) generative approach to analysis

The foregoing simulations show that with a more realistic fixation-generating model, 

the observed data do not always closely match the underlying probability function 

which generated them. Some estimated parameters were biased relative to the underlying 

parameters (e.g., target crossover, and cohort peak height, and even target maximum with 

the FBS+T model). These biases may make it difficult to characterize (in absolute terms) the 

unfolding decision. For example, it might not be straightforward to ask if the cohort hit peak 

before or after the uniqueness point of the stimulus, as the bias in μ makes it difficult to align 

fixation time and real time. Even worse, there was increased variance in all parameters. The 

result of this was lower test–retest reliability and a loss of power.

These results cannot solely be attributed to the nonlinear curvefitting approach used to 

characterize these data. The same analysis scheme under HFS assumptions showed strong 

correlations between underlying and observed parameters and strong power and reliability. 

Moreover, this lack of validity and reliability is plainly visible in the generated fixation 

functions even before curvefitting (e.g., Figs. 11, 13, 15), and the reduced power appears 

in many nonparametric indices. Thus, these concerns are likely to apply to all analytic 

approaches. This calls for an analytic approach that does not accurately describe just 

the observed data (as existing approaches do) but also the processes that generated it: a 

generative model.

Generative models work backwards from traditional statistical approaches. Rather than 

attempting to describe the data as observed (using the richest description possible), a 

generative model starts from assumptions about how the observed data were generated. 

It then finds the generating model that was most likely to have created the observed data. 

Consider the contrast with a traditional model of fixation curves. The standard approach 

assumes that the data came from a logistic (or a growth curve, or a series of smooths) 

with some noise. That is, the logistic (or other function) is assumed to describe the central 

tendency of the data. It then optimizes the free parameters of this function to find the most 

likely outcome. In contrast, the generative model assumes the data came from a logistic with 

a stochastic eye-movement model layered on top. In this case, the logistic does not describe 

the data, it describes the underlying activation function that would have generated the data 

(with the assumption of a fixation system).
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Generative models are often used in quantitative psychology, for example, in the long-

running debate between exemplar and prototype theories of categorization (cf. Smith, 2014), 

or in drift-diffusion approaches to reaction time (Ratcliff & Rouder, 1998). However, their 

application to complex behaviors is not widely advanced (though see Haines et al., 2022, for 

an excellent discussion and examples).

A generative model starts by assuming some underlying description of the participant. For 

a drift-diffusion model, for example, this might be a participant’s drift rate and decision 

threshold. In this case, we assume that the underlying description of a subject is their 

own internal likelihood of considering the target or the competitor. These are simplified 

as the logistic and asymmetric Gaussian functions used here. Note that many (but not all) 

generative models assume this description derives from a process model (Ratcliff & Rouder, 

1998), though others may assume only a latent trait (Haines et al., 2022). The corresponding 

process model for this approach might be something like TRACE (McClelland & Elman, 

1986). In that sense, our curves are not process models, but a reasonable parametric 

description of that process—target curves from interactive activation models are almost 

always logistic in some form, and competitors can usually be described with an asymmetric 

Gaussian. Thus, these are reasonable ways to describe the latent likelihood of considering 

the target or competitor.

Note that unlike the traditional approach, these curves do not describe the probability of 

fixating that object. Rather these, curves describe the probability of considering it (e.g., 

lexical activation). The probability of fixating the object is then generated by a process 

model—in this case, the FBS or FBS+T models. This model is presumed to generate 

the distribution of fixations, and consequently the fixation curve most likely to have 

been derived from the underlying activation curve. The generative model thus works by 

optimizing the parameters of the underlying activation curve that yield the generated data 

most similar to the observed data.

Any generative model must make simplifying assumptions. Typical generative models 

would evaluate the likelihood of observing a specific sequence of fixations (and their 

durations) given the underlying parameters and the generative model. However, this means 

optimizing the model on the raw (fixation-by-fixation) data, not the averaged fixation curves. 

That is the model should not only predict the correct average curves but also the distribution 

of possibilities across trials. This would entail huge data sets. But it may also require much 

more detailed knowledge about the factors that drive individual fixations (visual salience or 

meaning, transitions between objects). Moreover, such a model would need to start from an 

underlying function that yields a multinomial distribution (the likelihood at looking at each 

object, not the likelihood of looking at one object or not at that object). Such a function has 

not currently been proposed.

The model proposed here makes a number of simplifications as a first step. The generative 

side starts from an underlying binomial function (e.g., the logistic function for target 

looking), generates a series of fixations, and averages the data to create a predicted fixation 

curve. Then, parameters of the underlying function are optimized such that the averaged 

predicted fixation function matches the observed data. Rather than optimizing the model 
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to the likelihood of a given sequence, it is optimized to generate the averaged fixation 
curve. Critically, the generative function that creates the data is given the mean and standard 

deviation of the subject’s fixations so that it can generate distribution of fixations that match 

a subject’s own. These are not free parameters. Thus, generative model is optimized only to 

mean performance (not the distribution) and treat the data as binomial. However, it is also 

computationally tractable and eliminates many unknowns.

The final simulations implement this simplified generative approach. The goal of a 

generative model is to not just fit the data but to approximate the true latent (but 

unobservable) curve. This makes it difficult to validate as we have no secondary measures of 

the latent function, and the fixation models are admitted simplifications. In this context, 

while this investigation demonstrates the feasibility of this approach, it should not be 
seen as validating the method for statistical use. However, while our simulations can only 

demonstrate feasibility, this is important for two reasons. First, there were large technical 

hurdles to overcome in implementing and optimizing such a model. These are described 

below and in Supplement S5; code is available to aid in further development. Second, given 

the prior simulations, it was possible that the fixation-generating system could introduce so 

much randomness that underlying functions could not be reliably estimated. That is, there 

may be cases where the same observed fixation curve could have derived from multiple 

underlying curves. Thus, test–retest reliability as a key metric of success: Can this approach 

obtain the same estimates twice in a row (given the noise in both the fixation data [across 

test and retest], and the noise inherent in the model). If the model fails on this metric, it may 

not be worth further development as fixation is just too underspecified to properly identify 

the underlying curve.

Approach

The generative model was implemented in two parts. First, a function was developed that 

takes the parameters of the latent function (e.g., slope and crossover [etc.] for the logistic; 

μ, and ht [etc.], for the asymmetric Gaussian) as well as the mean and standard deviation of 

the subject’s fixations. It then generates the average of 10,000 trials worth of fixations as the 

predicted data. Finally, this function computes the least squared error between the predicted 

and observed data.

In the second part, a search process was implemented which estimates starting underlying 

parameters and adjusts them iteratively to minimize the least squared error. This was 

implemented using a patternsearch algorithm, which minimizes the error between the 

function and the data but does not make strong assumptions about the smoothness of the 

error function.

Note that while the mean and standard deviation of the subject’s fixation data are 

parameters, they are not free parameters and so are not optimized by the fitter. They are 

estimated directly from the participants data, and then used to generate the predicted pattern 

of fixations. A complete instantiation of this is available for the logistic and asymmetric 

Gaussians functions, under both FBS and FBS+T assumptions. This can be found as part of 

the code shared for this paper and is also embedded in the freely available curvefitter for use 

with live data6 (McMurray, 2017). Several tricky issues arose in implementing the model, 
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including how to implement a gradient descent search of the parameter space when the 

function generates noisy data, and how to estimate starting parameters for a latent function 

that by definition does not match the observed data. Solutions to these are described in 

Supplement S5. Even so, this was computationally intensive. A single fit for the generative 

logistic function required about 4.36 seconds assuming FBS and 5.18 for FBS+T [using 

20 cores]. In contrast the traditional logistic only required 0.13 seconds. While this is 

certainly reasonable for analysis of regular data sets, it was not possible to run thousands 

of simulations. Thus, smaller scale simulations were run to assess validity and bias (N = 

500) and reliability (N = 250). Power and Type I error—which require running hundreds of 

experiments each consisting of 50 or so subjects—were infeasible. Reliability was the most 

important metric as it addresses the question of whether the stochastic fixation-generating 

process leads to an essentially insolvable problem.

One concern is that this approach assumes a fixation-generating model that we already 

know is oversimplified (though more plausible than the HFS model assumed by other 

approaches). Thus, robustness was evaluated by examining mis-specified models (e.g., when 

the data were generated under FBS+T, but the model assumed FBS). This was only done 

for the logistic function where two models were available. This yielded four simulations: 

(1) an FBS–match model, in which the data came from an FBS model and the fitted model 

assumed it; (2) an FBS+T–matched model, in which the data and fitting functions both 

assumed FBS+T; (3) an FBS–underspecified model, in which the data came from FBS+T, 

but the fitting model assumed only FBS (it was underspecified relative to the data); and 

(4) an FBS–overspecified model, in which the data came from FBS, but the fitting model 

assumed FBS+T.

