Summary of the thermodynamic free energy changes relevant to address the difference in intermolecular affinity and in intermetallic interactions which control the speciation of f–f′ helicates under thermodynamic control in solution beyond statistical distributions mentioned in columns 4 and 7.
| Helicate | Binding sites |
|
ΔGstatperm (kJ mol−1) | ΔEmix1–2 (kJ mol−1) |
|
ΔGstatexch (kJ mol−1) | Condition | Favoured speciesa | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| [(L2)3(LnA)(2−n)(LnB)n]6+ | N9–N6O3/N8–N7O2 b | — | 0 | — | −14.1 to −6.4 | −3.4 | — | Hetero | 10 |
| [(L3)3(La)(2−n)(Lu)n]6+ | R–N9–N6O3 c | 12.1 | 0 | 0d | — | −3.4 | — | — | 52 |
| [(L6)3(LnA)(2−n)(LnB)n]6+ | N6O3–N6O3 | 0 | 0 | −0.6 to 0.4 | −3.5 to −3.3 | −3.4 | — | Statistical | 83 |
| [(L5)3(LnA)(2−n)(LnB)n]6+ | N9–N9 | 0 | 0 | 0 | −3.4 | −3.4 | R LnA ≥ RGd and RLnB ≥ RGd | Statistical | 65 |
| [(L5)3(LnA)(2−n)(LnB)n]6+ | N9–N9 | 0 | 0 | 1.6 to 2.3 | −0.2 to 1.2 | −3.4 | R LnA < RGd or RLnB < RGd | Homo | 65 |
| [(L7)3(LnA)(3−n)(LnB)n]9+ | N6O3–N9–N6O3 | 2.2 to 4.2 | 3.34 | −0.6 to 0.2 | −10.8 to −5.4 | −5.4 | — | Hetero | 67 |
| [(L8)3(La)(4−n)(Lu)n]12+ | N6O3–N9–N9–N6O3 | — | — | −2 | −47.5 | −22.2 | — | Hetero | 12 |
| [(L43Zn)(LnA)(2−n)(LnB)n]8+ | [ZnN6]–N9–N6O3 | 3.0 to 5.4 | 0 | 1.2 to 1.9 | −3.6 to −0.4 | −3.4 | R LnA < RGd or RLnB < RGd | Homo | This work |
| [(L43Zn)(LnA)(2−n)(LnB)n]8+ | [ZnN6]–N9–N6O3 | 5.4 | 0 | −0.8 | −7.5 | −3.4 | R LnA ≥ RGd and RLnB ≥ RGd | Hetero | This work |
Homo resp. hetero = preference for homometallic, resp. heterometallic lanthanide complexes; statistical = no preference.
The triple-stranded helicates exist as variable mixtures of HHH (N9–N6O3) and HHT (N8–N7O2) isomers.
R represents an organic tripod.
The mixing energy is arbitrarily fixed to ΔEmix1–2 = 0.