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SUMMARY

Sequence-level searches on large collections of RNA sequencing experiments, such as the NCBI 

Sequence Read Archive (SRA), would enable one to ask many questions about the expression 

or variation of a given transcript in a population. Existing approaches, such as the sequence 

Bloom tree, suffer from fundamental limitations of the Bloom filter, resulting in slow build and 

query times, less-than-optimal space usage, and potentially large numbers of false-positives. This 

paper introduces Mantis, a space-efficient system that uses new data structures to index thousands 

of raw-read experiments and facilitates large-scale sequence searches. In our evaluation, index 

construction with Mantis is 6× faster and yields a 20% smaller index than the state-of-the-art 

split sequence Bloom tree (SSBT). For queries, Mantis is 6–108× faster than SSBT and has no 

false-positives or -negatives. For example, Mantis was able to search for all 200,400 known human 

transcripts in an index of 2,652 RNA sequencing experiments in 82 min; SSBT took close to 4 

days.
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In Brief

Mantis is a system to index and search through large collections of raw sequencing data. The 

query sequence can be a known or newly assembled gene or any valid nucleotide sequence. Mantis 

is faster and smaller than existing sequence-search tools and is exact in the sense that it does not 

report false-positives. To construct the index, Mantis indexes the k-mers (substrings of size k) 

in the reads of an experiment and then groups k-mers across experiments that exhibit the same 

patterns of occurrence.

INTRODUCTION

The ability to issue sequence-level searches over publicly available databases of assembled 

genomes and known proteins has played an instrumental role in many studies in the field 

of genomics, and has made BLAST (Altschul et al., 1990) and its variants some of the 

most widely used tools in all of science. Much subsequent work has focused on how to 

extend tools such as BLAST to be faster, more sensitive, or both (Buchfink et al., 2015; 

Daniels et al., 2013; Remmert et al., 2012; Steinegger and Söding, 2017). However, the 

strategies applied by such tools focus on the case where queries are issued over a database of 

reference sequences. However, the vast majority of publicly available sequencing data (e.g., 

the data deposited in the Sequence Read Archive [SRA]; Kodama et al., 2011) exist in the 

form of raw, unassembled sequencing reads. As such, these data have mostly been rendered 
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impervious to sequence-level search, which substantially reduces the utility of such publicly 

available data.

There are a number of reasons that typical reference-database-based search techniques 

cannot easily be applied in the context of searching raw, unassembled sequences. One major 

reason is that most current techniques do not scale well as the amount of data grows to the 

size of the SRA (which today is ≈4 petabases of sequence information). A second reason 

is that searching unassembled sequences means that relatively long queries (e.g., genes) are 

unlikely to be present in their entirety as an approximate substring of the input.

Recently, new computational schemes have been proposed that hold the potential to allow 

searching raw SARs while overcoming these challenges. Solomon and Kingsford (2016) 

introduced the sequence bloom tree (SBT) data structure and an associated algorithm that 

enables an efficient type of search over thousands of sequencing experiments. Specifically, 

they re-phrase the query in terms of k-mer set membership in a way that is robust to the 

fact that the target sequences have not been assembled. The resulting problem is coined as 

the experiment discovery problem, where the goal is to return all experiments that contain 

at least some user-defined θ fraction of the k-mers present in the query string. The space 

and query time of the SBT structure has been further improved by Solomon and Kingsford 

(2017) and Sun et al. (2017) by applying an All-Some set decomposition over the original 

sets of the SBT structure. This seminal work introduced both a formulation of this problem 

and the initial steps toward a solution.

SBTs build on prior work using Bloom filters Bloom (1970). A Bloom filter is a compact 

representation of a set S. Bloom filters support insertions and membership queries, and they 

save space by allowing a small but tunable false-positive probability. That is, a query for an 

element x ∉ S might return “present” with probability δ. Allowing false-positives enables the 

Bloom filter to save space; a Bloom filter can represent a set of size n with a false-positive 

probability of δ using O n log2
1
δ  bits. Bloom filters have an interesting property that the 

bitwise-or of two Bloom filters representing S1 and S2 yields a Bloom filter for S1 ∪ S2. 