Results

Target—Fits were very good. The average correlation between the observed data and 

the fixation curves predicted by the generating model was greater than.996 in each of 

the four simulations, and no run was dropped. This was far superior to the traditional 

approach applied to FBS and FBS+T generated data. The fact that fits were good even in the 

misspecified models is an important caution—a model that does not capture the generating 

function of the data may nonetheless yield a close match (even as the estimated parameters 

may be wrong).

Figure 19 shows representative results from each of the four simulations. Analysis began 

with the two simulations in which the fixation-generating function matched the function 

used to fit the data (Fig. 19a–b). These functions showed a very strong match between 

the underlying and observed results in two ways. First, with the simpler, FBS-generating 

model, the predicted (blue) and observed (red) fixation curves were on top of each other in 

every run. Second and more impressively, the estimated latent functions (green) completely 

overlapped the true underlying function (black), despite the fact that the fitting procedure 

had no access to this latent function (e.g., it was only optimized to match the observed data). 

The FBS+T–match simulations (Fig. 19b) showed similarly impressive fits. For all of them 

6… as you wish.
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the observed and predicted data were quite close. The latent and underlying functions also 

matched closely though there were several whose slope (cf. subpanel a) or asymptotes (b) 

were off.

Figure 19c suggests the importance of properly specifying the model. When the data 

came from an FBS+T model, but the fitting model was underspecified (FBS), we saw 

poorer performance. While the predicted data completely matched the observed data in all 

displayed runs, the underlying and latent functions rarely matched (green vs. black lines). 

In contrast, Fig. 19d shows an overspecified model in which the model expected FBS+T 

situation but got FBS data. This showed similarly good fits as the two match models. This 

is not surprising—the model took as input the separate mean and standard deviation of the 

fixation durations for both fixations toward the target and fixations elsewhere. Since the 

data came from FBS (not FBS+T) these were very similar, and the fitted model functionally 

behaved like FBS. It may be of value then to over-parameterize generative models with 

respect to the properties of the fixations (e.g., assume separate fixation durations for all four 

objects). These are estimated directly from the data (they are not fit), so do not cost degrees 

of freedom, and could help ensure an adequate model.

Figure 20a–d shows the correlation between the parameters of the estimated underlying 

generating function and those of the true generating function; Fig. 20e–h shows test–retest 

reliability, and Fig. 21 shows mean bias. For comparison, both figures report (in blue) 

the corresponding values from earlier simulations using traditional approaches. Recall that 

for the baseline and max parameters (logistic), the traditional curvefitter (blue bars) did a 

good job of extracting those parameters with an FBS generating model, with high validity 

and reliability, and bias near zero. Not surprisingly, all four generative simulations showed 

similarly good performance. However, with FBS+T data (right groupings in each panel), 

the traditional approaches broke down with lower validity and reliability and more bias. 

In contrast, the generative model that was expecting FBS+T data coped with this much 

better. Its validity estimates were much higher than either the traditional or the mismatched 

generative model, and its bias was restored to near zero.

Our prior simulations also suggested that crossover (Fig. 20c, g; Fig. 21) showed some of 

the most deleterious effects of more realistic generating models. With traditional analysis 

techniques (blue bars) and both FBS and FBS+T-generated data, there was substantial bias 

and lower validity (FBS: r = .85; FBS+T: r = .79) and reliability (FBS: r = .84; FBS+T: 

r = .81) than with HFS-generated data (r >.999 for both). In contrast, when the data 

were fit with a generative model that matched the data, there were sharp improvements 

in validity and reliability: In the FBS condition validity leaped to 0.967 (reliability: r = 

.920), and in the FBS+T condition it rose to.915 (reliability: r = .879). Most importantly, 

when the generating function was not underspecified (it matched the data or was over-

specified), bias was eliminated (Fig. 20c)—the generative model can yield a true estimate 

of the crossover (though underspecified models introduced some bias). Slope was more 

challenging: generative models were not as accurate at detecting the true slope as more 

traditional approaches, in either simulation. While they did reduce bias to near zero (Fig. 

21d), they did so at the cost of increased variability.
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Competitors—Results for the competitor models were somewhat more straightforward as 

there was only one generating model (which always matched the data). As with traditional 

approaches, fitting competitor fixations proved more challenging. Thus, fits between the 

predicted and observed data were poorer than for the target (though on par with traditional 

competitor analyses). Fits averaged r = .930, and 31 of 500 models were dropped.

Figure 22 shows representative results. As in target models, the predicted (blue) and 

observed (red) data were close matches. While the underlying function (black) and the 

estimated latent function (green) were fairly close, there were also cases where they 

diverged. However, this divergence appeared to be more noise than bias. For example, 

in Fig. 22b, height was underestimated, whereas in Fig. 22c, it was overestimated. 

Others showed extremely steep onset or offset slopes (Fig. 22d–e), although there were 

also examples of under estimated slopes (Fig. 22a). Generally speaking, there was good 

concordance between the estimated latent and the underlying functions. This was strikingly 

unlike what was observed with traditional fitting approaches which did not approximate the 

underlying function well (e.g., Fig. 12).

Analysis of validity reliability, and bias (Fig. 23) suggested a modest improvement over 

the traditional approach. Peak time (μ) and offset slope (σ2) showed validity gains of about 

0.2. As both parameters showed relatively low validity to begin with (r < .4) this was 

meaningful. Other parameters had similar validity as standard approaches. For reliability, 

most parameters were similar across the two approaches except peak time (μ) and onset 

slope (σ1), which were lower. As with the target, bias was reduced. Peak time (μ) and height 

both showed large bias with traditional approaches, but this was eliminated in the generative 

model.

Discussion

These foregoing simulations offer several conclusions and avenues for future research. First, 

when the assumed generating function matched the underlying data, performance was very 

good. This was particularly true of the logistic models, where validity, reliability and bias 

were improved for the baseline, max, and crossover (but not slope). However, even in 

competitor models, most parameters showed improved validity, and reliability and less bias. 

The success of these models is clear in Figs. 19 and 22, where the model could recover the 

true unobserved curve (in black) despite only having access to the observed fixations (red).

Second, getting the right fixation model matters, to a point. If the model is too simple 

(Fig. 19c), the observed and predicted data can be a close match (blue vs. red), but the 

underlying curves will not be accurate. This appears to come mostly at a cost to validity 

and reliability; bias was acceptable. Even then, validity and reliability were no worse than 

traditional models (Fig. 20, compare yellow bars to blue), so perhaps this is acceptable. 

However, the real risk is that the experimenter rarely has access to the true underlying 

function, so it is difficult to evaluate the accuracy of the estimated latent functions if the 

predicted data are a close match. Instead, researchers must rely on things like outliers to 

determine whether a spurious fit was obtained.
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Third, there was little cost of overspecifying the model. This makes sense as the additional 

parameters (the mean and standard deviation of the target fixation durations) are not free 

parameters (in the sense that the fitter must estimate them)—they are measured directly 

from the data. If no systematic variance is captured by them, they will have little effect (or 

cost). This suggests a path forward: researchers should create and test probabilistic models 

of the generating function itself, particularly for aspects that can be implemented without 

free parameters.

Finally, and most importantly, the high reliability of most parameters estimated by the 

generative model suggests that at a fundamental level, this probabilistic system is not 

underspecified. That is, even though there were cases where distinct underlying functions 

could give rise to the same data (e.g., Fig. 22a–b), these were relatively rare, and the 

procedure generally obtained similar estimates for two runs of the data. This is notable 

despite two sources of noise: the variability in the fixations that generated the data (on test 

and retest) and the variability of the fixations in the generative model. This meets the bar to 

warrant further development.

It is premature to recommend utilizing this generative approach as an analysis tool yet (at 

least by itself). There are too many unknowns about the fixation-generating function, and 

there is no clear way to evaluate the estimated underlying functions. However, even as more 

sophisticated generating models may be out of reach for the reasons described earlier, this 

approximation is highly feasible and may serve as a path for future work.

General discussion

These simulations attempted a serious look at the nature of the processes that lie between 

the underlying unfolding decision and observed fixation curves in the VWP. The goal was to 

computationally flesh out the derivation chain (Meehl, 1990; Scheel et al., 2021) by which 

inferences about the underlying activation curve can lead to predictions about fixations. This 

was done with a model in which the true underlying function was known allowing us to 

observe the consequences of various fixation-generating models for the observed fixation 

curves.

The simulations started by considering the high-frequency sampling (HFS) assumption. This 

generating model assumes independent sampling at the sample rate of the eye tracker, with 

some fixed oculomotor delay. No serious person would claim it is true. Yet it is often 

justified as reasonable by reference to the general noise across fixations and trials, and it is 

quite clearly assumed by modeling approaches for linking computational models to fixation 

data via the Luce choice decision rule (Allopenna et al., 1998; McMurray et al., 2010; 

Mirman et al., 2008).

The simulations of HFS showed that if this were the true generating function, then all is 

well. The observed data were a close match to the underlying function, and the parameters 

of the underlying function can be estimated reliably, with low bias, and few spurious 

correlations among estimated parameters. Power was not affected by the stochasticity of the 

fixation system, and TIE is at.05. This validates the curvefitting approach for analysis of 
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the later simulations: When the assumptions of such models are met, the paradigm performs 

wells.

However, things broke down with more sophisticated fixation-generating models. In the FBS 

model, results were problematic but straightforward. Target looking was biased (delayed) 

by well more than the standardly assumed 200 ms; the function was shallower, and every 

parameter showed increased variability. The situation was worse for competitors, and for 

targets in the FBS+T model (in which fixation duration was affected by what the subject 

was fixating). Fixation curves were noisier for all parameters, and often did not resemble 

the underlying functions. In addition, for targets, asymptotes now showed bias and spurious 

correlations.

Critically, correlations between the underlying and observed parameters were reduced under 

FBS and FBS+T models (validity; Table 10). Under the HFS assumption correlations were 

above.99 for the targets, and.94 for competitors, with the FBS model, validity for the 

target crossover and slope, and for all competitor parameters dropped below.9, and some 

competitor parameters were below.4. Moving to the more realistic FBS+T model, the slope 

went as low as.616. This is not a function of our estimating/fitting procedure. As Figs. 11, 

13, and 15 show, the observed data just does not match the underlying function regardless of 

the analytic model.

More realistic fixation-generating functions also created systematic biases in some 

parameters. For targets, slopes were shallower and crossovers later than their true values; 

for competitors, peak times were later, and peaks were lower. There were also spurious 

correlations among the observed parameters, correlations that were not present in the 

underlying parameters. That is, these correlations do not reflect correlations among latent 

traits (e.g., the slope and maximum are not really correlated), but rather appear to be 

imposed by the generating function.

Both the FBS and FBS+T models also reduced test–retest reliability (Fig. 17, Table 7), and 

for some parameters to correlations below 0.4 (target slope, and virtually all competitor 

parameters except height). This is a serious concern for using these aspects of the curves 

to make inferences. This is likely because even with over 50 trials, when there are only 

3–4 fixations per trial, there are just not enough fixations to smooth out the noise and 

generate a reliable fixation curve. Some part of this is sampling error. Figure 3 shows that 

even in a simple coin-flipping experiment, when there are a small number of trials there is 

a dramatically reduced likelihood of both estimating a mean probability and of observing 

the same probability in two runs. This is particularly problematic when the underlying 

probability is below 0.2 (typical values for competitors in the VWP) or above 0.8 (typical 

target asymptotes in the VWP). However, the FBS and FBS+T models clearly add additional 

noise beyond sampling error: In some cases, reliability and validity were lower than what 

would be predicted from sampling alone.

Finally, simulations examined the consequences of the fixation-generating model for power 

and Type I error. Fortunately, TIE was held at.05 even under the FBS+T model for both 

curvefitting analyses and nonparametric indices. This suggests fixation-generating function 
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is not likely a driver of TIE in prior studies. In contrast, the story with power was more 

complex (Fig. 18). For some properties of the curves (target max and crossover), power 

was preserved and similar across the HFS and FBS or FBS+T models. However, for target 

slope and parameters describing the competitor, power was dramatically reduced with more 

complex generating models. This suggests two important points. First, when null effects are 

observed in these measures empirically, these needed to be treated with particular care, as 

the underlying power may be much less than expected by the number of subjects. Second, 

when effects are detected on these properties of the curve, the underlying difference may 

be bigger than what is observed. It is not clear if these issues can be worked into Bayesian 

analyses that are used to evaluate the strength of evidence for null effects; this may be a 

useful avenue of future work.

There’s a shortage of perfect data visualizations in the world—it would be a pity to spoil 
yours

Simple fixation-generating models yielded (1) larger variances in estimates, with meaningful 

effects on reliability for some aspects of the curve; (2) systematic bias in some places; (3) 

a nonlinear mapping between underlying and observed functions; (4) systematic correlations 

among observed parameters that were not present in the underlying data; and (5) reduced 

power in some circumstances. Yet, despite these issues, the bulk of the early VWP work has 

largely asked simple questions answered with ordinal experiments: Under which condition is 

a competitor more or less active or is a target activated faster or slower? These simulations 

suggest that such inferences may be fine: There were no situations where the FBS appeared 

to reverse the direction of such effects, and α was preserved at 0.05. Yet, even for this 

purpose, the issues of reduced reliability and power are concerning. Moreover, the fixation 

curves may be problematic for more specific purposes such as identifying properties of the 

curves that differ or time locking the fixation curves to real events.

The question is where to go from here. In the long run, a generative analytic approach may 

overcome many of these issues. However, the preliminary version presented here comes 

with significant concerns that are not yet resolved. While a comprehensive and perfect 

analytic technique may be currently beyond reach, there are lessons to be learned about 

experimental design and planning, visualizing and interpreting of results, and broader issues 

on replicability and rigorous science. Before discussing lessons, I briefly address limitations 

of this work.

Limitations

The analytic approach—Analysis of these simulations used nonlinear curvefitting 

(Farris-Trimble & McMurray, 2013; McMurray et al., 2010). This was adopted because 

unlike growth curve analysis and to some extent GAMMs, the parameters offer meaningful 

descriptions of the curves. More importantly, each subject’s data are fit independently of 

other subjects, unlike mixed models in which all subjects’ data are fit simultaneously and 

show shrinkage toward the group trends. Here, this enabled a cleaner estimate of validity and 

reliability. However, these models have been rightly criticized for their inability to handle 

crossed random effects, and for their requirement that the data “obey” the expected form of 

the function.
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Would the results be any different if this study had used a different approach? This 

is unlikely. Most of the findings are visible directly in the observed data: under FBS 

assumptions, observed target curves are shallower than expected, competitor curves are 

more variable, and so forth. Thus, one should interpret these results not in terms of the 

specific analytic approach, but in terms of general properties of the fixation curves that 

are susceptible to noise or bias under realistic generating functions. Even if you use a 

polynomial growth curve and do not intend to estimate the target slope, a fixation-generating 

function will still lead to a shallower linear trend or quadratic effect than is present in 

the underlying activation curve. Future work should simulate a realistic generating function 

(FBS or FBS+T) in these other frameworks.

What to look at…—These simulations largely used a binomial model, capturing fixations 

to one object at a time. However, the true function should be multinomial—the system is 

not deciding to look at the target or not; rather, it is deciding whether to look at the target, 

the cohort, the unrelated or nothing at all. Supplement S2 presents a simplified multinomial 

model that illustrates many of the same trends as the binomial model. However, the lack 

of multinomial models is an omnipresent issue—all available analysis techniques typically 

examine looks to each object separately. The development of a true multinomial model 

could be crucial for better analysis and for better generative models.

… And when to look at it—Both the FBS and FBS+T models assumed people make 

the decision to look at the next object at the moment that their eyes land on the current 

object. That assumes that fixations are solely a stochastic readout of the underlying decision 

state. That cannot be true—fixations also serve to obtain (visual) information that may alter 

the underlying decision state (see Magnuson, 2019, for an excellent discussion of various 

mechanisms). Most likely, people take a brief period to take in the visual information from 

the current fixation before deciding where to move next. It is not clear how long it would 

take an observer to estimate the properties of the kind of simple clip art images used in the 

VWP (particularly if they are repeated). However, ERP and eye-movement studies suggest 

people can read a word in about 50–60 ms (Sereno & Rayner, 2003), and extract key 

information from a visual scene in even less time (Bacon-Macé et al., 2005). Given that 

simulated saccades were on the order of 200 ms, it was unlikely that implementing this 

delay would have made a large difference, and it may have even introduced noise. However, 

answering the question of when the decision to move is made is crucial for building better 

fixation (and generative) models.

… And how long do you look there?—The FBS model assumes fixation duration is 

entirely random over time. The FBS+T model was slightly more realistic in this regard, but 

even it assumed that the “boost” to duration for target looks is uniform across time. Most 

likely the duration of target fixations is even longer at later times and may be non-existent 

at early times (since the target is not known). Similarly, the analysis of earlier empirical data 

showed no difference between the durations of fixations to competitors and other objects; 

however, there could be a short-lived difference during the brief period when the competitor 

is more active (see McMurray et al., 2008a, for an example). A more comprehensive 
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understanding of duration could also improve these models like (cf. Walshe & Nuthmann, 

2021).