However, the false-positive rate of the union may increase substantially above δ.

In k-mer-counting tools, Bloom filters are used to filter out single-occurrence (and likely 

erroneous) k-mers from raw-read data (Melsted and Pritchard, 2011). In a high-coverage 

genomic dataset, any k-mer that occurs only once is almost certainly an error and can thus 

be ignored. However, such k-mers can constitute a large fraction of all the k-mers in the 

input (typically 30%–50%) so allocating a counter and an entry in a hash table for these 

k-mers can waste a lot of space. Tools such as BFCounter (Melsted and Pritchard, 2011) and 

Jellyfish (Marçais and Kingsford, 2011) save space by inserting each k-mer into a Bloom 

filter the first time it is seen. For each k-mer in the input, the tool first checks whether the 

k-mer is in the Bloom filter. If not, then this is the first time this k-mer has been seen, so 

it is inserted into the filter. If the k-mer is already in the filter, then the counting tool stores 

the k-mer in a standard hash table, along with a count of the number of times this k-mer has 

been seen. In this application, a false-positive in the Bloom filter simply means that the tool 
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might count a few k-mers that occur only once. Using Bloom filters in this way can reduce 

space consumption by roughly 50%.

SBTs use Bloom filters to index large sets of raw sequencing data probabilistically. In 

an SBT, each experiment is represented by a Bloom filter of all the k-mers that occur a 

sufficient number of times in that experiment. A k-mer counter can create such a Bloom 

filter by first counting all the k-mers in the experiment and then inserting every k-mer 

that occurs sufficiently often into a Bloom filter. The SBT then builds a binary tree by 

logically or-ing Bloom filters until it reaches a single root node. To find all the experiments 

that contain a k-mer x, the query procedure starts from the root and tests whether x is 

in the Bloom filter of each of the root’s children. Whenever a Bloom filter indicates that 

an element might be present in a subtree, the search procedure recurses into that subtree. 

Since Bloom filters do not admit false-negatives, k-mer absence from a filter allows early 

termination of the search procedure.

SBTs support queries for entire transcripts as follows. First compute the set Q of k-mers that 

occur in the transcript. Then, when descending down the tree, only descend into subtrees 

whose root Bloom filter contains at least a fraction θ of the k-mers in Q. Typical values 

for θ proposed by Solomon and Kingsford (2016) are in the range 0.7–0.9. That is, any 

experiment that contains 70%–90% of the k-mers in Q has a reasonable probability of 

containing the transcript (or a closely related variant).

The SSBT and the All-Some SBT have a similar structure to the SBT, but they use more 

efficient encodings. The All-Some SBT has a shorter construction time and query time than 

the SBT. The SSBT has a slower construction time than the SBT, answers queries faster than 

the SBT, and uses less space than either the SBT or the All-Some SBT.

Both structures use a similar high-level approach for saving space and thus making queries 

fast. Namely, instead of retaining a single Bloom filter at each internal node, the structures 

maintain two Bloom filters. One Bloom filter stores k-mers that appear in every experiment 

in the descendant leaves. These k-mers do not need to be stored in any descendants of the 

node, thus reducing the space consumption by reducing redundancy. If a queried k-mer is 

found in this Bloom filter, then it is known to be present in all descendant experiments. If the 

required fraction of k-mers for a search (i.e., θ) ever appear in such a filter, then search of 

this subtree can terminate early as all descendant leaf nodes satisfy the query requirements. 

The other Bloom filter stores the rest of the k-mers, those that appear in some, but not all, 

of the descendants. All-Some SBT saves additional space by clustering similar leaves into 

subtrees so that more k-mers can be stored higher up in the tree and with less duplication.

Due to limitations of the Bloom filter, all of these SBT-like structures are forced to balance 

between the false-positive rate at the root and the size of the filters representing the 

individual experiments. Because Bloom filters cannot be resized, they must be created with 

enough space to hold the maximum number of elements that might be inserted. Furthermore, 

two Bloom filters can only be logically or-ed if they have the same size (and use the same 

underlying hash functions). Thus, the Bloom filters at the root of the tree must be large 

enough to represent every k-mer in every experiment indexed in the entire tree, while still 

Pandey et al. Page 4

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maintaining a good false-positive rate. On the other hand, the Bloom filters at the leaves of 

the tree represent only a relatively small amount of data and, since there are many leaves, 

should be as small as possible.