It is also helpful to consider more global effects on the sequence of fixations. Perhaps there 

are contingent effects: Are people quicker to leave a less active item to move to a more 

active item than the converse? Moreover, these models assume the overall rate of fixations 

is fairly constant: The time of each fixation is based on the duration of the previous (and 

that is constant across the trial). However, studies suggest that the overall rate of saccade 

generation is modulated by listeners expectations, even in purely auditory tasks (Abeles et 

al., 2020). A better model of these things could be crucial for building a better generative 

model, and a variant of the FBS+T model would be the place to start.

Summary—The above factors are unlikely to dramatically change the conclusions here. 

Recall, a primary findings was that parameters related to the slope and timing of the fixation 

curves were most affected by the generating model. Thus, seems unlikely that moving to a 

more complex generating model—with more sources of noise—would mitigate these effects. 

Even with these simplifications, these simulations suggest that fixation curve is profoundly 

shaped by the basic properties of fixations as a chunky series events with a roughly 200-ms 

refractory period.

This is not to dismiss these issues. Resolving these questions could refine or understanding 

of the fixation curves and lead more accurate generative models which—unlike the one 

presented here—have enough independent empirical support for actual use. Across the large 

number of labs using the VWP, there are likely to be reams of data on the precise duration 

and sequence of fixations—this could be potentially mined to develop such a model, and the 

OSF website for this project may be a useful repository.

Why does this matter?—The point of this exercise was not simply to tear down the 

existing paradigm—indeed, I have been a beneficiary of it. We should not stop analyzing 

data in the usual ways, and my own lab is continuing to submit papers and grants with 

traditional models. However, after working with these simulations now for several years, 

it is clear that the field needs to understand the role of the fixation-generating function 

in creating the visualizations and measures we rely on. Though this study only offers the 

beginning of a solution, there are a number of important takeaways—even if we want to 

continue with business as usual. That is, now that we know the dangers of the fixation 

curve swamp, what are we to do? In discussing these issues, we simultaneously focus on 

implications for ordinal designs and for continuous-in-time designs.

How does time in the fixation curve relate to real time?—Standard practice since 

Allopenna et al. (1998) is to assume a 200-ms oculomotor delay. At the level of a single 

saccade, this is certainly correct—it was based on strong psychophysical work on single 

fixations (Viviani, 1990), and is supported by empirical data presented here on saccade 

latency (Table 3). However, the way this 200-ms estimate is used may be wrong.

The typical approach is to simply shift the x-axis of the fixation curve by 200 ms and 

call it a day. These simulations suggest minimally a longer delay is necessary: Even as 
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fixation durations were assumed to average about 200 ms here, the crossover of the target 

and peak time of the competitor were delayed by much more than that in the FBS and 

FBS+T models. However, time is not simply delayed by a fixed amount—target curves are 

not just shifted, their slopes are shallower, and for competitors, things can go in any number 

of ways. The mapping of time between observed and underlying functions is not linear. This 

is clearly seen in Fig. 24, which captures the time lag at which the underlying activation 

is maximally related to the observed fixations (see Supplement 6). While the HFS model 

generally maintains this around 200 ms throughout most of the trial, the FBS and FBS+T 

models show increasing lag over the course of the trial.

This has implications for both ordinal and continuous-in-time studies. For ordinal studies, 

AUCs are often identified on the basis of events in the stimulus (e.g., the average length of 

the word); this challenges these inferences. Moreover, ordinal studies examining at timing 

(e.g., a delayed cohort peaks, target slope) may be more problematic. While the rank order 

of a timing parameter is likely preserved (e.g., a condition leads to earlier fixations will 

still be earlier under reasonable fixation-generating assumptions), indices of timing are less 

reliable than of overall looking (Fig. 17). They may require more power (subjects and trials). 

Continuous-in-time studies could suffer more. Certainly, this finding makes it more difficult 

to be confident to precisely time lock the fixation curve to real world events. The disruption 

of later times also has clear effects on the shape of the competitor curves, potentially making 

it more problematic to draw direct inferences about the shape. At this point there are not yet 

clear solutions (outside of potentially a generative model), but these findings should serve as 

warning to interpret temporal aspects of the fixation curves cautiously.

Power and reliability—There were strong effects of the fixation-generating model on 

power and reliability. Several potential sources can be ruled out. First, this was not due to 

the analysis technique—the same technique applied to HFS data showed good reliability 

and power, and nonparametric index approaches applied to FBS data showed lower power. 

Importantly, unlike a real test–retest study, this could not have been due to bad items or 

procedures and underlying function did not vary from test to retest. Here, the only reason 

power and reliability could be lower was the fixation-generating model.

This issue is relevant to both ordinal and continuous-in-time studies. How should we 

approach it? First, we need to consider overpowering VWP studies. This requires more 

than just more subjects. As show by Simulation 0 (Fig. 3) and later reliability simulations 

(Fig. 17), this has to be also considered in terms of the number of trials. In these simulations, 

150 trials (which many would consider to be an overpowered experiment!) was not enough 

to yield good reliability for some aspects of the curves. A traditional power analysis that 

assumes a power of.7 on the basis of number of subjects alone will have a true power that 

is much lower when we consider the role of the fixation-generating function. Importantly for 

continuous-in-time studies, the effects of this may vary across different indices, and the data 

presented here (Fig. 18) offer a rough guide as to which indices may need even more power.

Second, we may want to restrict hypotheses to indices that can be estimated reliably 

(e.g., competitor height, target asymptote) and accept the fact that there may be some 

hypotheses that cannot be tested with current methods (Meehl, 1990). It may help to 
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conduct simulations applying these simulations to real or hypothesized studies as a tool 

for identifying which indices would be reliable in a given study (code is available at: https://

osf.io/wbgc7/).

Third, and relatedly, in ordinal experiments, null effects are to be predicted in certain aspects 

of the function. For example, effects on portions of the curve that are low or high probability 

may be difficult to detect (Fig. 3), and slope-based effects are hard to detect (Fig. 18a, s 
grouping; Fig. 18b, σ2 grouping). But there are also more complex patterns. For example, 

when the underlying competitor function has a short-duration peak (Fig. 12e–f), there may 

be few visible fixations (which may explain the inability of Teruya & Kapatsinski, 2019, 

to find cohort effects for short overlap cohorts). This needs to be taken into account when 

interpreting small effects and null results. It may be more helpful to talk about more general 

patterns of fixations than diving into more specific aspects of the curves.

Spurious correlations—The VWP is increasingly used to document individual 

differences and development (e.g., Law et al., 2017; McMurray et al., 2010; Rigler et 

al., 2015; Sekerina & Brooks, 2007). In doing this, a desirable direction is to identify 

certain properties of real-time processing that may be useful descriptors of latent traits. 

For example, my laboratory is testing the hypothesis that development of spoken word 

recognition is characterized by changes in activation rate (timing based parameters like slope 

and crossover; McMurray et al., 2018), while differences due to language disorders are more 

reflective of the asymptotes (McMurray et al., 2019b, 2010; e.g., differences in the speed of 

activation vs. the degree of resolution).

These simulations suggest caution in interpreting single parameters—there may be no effect 

on target slope, but one is observed anyways due to a real effect on the initial asymptote 

(Table 6), or there may be no difference in competitor onset slope (σ1), but there appears 

to be due to a difference in peak time (μ) (Table 5). These correlations may be imposed 

by the fixation-generating function—not systematicities across subjects in word recognition. 

These simulations suggest the need to understand these things so as to not interpret them as 

meaningful. This is not to argue that we should not be making these inferences; but rather 

we need to be cautious about their potential causes, and the correlations presented here in 

Tables 4, 5 and 6 suggest particular places of caution. When working in these domains, 

researchers should consider basing simulation studies (like these) based on the observed 

properties of their own data to figure out how much correlation should be expected by 

chance in a given data set.

Theory building—Finally, these findings are important for theory building. The common 

HFS assumption assumes that observed fixation curves are fairly close read-outs of the 

underlying activation function (accounting for the oculomotor delay). However, taking this 

assumption too seriously risks building a theory of language processing which is biased 

with respect to time. Models of word recognition (McClelland & Elman, 1986; Norris & 

McQueen, 2008) are typically exquisitely timed to real events in the world—the unfolding 

stimulus or the uniqueness point of the words. If the time axis of our measure is not linearly 

related to the model, that is a problem—models might assume aspects of word recognition 

happen earlier or later than they really do. This is not likely a problem for the macro 
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structure of the model—indeed, TRACE was well validated long before we had the VWP 

to help characterize the precise shapes of the model. But the field should be cautious about 

overinterpreting the shape of these functions.

The bottom line—Unfortunately, there are not yet perfect solutions to these problems. 

Though ultimately a generative model may help, the most important contribution of this 

work at a purely empirical level is to raises these issues and encourage researchers to caution

—both in study design and in interpretation—when working with specific indices of the 

fixation curve.

Toward a generative model

A well supported generative model could in principle solve many of these issues (see 

Haines et al., 2022, for an analogy). This is likely out of reach at the moment. At a purely 

technical level, it was not possible to implement a state-of-the-art model (e.g., a multinomial 

model of the underlying activation, which predicts individual trials, and computes the 

likelihood of specific patterns of fixations). However, the workaround introduced here was 

reasonable. It simplified the problem by (1) assuming a binomial function for the underlying 

curves; (2) basing the fixation model on observed properties of each subjects’ fixations 

(rather than fitting it); and (3) optimizing the fit to the expected mean fixation curve (not 

the distribution of fixations). This approach was feasible. It runs in a reasonable time. 

Importantly, when the assumed fixation model matches the true one, the generative model 

accurately recovers the underlying function, and for the most part shows better validity and 

reliability than approaches based on the observed data alone. This was not guaranteed: given 

the indeterminacy of the fixation-generating function (and the fact that this stochasticity 

appears twice in the generative model) it was possible that multiple underlying curves would 

be consistent with the observed data, and the model would not reliably extract the correct 

latent curve. However, the strong reliability suggests this is not the case (with sufficient 

trials).

However, there are technical limitations. This generative model is sensitive to initial 

parameter estimates of the underlying function. Right now, initial estimates are based solely 

on the simulations—there is no way to know if they are correct for real data. They also 

require many trials. As the reliability simulations show (Supplement S4), with only a small 

number of trials the same underlying function can generate a variety of observed functions. 

As there is no independent way to characterize the true underlying function, these issues are 

real concerns for real data. In these simulations, the underlying function was known, and it 

was clear if the estimated latent function matched it. However, in a real experiment these 

will be unknown, and as Fig. 19c shows occasionally two distinct underlying functions (the 

black and green) can generate two similar observed functions (the red and blue) but still 

show a near perfect fit to the data. We need to develop better ways to evaluate model fit 

such as looking for outliers (many invalid fits also had overly steep slopes) or patterns of 

covariance. Or we may need better ways to fit the model such as better starting parameters, 

or priors or constraints on the parameters.
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But the real limits are not technical limits of implementation. Rather, we need to get 

the model of fixations right. This need was raised by simulations when the wrong fixation-

generating approach was underspecified relative to the data: this model (which assumed FBS 

for fixation curves generated by FBS+T) generally did not get the true underlying function 

(Fig. 19c) and showed lower reliability and validity than the true model. However, this 

was not without hope. While validity (Fig. 20a) and bias (Fig. 21) of baseline, max, and 

crossover were lower for the underspecified generative model than the correct one, they were 

on par with the traditional analyses and max and crossover actually showed better reliability 

for the underspecified generative models than for traditional analyses (Fig. 20b)! Further, an 

overspecified model was not problematic. Thus, the right approach may be to develop more 

complex generative models than needed (if they do not add free parameters).

What is truly needed however, is a better understanding of how eye movements are planned. 

Within the VWP there are many relevant factors that were not captured here. Our models, 

for example, just predict the likelihood of fixating the target and treat the duration of 

the fixation as random variation. However, informal analyses of VWP data suggest, the 

likelihood of transitioning between competitors may be more relevant. For example, subjects 

may be more likely to move their eyes from a less active interpretation (e.g., the competitor 

late in the trial) to a more active one (e.g., the target late in a trial) than to do so in the 

other direction (over and above the base probabilities). Subjects may also fixate longer on 

more active objects than others. And the act of fixating an object may build activation for 

its word (Chen & Mirman, 2012, 2015). Thus, the fixation-generating function may be more 

intricately linked to the activation function than is simulated here.

But even beyond the VWP, developing an accurate fixation model should be based on 

empirical work on eye-movement control and object recognition that is independent of work 

on language processing. Work on scene semantics (Henderson et al., 2019) may offer ways 

to integrate low-level visual salience with the meaning of objects; work on visual search 

and models like Walshe and Nuthmann (2021) can describe accurately describe the durations 

of saccades as they relate to visual information in the scene. But ultimately, these models 

should also be informed by the role of fixations not just in picking up visual information, 

but in guiding motor behavior—as in the VWP. A fixation-generating model built on these 

sources of information could provide independent support for this sort of analysis. To the 

extent that these can be implemented in simple schemes such as this one (and preferably 

with few free parameters), such insight could be incorporated into future generative models.

Source code is available for the generative approaches to support this development. This 

is integrated into a user-friendly curvefitting package (McMurray, 2017), which can handle 

both generative and traditional models used here (along with other functions such as the 

rotated logistic and ex-Gaussian functions). The generative model is not yet appropriate as 

an analysis tool, but by providing the code, it may serve as a framework for further thinking 

and development. Long term, whether the field adopts a generative approach must depend on 

the degree to which we can support the specific assumptions built into the generative model. 

At this point, the true fixation-generating system is severely under modeled here. However, 

at the same time, all of the existing models largely assume HFS. The present study suggests 
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that HFS is clearly the wrong assumption, and perhaps more wrong than the oversimplified 

FBS model assumed here. There is a need to do better.

HFS, you seemed like a decent linking function. I hate to kill you

At the broadest level, these simulations suggest the need to reconsider the linking function 

that binds together an underlying theory and the observed data. This is a critical part of the 

derivation chain, and even a “mostly good” linking function needs to be better understood 

in order to make precise predictions from theory (Meehl, 1967; Scheel et al., 2021). HFS 

has gotten us a long way, but these simulations make it clear that any reasonable assumption 

about fixations does not lead to data that accurately reflect the underlying activation curve. 

A major portion of the variance is the systematic (and nonsystematic) noise induced by 

the fixation-generating system. These simulations, however, suggest that it is possible to 

create a new linking function. Stochastic models of the fixation generation process are 

straightforward to implement and can be integrated in both simulations and potentially into 

analytic tools. We just need to know more about how and when fixations are planned in 

these tasks.

But this is only a small piece of the linking function. These simulations start from the 

likelihood of fixating something or not. However, computational models and theories do not 

work at that level—they may predict the activation of hundreds of words or interpretations, 

which then need to be mapped to the available items on the screen, and then need be mapped 

to a probability. Thus, we need to consider the mapping between underlying activation states 

and the likelihood of fixating at all. Teruya and Kapatsinski (2019), for example, argue that 

this may be nonlinear (activation may need to reach a threshold before an eye movement is 

launched). Other studies, focus on the role of the preview period (Apfelbaum et al., in press; 

Huettig & Altmann, 2011; Huettig & McQueen, 2007) in potentially priming semantic 

features or names in advance of the speech. Magnuson (2019) offers the most systematic 

review to date of the variety of cognitive processes that may take place to link speech to the 

world.

All of this must be considered. However, before we do, the basic properties of the fixation 

system—which can be measured and simulated—must be accounted for first. For example, 

Teruya and Kapatsinski (2019) find that cohorts which overlap with the target by one (and 

perhaps two) phonemes (e.g., cat and cove) do not lead to measurable fixations. They argue 

that since all models of word recognition predict some activation, this must mean that a low 

level of activation has not crossed the threshold; they put this failure on a mechanism that 

links the decision to fixate with the visual objects. In contrast our simulations suggest that 

if the activation is short lived, the dynamics of fixating may cause it to be missed (Fig. 13d, 

f)—even if the underlying probability curve has a peak. The fixation system is the aspect of 

the linking function closest to the data. While the other aspects must be fleshed out as well, 

understanding the actual behavior we are studying—fixations—is a crucial first step.

Where do we go from here?—Without a true generative model, how can we keep doing 

what we are doing? We have been in the fixation curve business for so long, now that it’s 

over, what do we do with the rest of our data? One thing that needs to be strongly considered 
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is greater use of converging methodologies. Mouse tracking (Spivey et al., 2005) and other 

continuous motor-based task (grip force, reach tracking) offer an analogous approach but 

built on a motor behaviors that are fundamentally continuous. However, it is not clear that 

the entire issue with eye movements is their serial nature; rather, there is a broader need to 

understand how the inherent dynamics of a given response system (oculomotor, reaching, 

etc.) may alter the mapping between underlying and observed data. Thus, without a more 

comprehensive model of the motor system in question (the derivation chain), it may not be 

safe to assume that some other continuous motor behavior will solve the problem. Hence, 

these techniques may be most helpful as converging evidence.