Further complicating the selection of Bloom filter size is that individual dataset sizes vary by 

orders of magnitude, but all datasets must be summarized using Bloom filters of the same 

size. For these reasons, most of the Bloom filters in the SBT are, of necessity, sub-optimally 

tuned and inefficient in their use of space. SBTs partially mitigate this issue by compressing 

their Bloom filters using an off-the-shelf compressor (Bloom filters that are too large are 

sparse bit vectors and compress well). Nonetheless, SBTs are typically constructed with a 

Bloom filter size that is too small for the largest experiments and for the root of the tree. As 

a result, they have low precision: typically, only about 57%–67% of the results returned by a 

query are actually valid (i.e., contain at least a fraction θ of the query k-mers).

We present a new k-mer-indexing approach, which we call Mantis, that overcomes these 

obstacles. Mantis has several advantages over prior work:

• Mantis is exact. A query for a set Q of k-mers and threshold θ returns exactly 

those datasets containing at least θ fraction of the k-mers in Q. There are no 

false-positives or false-negatives. In contrast, we show that SBT-based systems 

exhibit only 57%–67% precision, meaning that many of the results returned for a 

given query are, in fact, false-positives.

• Mantis supports much faster queries than existing SBT-based systems. In our 

experiments, queries in Mantis ran up to 100× faster than in SSBT.

• Mantis supports much faster index construction. For example, we were able 

to build the Mantis index on 2,652 datasets in 16 hr. SSBT reported 97 hr to 

construct an index on the same collection of datasets.

• Mantis uses less storage than SBT-based systems. For example, the Mantis index 

for the 2,652 experiments used in the SSBT evaluation is 20% smaller than the 

compressed SSBT index for the same data.

• Mantis returns, for each experiment containing at least 1 k-mer from the 

query, the number of query k-mers present in this experiment. Thus, the full 

spectrum of relevant experiments can be analyzed. While these results can be 

post-processed to filter out those not satisfying a θ query, we believe the Mantis 

output is more useful, since one can analyze which experiments were close to 

achieving the θ threshold, and can examine if there is a natural “cutoff” at which 

to filter experiments.

Mantis (overview in Figure 1) builds on Squeakr (Pandey et al., 2017c), a k-mer counter 

based on the counting quotient filter (CQF) Pandey et al. (2017b). The CQF is a Bloom 

filter alternative that offers several advantages over the Bloom filter. First, the CQF supports 

counting; i.e., queries to the CQF return not only “present” or “absent” but also an estimate 

on the number of times the queried item has been inserted. Analogous to the Bloom filter’s 

false-positive rate, there is a tunable probability that the CQF may return a count that is 

higher than the true count for a queried element. CQFs can also be resized, and CQFs of 
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different sizes can be merged together efficiently. Finally, CQFs can be used in an “exact” 

mode where they act as a compact exact hash table; i.e., we can make δ = 0. CQFs are also 

faster and more space efficient than Bloom filters for all practical configurations (i.e., any 

false-positive rate <1/64).

Prior work has shown how CQFs can be used to improve performance and simplify the 

design of k-mer-counting tools (Pandey et al., 2017c) and de Bruijn graph representations 

(Pandey et al., 2017a). For example, Squeakr is essentially a thin wrapper around a CQF; 

it just parses fastq files, extracts the k-mers, and inserts them into a CQF. Other k-mer 

counters use multiple data structures (e.g., Bloom filters plus hash tables) and often contain 

sophisticated domain-specific strategies (e.g., minimizers) to get good performance. Despite 

its simplicity, Squeakr is memory efficient, offers competitive counting performance, and 

supports queries for counts up to 10 faster than other k-mer counters. Performance is similar 

in exact mode, in which case, the space is comparable with other k-mer counters.