EEG and MEG approaches may also be of use. Of course, there are deep questions about 

what it means when scalp voltage or magnetic potentials are elevated or lower—the linking 

hypothesis or derivation chain, again. However, recent studies have attempted to by-pass 

some of these concerns raised by traditional ERP approaches by using regression and 

mixed models to predict neural activity at each time slice from a range of interesting 

psycholinguistic factors (Brodbeck et al., 2018; Kocagoncu et al., 2017; Sarrett et al., 2020); 

here, the analysis is not tied to specific components; rather, the question is when some 

factor (e.g., the number of competitors) affects distribution of activity. Work in my own lab 

has coupled EEG with temporally sensitive machine learning (McMurray et al., 2022b) to 

construct something analogous to fixation curves. Such techniques may also offer useful 

points of convergence.

But for the psycholinguist who has already invested substantial funds, training, 

infrastructure, and intellectual effort in eye-tracking, what is to be done? It seems to me 

that fixation curves are only mostly dead. These simulations suggest that we should not take 

the precise time course (as depicted in the fixation curves) too seriously. But we should not 

ignore it. In almost all of the simulations, the observed fixation curves were systematically 

related to the underlying curve. Moreover, such curves may be a crucial bridge to generative 

models. We just cannot treat them as a read-out anymore.

For simpler ordinal predictions, this may be sufficient. The zeitgeist now is to develop ever 

more precise tools for characterizing the fixation curves. I have developed some of them 

myself. However, the fact that now out-of-favor indices like AUC show as good reliability, 

power and TIE as more precise parametric approaches suggest that the situation may be 

acceptable for ordinal experiments (as long as we heed warnings about power, reliability, 

and null effects). These indices can be used to conduct targeted hypothesis tests. Indeed, 

simulation 6 suggests that even indices of the overall amount of looking seem to be fairly 

unbiased, as powerful as anything more sophisticated, and do not show increased TIE. Was 

area under the curve okay all along?

If we go down this route, the field needs to converge on standard measures to minimize 

researcher degrees of freedom. A good example of a subfield which has done this is 

reading research, where measures like first fixation time and regressions are now standard 

(Rayner et al., 1998), and even implemented by commercial eye-tracking manufacturers. 

But similar standardization is also seen in mouse tracking (Freeman & Ambady, 2010) 

and pupillometry/listening effort (Winn et al., 2018). We need something similar for 
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the VWP. The onset detection techniques (McMurray et al., 2008b) already offers some 

standardization across studies. But there should be a standard approach to identifying 

time windows for area under the curve, or for estimating when two curves separate. And 

newer approaches like the bootstrapped difference of time series (Seedorff et al., 2018) or 

permutation-based clustering (Darvas et al., 2004) can offer ways to do AUC with fewer 

researcher degrees of freedom as they automatically estimate both the difference between 

the curves, and the time window over which they are significant (though perhaps don’t 

take the time estimates too seriously!). A corollary to all of this is that in our zest for ever 

greater statistical precision, we may want to stop encouraging authors to adopt the latest, 

greatest time-course approach (listen up, Reviewer 2)—a well-justified index may be more 

appropriate, just as powerful, and unlikely to lead to Type I errors.

However, researchers should also consider a more serious exploration of the sequence of 

fixations (rather than fixation curves). In addition to their use as dependent variables, such 

measures could serve as independent variables or covariates in an analysis of fixation curves 

(Apfelbaum et al., 2022). Does the latency or duration of looking (at the subject level) 

predict anything about their fixation curves? Or does the likelihood of fixating one thing 

alter fixations downstream? Again, this needs to be standardized. But we must also consider 

the sequence of fixations in a task like this as an interesting behavior in its own right, 

divorced from any psycholinguistic hypotheses we may want to test. Or we may wish to 

estimate the time course of fixations using nonlinguistic analogue tasks (Farris-Trimble & 

McMurray, 2013) as a covariate to remove variance from the fixation system.

Rigor and reproducibility

Perhaps no other issue has animated the behavioral sciences quite like the so-called 

replication crisis (Bakker et al., 2012; Open Science Collaboration, 2015; Schmidt, 2010). 

There are many factors that contribute. Outright dishonesty and sloppiness, or the abuse 

of researcher degrees of freedom are problems, and inexcusable ones. However, lack of 

replicability may also derive from chasing weak effects with low-powered studies, or 

unreliable methods. These simulations speak to issues of power and reliability. They suggest 

that attaining methodological rigor in the VWP requires deeper thinking about power and 

reliability that is more intricately tied to the contribution of the chunky stochastic nature of 

the fixation-generating system.

Oberauer and Lewandowsky (2019) offer a compelling theoretical addition to this list, and 

one that may be most important issue. They argue that a major contributor is that most 

theories are under-constrained in their ability to make clear predictions about the data. This 

harkens back to earlier work by (Meehl, 1990; and see Scheel et al., 2021, for a more 

recent synthesis) calling for the need to understand the entire derivation chain—from latent 

theoretical construct to observable behavior. Oberauer and Lewandowsky (2019) build on 

this with a Bayesian analysis that models the likelihood of a prediction given the theory, the 

likelihood of the data given the prediction, and so forth. They show that if the likelihood of 

a prediction given a theory has any uncertainty in it, a failure to replicate is depressingly 

likely, as the uncertainty at this lowest level of the chain cascades through the system.
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How does this apply here? Theories of language processing are usually described as theories 

of activation or consideration, not fixations. That is, a theory predicts that a given word 

(or interpretation) is more active under one condition than another. The problem is that 

researchers often assume a direct relationship between heightened or delayed activation and 

increased or later fixations. Our simulations suggest concrete cases where this assumption 

is not warranted, where activation or the timing of activation does not predict increased 

activation: Even if the theory predicts heightened activation or a difference in the timing, this 

may not consistently appear as corresponding differences in the fixation curve.

First, whenever the competitor is predicted to be only briefly active (a few hundred ms), it 

may not be fixated very much—even if it is highly active (e.g., Fig. 13e). This may underly 

the failure to observe predicted effects of short competitors (Teruya & Kapatsinski, 2019). 

Second, effects on the timing of the function seem to cascade over time in the trial to where 

the timing of the underlying activation is less reliably reflected in the fixation curves at 

later points in the trials. Thus, theories that predict differences later in the trial may be less 

testable than those that predict early effects.

Third, theories are moving beyond simple ordinal claims to more precise claims about 

quantitative indices such as the slopes or asymptotes (e.g., McMurray et al., 2022a). A 

realistic fixation model makes such predictions more challenging. A theory may predict an 

effect on the final asymptote of the cohort competitor (e.g., McMurray et al., 2022a), but 

our simulations suggest the asymptote is strongly collinear with the offset slope (r=−.453, 

Table 5) even in the absence of such a correlation in the underlying data. This may make 

it challenging to test theories that make more precise claims about the time course of 

processing.

Finally, more broadly, reliability and validity were lower across all parameters due to the 

fixation-generating function. This is true for all indices when there are few trials, and some 

even when there were a lot of trials (e.g., slopes of the competitor fixations). In many 

cases reliability and power are poor enough that one should not predict differences in the 

fixations even if underlying activation is changing in the correct direction. This has to be 

considered as a source variance in mapping the theory to the predictions—the source of 

noise highlighted by the Oberauer and Lewandowsky (2019) analysis. This needs to be 

considered in any analysis of replicability or reliability of the VWP.

Thus, at multiple levels, the ability to make precise predictions from a theory of activation 

to the observed fixation data results is compromised when we consider more complex 

generating functions. That is, even when we know the underlying function, the observed 

fixation curves are not always predictable. And just as described by Oberauer and 

Lewandowsky (2019), this cascades through the inferential chain to impact reliability and 

power. Oberauer and Lewandowsky’s approach applied here suggests that even the simplest 

change in this linking assumption creates large uncertainty in the predicted fixation data. 

That is, without really knowing the fixation-generating function is, it may not be possible for 

a theory to make accurate predictions about the data in all cases.
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A second key issue in rigor is the distinction between confirmatory and nonconfirmatory 

(or exploratory) research. The mounting drive toward preregistration is a consequence of 

this. Is psycholinguistics ready for this? Are we truly doing confirmatory research? Our field 

is young, and particularly as the VWP is applied to special populations and development, 

theories do not make predictions that are sufficiently quantitatively precise for confirmatory 

work. These simulations, which severely oversimplify the fixation system, suggest we do not 

fully understand the link between underlying activation and observed data.