In a similar spirit, Mantis uses the CQF to create a simple space- and time-efficient index for 

searching for sequences in large collections of experiments. Mantis is based on colored de 

Bruijn graphs. The “color” associated with each k-mer in a colored de Bruijn graph is the set 

of experiments in which that k-mer occurs. We use an exact CQF to store a table mapping 

each k-mer to a color identifier (ID), and another table mapping color IDs to the actual set 

of experiments containing that k-mer. Mantis uses an off-the-shelf compressor (Raman et al., 

2002) to store the bit vectors representing each set of experiments.

Mantis takes as input the collection of CQFs representing each dataset and outputs the 

search index. Construction is efficient because it can use sequential input and output (I/O) to 

read the input and write the output CQFs. Similarly, queries for the color of a single k-mer 

are efficient since they require only two table lookups.

We believe that, since Mantis is also a colored de Bruijn graph representation, it may be 

useful for more than just querying for the existence of sequences in large collections of 

datasets. Mantis supports the same fast de Bruijn graph traversals as Squeakr, using the 

same traversal algorithm as described in the Squeakr (Pandey et al., 2017c) and deBGR 

papers (Pandey et al., 2017a). Hence Mantis may be useful for topological analyses such 

as computing the length of the query covered in each experiment (rather than just the 

fraction of k-mers present). Mantis can be used for de Bruijn graph traversal by querying the 

possible neighboring k-mers of a given k-mer and extending the path in the de Bruijn graph 

(Belazzougui et al., 2016; Muggli et al., 2017; Pell et al., 2012). It can also naturally support 

operations such as bubble calling (Iqbal et al., 2012) and hence could allow a natural, 

assembly-free way to analyze variation among experiments.

RESULTS

In this section we compare the performance and accuracy of Mantis against SSBT (Solomon 

and Kingsford, 2017).
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Evaluation Metrics

Our evaluation aims to compare Mantis with the state of the art, SSBT (Solomon and 

Kingsford, 2017), on the following performance metrics:

• Construction time. How long does it take to build the index?

• Index size. How large is the index, in terms of storage space?

• Query performance. How long does it take to execute queries?

• Quality of results. How many false-positives are included in query results?

Experimental Procedure

For all experiments in this paper, unless otherwise noted, we consider the k-mer size to 

be 20 to match the parameters adopted by Solomon and Kingsford (2016). To facilitate 

comparison with SSBT, we use the same set of 2,652 experiments used in the evaluation 

done by Solomon and Kingsford (2017) and as listed on their website (Kingsford, 2017). 

These experiments consist of short-read RNA sequencing runs of human blood, brain, and 

breast tissue. We obtained these files directly from the European Nucleotide Archive (ENA) 

(NIH, 2017) since they provide direct access to gzipped FASTQ files, which are more 

expedient for our purposes than the SRA format files. We discarded 66 files that contained 

only extremely short reads (i.e., less than 20 bases) (we believe that the SBT authors just 

treated these as files containing zero 20-mers). Thus the actual number of files used in our 

evaluation was 2,586.

We first used Squeakr-exact to construct CQFs for each experiment. We used 40-bit hashes 

and an invertible hash function in Squeakr-exact to represent k-mers exactly. Before running 

Squeakr-exact, we needed to select the size of the CQF for each experiment. We used the 

following rule of thumb to estimate the CQF size needed by each experiment: singleton 

k-mers take up one slot in the CQF, doubletons take up two slots, and almost all other 

k-mers take up three slots. We implemented this rule of thumb as follows. We used ntCard 

(Mohamadi et al., 2017) to estimate the number of distinct k-mers F0 and the number of 

k-mers of count 1 and 2 (f1 and f2, respectively) in each experiment. We then estimated the 

number of slots needed in the CQF as s = f1 + 2f2 + 3(F0 − f1 − f2). The number of slots in 

the CQF must be a power of 2, so let s′ be the smallest power of 2 larger than or equal to s. 

In order to be robust to errors in our estimate, if s was more than 0.8 s′, then we constructed 

the CQF with two s′ slots. Otherwise, we constructed the CQF with s′ slots.

We then used Squeakr-exact to construct a CQF of the counts of the k-mers in each 

experiment. The total size of all the CQFs was 2.7 TB.