Particularly given the uncertainty in the linking function, the goal of precisely modeling the 

time course of fixations with ever more precision (and without strong theories to guide it) 

risks a nonconfirmatory approach. While it is certainly possible to make precise predictions 

with such models, most of the time predictions are ordinal—the competitor should receive 

“more” fixations—even if this difference cannot be pinpointed to an interaction of condition 

with the quadratic or cubic terms of a growth curve model. However, by testing every aspect 

of the time course and when the precise interactions cannot be specified, these ordinal 

predictions give the veneer of confirmatory research to a fundamentally nonconfirmatory 

analysis. In principle, this may be appropriate: Perhaps psycholinguistic theory and our 

understanding of the VWP does not yet have the quantitative precision to be truly 

confirmatory. It is not unreasonable to separate registration of qualitative hypotheses from 

registration of statistical models and predictions (Petersen et al., in press). But, if so, we 

should acknowledge it, embrace it, and frame the work appropriately.

Alternatively, if predictions are ordinal, perhaps a simpler index approach would be superior

—one could propose an index and test just that. This has the possibility of being truly 

confirmatory, but we are not there yet. Common indices like AUC are underconstrained; 

Everyone likes to invent them; and they are ripe for p-hacking. However, the simulations 

here show that when used appropriately they do have similar power and TIE to full time 

course approaches. With appropriate standardization (much as in the reading literature), 

researcher degrees of freedom could be minimized. Ideally, the specifics of such measures 

are developed independently of the study at hand7 based on theory or from meta-analytic 

work across multiple studies. And then these measures should undergo empirical evaluation: 

using Monte Carlos to ensure they avoid TIE; and empirical work to establish reliability 

and discriminant validity from other measures. The final stage of course is external validity. 

This is not news to anyone with introductory training in psychometrics. But it is worth 

considering in psycholinguistics.

In 25 years, VWP analyses have advanced from the extremely simple to the extremely 

complex. We can now characterize the observed fixation curve extremely precisely using 

several techniques. But should we? As these simulations show, our understanding of how 

underlying activation in the system maps to the observed fixation curves is not where 

it should be, and we do not understand the complete derivational chain from theory to 

behavior. We may have been led astray by the quest to characterize the curves better and 

ignored the basic fixation behavior which is the basis of our technique. Perhaps we need 

to focus less on what the right statistical approach is for capturing the fixation curves, and 

7When this is impossible, they should be identifed independently of the conditions in that study.
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instead focus more what are the questions we attempt to ask, and the fundamentals of the 

behavior that link these questions to data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Typical Visual World Paradigm (VWP) visualizations (adapted from Farris-Trimble et 

al., 2014, Exp. 1). In this experiment, participants (normal hearing or cochlear implant 

[CI] users) heard an isolated word (e.g., wizard) and selected the referent from a screen 

containing pictures of the target (wizard), a cohort competitor (whistle), a rhyme (lizard, 
not shown), and an unrelated (necklace). a Proportion fixations to the target, cohort, and 

unrelated in the normal hearing listeners show a precise time-locking to the unfolding 

ambiguity in the signal: Early on, listeners fixate the target and cohort as the input they have 

heard thus far (wi-) is consistent with both. Later, they suppress the competitor to hone in on 

the target. b–c Fixations to the target (b) or cohort (c) as a function of listener group (NH: 

normal hearing; CI: cochlear implant users) can reveal precise quantitative differences in the 

time course of processing. (Color figure online)
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Fig. 2. 
Schematic illustrating the source of the fixation curves (courtesy Richard Aslin). a A typical 

screen in the Visual World Paradigm (VWP) used to study word recognition may contain 

four objects: a target (corresponding to the auditory stimulus, sandal, in green), a cohort or 

onset competitor (sandwich, in blue), a rhyme (candle, in red), and an unrelated object. b On 

each trial, listeners launch a discrete series of fixations. On some trials, they may look at the 

target and stay; on others, they may look briefly at a competitor before the target. c To obtain 

the time course of fixations, one computes the proportion of trials in which the participant is 

fixating each object at each time slice. (Color figure online)
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Fig. 3. 
Results of a simple probability sampling procedure as a function of the underlying 

probability and the number of trials sampled. a Validity—the correlation between underlying 

and observed probability. b Test–retest reliability (correlation between two runs). Thicker 

lines represent the numbers of repetitions used in the simulations of fixation curves below
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Fig. 4. 
Functions used to generate and fit the fixation functions, annotated with the free parameters. 

a A four-parameter logistic function. b An asymmetric Gaussian
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Fig. 5. 
Overview of Simulation 1. (1) Parameters of the underlying function are selected from 

Gaussian distributions derived from empirical data (b [baseline], xo [crossover], slope, and 

max). These are used to define the underlying function specifying the likelihood of looking 

at each time. (2) Next, a series of fixations is generated. These are sampled every 4 ms. 

The likelihood of fixating comes from the underlying function at 200 ms before the current 

fixation. (3) Next, the data are averaged to compute the observed fixations. (4) Observed 

functions are fitted to extract observed parameters. (5) This is repeated for 1,000 subjects 

and the estimated and observed parameters are compared
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Fig. 6. 
Representative subjects from the high-frequency stochastic sampling (HFS) simulations of 

target fixations. Shown is the underlying and observed likelihood of fixating the target over 

time for a single subject (in each panel). In black is the underlying function. In gray is the 

observed (generated data). Red shows the same data but shifted by 200 ms to account for 

the oculomotor delay. Blue is the logistic curve fit to the observed data (also shifted by 200 

ms). Note that in all cases shown here, the fitted curve is directly over the underlying. Under 

HFS assumptions, once the oculomotor delay is accounted for, the observed data are a close 

match to the underlying function. (Color figure online)

McMurray Page 56

Psychon Bull Rev. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Histograms showing distribution of bias across subjects in the four parameters of the target 

model assuming high-frequency stochastic sampling (HFS). Histograms include 40 evenly 

sized bins, optimally spaced to reflect the distribution of the data. Axes are expanded to 

match the other histograms in this manuscript. The black line indicates what would be 

expected for an unbiased measure
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Fig. 8. 
Representative subjects from the high-frequency stochastic sampling (HFS) simulations 

of competitor fixations. Shown is the underlying and observed likelihood of fixating the 

competitor over time for a single subject (in each panel). Note that in all cases shown 

here, the fitted curve is directly over the underlying. Under HFS assumptions, once the 

oculomotor delay is accounted for, the observed data are a close match to the underlying 

probability function. (Color figure online)
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Fig. 9. 
Histograms showing distribution of bias across subjects in the six parameters of the 

competitor model assuming high-frequency stochastic sampling (HFS). Histograms include 

40 evenly sized bins, optimally spaced to reflect the distribution of the data. Axes are 

expanded to match the other histograms in this manuscript. The black line indicates what 

would be expected for an unbiased measure
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Fig. 10. 
Overview of Simulation 2 (fixation-based sampling [FBS]). (1) Parameters of the underlying 

function (b [baseline], xo [crossover], slope, and max) are selected from Gaussian 

distributions derived from empirical data, as in Simulation 1. (2) A mean fixation duration, 

and a trial × trial SD of fixation duration are randomly selected from Gamma distributions 

derive from empirical data. (3) A series of fixations is then randomly generated. For each 

fixation (inset) the duration is randomly chosen from that subject’s distribution of fixation 

durations. The likelihood of fixating the object comes from the underlying function sampled 

from the onset of the previous fixation. (4) Next the data are averaged to compute the 

observed fixations. (5) Observed functions are fitted to extract observed parameters. (6) This 

is repeated for 1,000 subjects, and the estimated and observed parameters are compared
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Fig. 11. 
Representative subjects for target fixations assuming fixation-based sampling (FBS). Two 

patterns are highlighted: a The slope of the underlying function is preserved, but the 

crossover is delayed (even beyond the oculomotor delay). b The slope of the observed 

data is shallower than that of the observed data. (Color figure online)
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Fig. 12. 
Histograms showing distribution of bias across subjects in the four parameters of the target 

model assuming fixation-based sampling (FBS). Histograms include 40 evenly sized bins, 

optimally spaced to reflect the distribution of the data. Axes are expanded to match the 

other histograms in this manuscript. The black line indicates what would be expected for an 

unbiased measure
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Fig. 13. 
Representative subjects from the fixation-based sampling (FBS) simulations of competitor 

fixations. Shown is the underlying and observed likelihood of fixating the competitor 

over time for a single subject (in each panel). Several patterns emerged: a The observed 

data matched the underlying (after accounting for the oculomotor delay). b The observed 

function is delayed and slower to build and fall. c The observed function is delayed but 

otherwise similar. d The observed function has a higher peak than the underlying. e The 

observed data have a lower peak. (Color figure online)
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Fig. 14. 
Histograms showing distribution of bias across subjects in the six parameters of the 

competitor model assuming fixation-based sampling. Histograms include 40 evenly sized 

bins, optimally spaced to reflect the distribution of the data. Axes are expanded to match the 

other histograms in this manuscript. The black line indicates what would be expected for an 

unbiased measure
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Fig. 15. 
Representative subjects for target fixations assuming fixation-based sampling with enhanced 

target duration (FBS+T). Two patterns are highlighted: a The underlying and observed data 

are a fairly close match. b There is an additional delay but otherwise a close match in slope. 

c The slope is shallower. d Asymptotes of the observed data exceed the underlying. (Color 

figure online)

McMurray Page 65

Psychon Bull Rev. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 16. 
Histograms showing distribution of bias across subjects in the four parameters of the 

target model assuming fixation-based sampling with enhanced target duration (FBS+T). 