We then computed cutoffs for each experiment according to the rules defined in the SBT 

paper (Solomon and Kingsford, 2017), shown in Table S1. The SBT paper specifies cutoffs 

based on the size of the experiment, measured in bytes, but does not specify how the size 

of an experiment is calculated (e.g., compressed or uncompressed). We use the size of the 

compressed file downloaded from ENA.
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We then invoked Mantis to build the search index using these cutoffs. Based on a few trial 

runs, we estimated that the number of slots needed in the final CQF would be 234, which 

turned out to be correct.

Query Datasets

For measuring query performance, we randomly selected sets of 10, 100, and 1,000 

transcripts from the Gencode annotation of the human transcriptome (Gencode, 2017). 

Also, before using these transcripts for queries, we replaced any occurrence of “N” in the 

transcripts with a pseudo-randomly chosen valid nucleotide. We then performed queries 

for these three sets of transcripts in both Mantis and SSBT. For SSBT, we used θ = 0.7, 

0.8, and 0.9. For Mantis, θ makes no difference to the run-time, since it is only used to 

filter the list of experiments at the very end of the query algorithm. Thus performance was 

indistinguishable, so we only report one number for Mantis’s query performance.

For SSBT, we used the tree provided to us by the SSBT authors via personal 

communication. We also compared the quality of results from Mantis and SSBT. Mantis 

is an exact representation of k-mers and therefore all the experiments reported by Mantis 

should also be present in the results reported by SSBT. However, SSBT results may 

contain false-positive experiments. Therefore, we can use Mantis to empirically calculate 

the precision of SSBT. Precision is defined as TP ∕ (TP + FP), where TP  and FP  are the 

number of true- and false-positives, respectively, in the query result.

Experimental Setup

All experiments were performed on an Intel Xeon CPU (E5-2699 v4 @2.20 GHz with 44 

cores and 56 MB L3 cache) with 512 GB RAM and a 4 TB TOSHIBA MG03ACA4 ATA 

HDD running ubuntu 16.10 (Linux kernel 4.8.0-59-generic), and were carried out using a 

single thread. The data input to the construction process (i.e., FASTQ files and the Squeakr 

representations) was stored on four-disk mirrors (eight disks total), and each is a Seagate 

7200 rpm 8 TB disk (ST8000VN0022). They were formatted using ZFS and exported via 

NFS over a 10 Gb link.

All the input CQF files were mmaped. However, we also used asynchronous reads (aio read) 

to perform prefetch of data from the remote storage. Since the input CQFs were accessed 

in sequential order, prefetching can help the kernel cache the data that will be accessed 

in the immediate future. We adopted the following prefetching strategy: each input CQF 

had a separate buffer wherein the prefetched data were read. The sizes of the buffers were 

proportional to the number of slots in the input CQF. We used 4,096 B buffers for the 

smallest CQFs and 8 MB for the largest CQF. The time reported for construction and query 

benchmarks is the total time taken measured as the wall-clock time using “/usr/bin/time”.

We compare Mantis and SSBT on their in-memory query performance. For Mantis, we 

warmed the cache by running the query benchmarks twice; we report the numbers from 

the second run. We followed the SSBT author’s procedure for measuring SSBT’s in-RAM 

performance (Solomon and Kingsford, 2017), as explained to us in personal communication. 

Specifically, we copied all the nodes in the tree to a ramfs (in-RAM file system). We 
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then ran SSBT on the files stored in the ramfs. (We also tried running SSBT twice, as 

with Mantis, and performance was identical to that from following the SSBT authors’ 

procedures.)

SSBT query benchmarks were run with θ thresholds 0.7, 0.8, and 0.9, and the max-filter 

parameter was set to 11,000. By setting max-filter to 11,000, we ensured that SSBT never 

had to evict a filter from its cache.

Experiment Results

In this section we present our benchmark results comparing Mantis and SSBT to answer the 

questions posed above.

Build Time and Index Space—Table 1 shows that Mantis builds its index 6× faster 

than SSBT. Also, the space needed by Mantis to represent the final index is 20% smaller 

than SSBT. Most of the time is spent in merging the hashes from the input CQFs and 

creating color-class bit vectors. The merging process is fast because there is no random disk 

I/O. We read through the input CQFs sequentially and also insert hashes in the final CQF 

sequentially. The number of k-mers in the final CQF was ≈3.69 billion. Writing the resulting 

CQF to disk and compressing the color-class bit vectors took only a small fraction of the 

total time.