Histograms include 40 evenly sized bins, optimally spaced to reflect the distribution of the 

data. Axes are expanded to match the other histograms in this manuscript. The black line 

indicates what would be expected for an unbiased measure
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Fig. 17. 
Test–retest reliability for parameter estimates as a function of number of trials (x-axis) 

and generating model (curves). a Target parameters: baseline (b), max, crossover (xo), and 

slope (s). b Competitor/asymmetric Gaussian parameters: peak time (μ), peak height (ht), 
onset slope (σ1), offset slope (σ2), initial asymptote (b1) and final asymptote (b2). HFS: 

high-frequency stochastic sampling; FBS: fixation-based sampling; FBS+T: fixation-based 

sampling with enhanced target duration. (Color figure online)
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Fig. 18. 
Power to detect a significant effect as a function of the parameter that differed in the 

underlying curves, and the fixation-generating function. On each experiment, a single 

parameter of the underlying function was “shifted” by (on average) 0.35 SD (for a power 

of.6). The parameter that was shifted is indicated below each grouping of curves. The 

observed power in the underlying parameters is indicated by the black curve. Different 

estimates are indicated by different colored curves within each group. a Parametric analysis 

of target fixations. Parameters include baseline (b), max, crossover (xo), and slope (s). b 
Parametric analysis of competitors. Parameters include peak time (μ), peak height (ht), onset 

slope (σ1), offset slope (σ2), initial asymptote (b1) and final asymptote (b2). c Results of 

nonparametric, single estimate measures on the same data as a (see Table 8 for description 

of the estimates). d Results of single estimate measures on the same data as d. HFS: 

high-frequency stochastic sampling; FBS: fixation-based sampling; FBS+T: fixation-based 

sampling with enhanced target duration. (Color figure online)
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Fig. 19. 
Representative runs of the generative target model. Red lines show observed competitor 

looks as a function of time. Black lines are the underlying fixation function. Green lines 

show the latent fixation function that is estimated from the data (and should match the 

black). Blue lines (fitted predicted) are the predicted fixations from that function. The 

function is optimized to minimize the least squared error between the blue and red curves. 

Panels marked by lowercase letters are described in the text. a Data are generated by 

the fixation-based sampling (FBS) model, and the fitted model assumes FBS. b Data are 

McMurray Page 69

Psychon Bull Rev. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generated by the more complex fixation-based sampling with enhanced target duration 

(FBS+T) model, which is also assumed by the fitting model. c Data are generated by 

the FBS+T model, but the generative model only assumes the simpler FBS model (it is 

underspecified). d Data are generated by the simpler FBS model, but the generative model 

assumes FBS+T (overspecified). (Color figure online)
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Fig. 20. 
Validity (top row) and reliability (bottom row) estimates for each estimated parameters of 

the generative model. Validity correlations represent the correlation between the estimated 

parameters of the underlying function and their true values. Reliability estimates are test–

retest reliability when the function was held constant, and two batches of data (300 trials) 

were generated and analyzed. Estimates labeled traditional are the corresponding numbers 

for the regular logistic curvefitting analyses in Simulations 2 and 3. Match models are 

models in which the eye-movement generating function that created the data was the same 

as in the fitter. underspecified models are models in which the generating function assumed 

by the analysis (fixation-based sampling [FBS]) was less complex than what generated 

the data (fixation-based sampling with enhanced target [FBS+T]). These were not possible 

for FBS data. In overspecified models, the generating function assumed by the analysis 

(FBS+T) was more complex than what generated the data (FBS). These were not possible 

for FBS+T data. Target estimates include baseline (b), max, crossover (xo), and slope (s). 

(Color figure online)
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Fig. 21. 
Mean bias (underlying parameter estimate minus observed) for each parameter of the 

logistic as a function of the generating model of the data (x-axis), and the model used 

for analysis. Target indices include (a) baseline (b), (b) max, (c) crossover (xo), and (d) 

slope (s). (Color figure online)
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Fig. 22. 
Representative runs of the generative competitor model. Red lines refer to the observed 

competitor looks as a function of time. Black lines are the underlying fixation function. 

Green lines refer to the estimated latent curve (and should match the black). Blue lines 

(fitted predicted) are the predicted fixation curves from that latent curve. FBS: fixation-

based sampling; FBS+T: fixation-based sampling with enhanced target duration
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Fig. 23. 
Results of validity and reliability analyses for competitors assuming an fixation-based 

sampling (FBS) generating and analysis model. Competitor indices include peak time 

(μ), peak height (ht), onset slope (σ1), offset slope (σ2), initial asymptote (b1) and final 

asymptote (b2). a Validity: Correlation between observed and underlying parameters for 

each parameter in the traditional (blue) and generating (red) model. b Test–retest reliability 

for each parameter. c Bias for each parameter. (Color figure online)
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Fig. 24. 
Relationship between real time and observed time in the fixation curve for (a) targets and (b) 

competitors. At each time slice (x-axis), the lag at which the maximum correlation between 

the underlying activation and the observed fixations is shown. The black line represents the 

200-ms oculomotor delay (see Supplement 6 for methods). (Color figure online)
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Table 3

Properties of fixation durations

Object b/w Subject Mean Duration w/in Subject (Trial × Trial) SD

M SD Mean of SD SD of SD

Target 360.3 65.8 195.1 39.04

Cohort 211.3 31.1 91.0 14.7

Unrelated 202.8 32.9 80.1 17.1

None 200.1 33.9 118.6 41.9

All nontarget 204.7 32.6 96.6 24.6
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Table 9

Results of the Type I error (TIE) analysis

Parameter/Measure HFS FBS FBS+T

T test (Und) T Test T test (Und) T test ANCOVA T test (Und) T test ANCOVA

Target

max .064 .065 .045 .043 .042 .051 .049 .047

xo .060 .059 .051 .053 .052 .047 .050 .050

s .048 .046 .046 .058 .060 .044 .043 .039

AUCearly .050 .045 .052 .062 .061 .048 .049 .053

AUClate .064 .062 .051 .041 .040 .048 .048 .049

maxDeriv .048 .048 .046 .061 .061 .043 .049 .048

maxDerivtime .060 .048 .050 .057 .057 .048 .042 .043

threshold75 .058 .057 .051 .043 .046 .049 .060 .055

time25/75 .033 .030 .025 .045 .047 .031 .049 .052

timing .057 .059 .052 .059 .059 .036 .065 .062

Competitor

μ .062 .061 .041 .048 .047

ht .055 .054 .059 .059 .056

σ2 .042 .044 .033 .050 .049

b2 .058 .060 .046 .056 .057

AUCfull .052 .054 .053 .057 .055

AUCearly .057 .056 .055 .046 .043

AUClate .058 .056 .045 .038 .041

Peakdata .056 .054 .059 .057 .058

Peaktime .062 .057 .042 .045 .049

Extent .047 .048 .039 .038 .042

In each experiment, all parameters of the underlying function were “shifted” (similar to the power analysis), though with a mean difference of 
0. Shown is the likelihood of detecting a significant effect for curvefitting parameters and single-estimate measures via a paired t test on (a) that 
property of the underlying curves, (b) the estimate performed on the generated data, and (c) an ANCOVA on those estimates accounting for the 
mean and SD of each subjects fixation durations. Shaded cells indicate cells where p > .05. Target parameters include max, xo (crossover), and s 
(slope) from curvefits, along with derived measures described in Table 8. Competitor estimates include peak time (μ), peak height (ht), offset slope 
(σ2), and final asymptote (b2) along with derived measures described in Table 8. HFS: high-frequency sampling; FBS: fixation-based sampling; 

FBS+T: fixation-based sampling with enhanced target duration
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Table 10

Validity (correlation between underlying and observed parameters) for each simulation. HFS: high-frequency 

sampling; FBS: fixation-based sampling; FBS+T: fixation-based sampling with enhanced target duration

Parameter HFS FBS FBS+T

Target Baseline (b) 1.0 .987 .935

Max 1.0 .986 .892

Crossover (xo) 1.0 .855 .792

Slope (s) .998 .751 .616

Competitor Peak time (μ) .988 .502 N/A

Peak height (ht) .997 .845

Onset slope (σ1) .946 .112

Offset slope (σ2) .990 .327

Onset asymp (b1) .996 .799

Offset asymp (b2) .996 .681
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