The maximum RAM required by Mantis to construct the index, as given by “/usr/bin/time” 

(maximum resident set size), was 40 GB. The maximum RAM usage broke down as follows. 

The output CQF consumed 17 GBs. The buffer of uncompressed bit vectors used 6 GBs, 

and the compressor uses another 6 GB output buffer. The table of hashes of previously seen 

bit vectors consumed about 5 GBs. The prefetch buffers used about 1 GB. There were also 

some data structural overheads, since we used several data structures from the C++ standard 

library.

Query Performance—Table 2 shows the query performance of Mantis and SSBT on three 

different query datasets. Even for θ = 0.9 (the best case of SSBT), Mantis is 5×, 16×, and 

75× faster than SSBT for in-memory queries. For θ = 0.7, Mantis is up to 137 times faster 

than SSBT.

The query time for SSBT reduces with increasing θ values because with higher θ queries will 

terminate early and have to perform fewer accesses down the tree. In Table 2, for Mantis we 

only have one column because Mantis reports experiments for all θ values.

In Mantis, only two memory accesses are required per k-mer; one in the CQF and, if 

the k-mer is present, then the ID is looked up in the color-class table. SSBT has a fast 

case for queries that occur in every node in a subtree or in no node of a subtree, so it 

tends to terminate quickly for queries that occur almost everywhere or almost nowhere. 

However, for random transcript queries, it may have to traverse multiple root-to-leaf paths, 

incurring multiple memory accesses. This can cause multiple cache misses, resulting in 

slower queries.
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Quality of Results—Table 3 compares the results returned by Mantis and SSBT on the 

queries described above. All the comparisons were performed for θ = 0.8. Since Mantis 

is exact, we use the results from Mantis to calculate the precision of SSBT results. The 

precision of SSBT results varied from 0.577 to 0.679.

Mantis is an exact index and SSBT is an approximate index with one-sided error (i.e., only 

false-positives). Therefore, the experiments reported by SSBT should be a super-set of the 

experiments reported by Mantis. However, when we compared the results from Mantis and 

SSBT, there were a few experiments reported by Mantis that were not reported by SSBT. 

This could be because of a bug in Mantis or SSBT.

In order to determine whether there was a bug in Mantis, we randomly picked a subset 

of experiments reported only by Mantis and used KMC2 to validate Mantis’s results. The 

results reported by KMC2 were exactly the same as the results reported by Mantis. This 

means that there were some experiments that actually had at least 80% of the k-mers from 

the query but were not reported by SSBT.

We contacted the SSBT authors about this anomaly, and they found that some of the datasets 

were corrupted during download from SRA. This resulted in the SSBT tree having corrupted 

data for those particular datasets, which was revealed by comparison with results from 

Mantis. We believe only a handful of datasets were corrupted, so that these issues do not 

materially affect the results reported in the SSBT paper.

DISCUSSION AND CONCLUSION

We have introduced Mantis, a new method and system for tackling the experiment discovery 

(i.e. large-scale sequence-search) problem. Though inspired by the SBT and subsequent 

work, Mantis takes a completely different approach to this problem. Specifically, rather than 

adopting a hierarchy of Bloom filters, as suggested by previous approaches (Solomon and 

Kingsford, 2016, 2017; Sun et al., 2017), we build our system on top of the CQF (Pandey 

et al., 2017b), using this data structure both for counting and as a general key-value store. 

We combine this data structure with a color-encoding scheme similar to that adopted by 

Holley et al. (2016) and Almodaresi et al. (2017) for colored de Bruijn graph representation. 

This different approach allows Mantis to represent, in similar memory to the split-SBT 

(SSBT) (Solomon and Kingsford, 2017), a data structure for rapid and exact k-mer search 

over thousands of experiments. Specifically, we have shown that Mantis can be constructed 

efficiently, that the final structure takes slightly less space than the compressed SSBT, 

and that it can be queried very rapidly. Moreover, since the representation of Mantis is 

exact, it exhibits no false-positive results. Even though the false-positive rate of SBT-based 

solutions is generally low (false-positives occur at a typical rate of 5% in our experiments), 

this can still translate into a considerable number of experiments when the query space is 

large. Thus, Mantis represents an attractive methodology for indexing experiments and for 

addressing the experiment discovery problem.

For a similar space requirement as the best-in-class solution, it is faster to construct, 

provides considerably faster queries, and is exact where other systems are approximate.
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We note that Mantis can easily be made approximate, and that this can be done with a tightly 

controlled error rate (Theorem 1). In the future, it will be interesting to scale Mantis to 

even larger collections of data and to experiment with approximate versions of the system. 

Also, given that Mantis encodes what is essentially a colored de Bruijn graph over all of 

the indexed experiments, future work will explore other uses of this representation apart 

from experiment discovery. For example, Mantis could be used to efficiently search for 

and categorize variants among unassembled experiments by adopting the “bubble-calling” 

algorithm over colored de Bruijn graphs proposed by Iqbal et al. (2012). Finally, it could be 

promising to combine certain concepts from Mantis with ideas from SBT-based solutions; 

specifically the idea of making the indexing structure hierarchical. Good partitionings of the 

experimental data, if they can be discovered efficiently, could lead to an even more compact 

index.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Rob Patro (rob.patro@cs.stonybrook.edu)

METHOD DETAILS

Mantis builds on Squeakr Pandey et al. (2017c), a k-mer counter that uses a counting 

quotient filter Pandey et al. (2017b) as its primary data structure. We first review Squeakr 

and the CQF, and then we explain how to build upon CQFs to construct our search index.

Squeakr and the Counting Quotient Filter—Squeakr is essentially a thin wrapper 

around the counting quotient filter. It parses k-mers from a collection of input files, and 

inserts them into a counting quotient filter. It then serializes the CQF to disk.

The CQF is a compact representation of a multi-set S, similar in spirit to how a Bloom filter 

is a compact representation of a set. Thus a CQF supports inserts and queries. A query for 

an item x returns an estimate of the number of instances of x in S. Like a Bloom filter, a 

CQF has only one-sided error, i.e., the count returned by a CQF is never smaller than the 

true count. The CQF also supports a tunable false-positive rate δ, which means that a query 

to the CQF for the count of an item returns the true count of x with probability at least 1 − δ.

The counting quotient filter represents S by storing a compact, lossless representation of 

the multiset ℎ(S), where ℎ :U {0, …2p − 1} is a hash function and U is the universe from 

which S is drawn. The CQF sets p = log2(n ∕ δ) to obtain a false-positive rate while handling 

up to n insertions (Bender et al., 2012).

The counting quotient filter saves space by representing some of the bits of ℎ(x) implicitly 

using a technique called quotienting. The CQF divides ℎ(x) into its first q bits, called the 

quotient ℎ0(x), and its remaining r = p − q bits, called the remainder ℎ1(x). It maintains an 

array Q of 2q r-bit slots, each of which can hold a single remainder. When an element x is 

inserted, the CQF attempts to store the remainder ℎ1(x) in the home slot Q[ℎ0(x)]. If that slot 
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is already in use, then the CQF uses a variant of linear probing (using few metadata-bits per 

slot), to find an unused slot where it can store ℎ1(x) Pandey et al. (2017b).

Instead of storing multiple copies of the same item to count, like a quotient filter, the 

CQF employs an encoding scheme to count the multiplicity of items. The encoding scheme 

enables the counting quotient filter to maintain variable-sized counters. This is achieved by 

using slots originally reserved to store the remainders to store count information instead. 

The metadata bits maintained by the counting quotient filter allows this dynamic reuse of 

remainder slots for large counters while still ensuring the correctness of all counting quotient 

filter operations.

The variable-sized counters in the counting quotient filter enable the data structure to handle 

highly skewed datasets efficiently. By reusing the allocated space, the counting quotient 

filter avoids wasting extra space on counters and naturally and dynamically adapts to the 

frequency distribution of the input data. The CQF never takes more space than a quotient 

filter for storing the same multiset. For highly skewed distributions, like those observed in 

HTS-based datasets, it occupies only a small fraction of the space that would be required by 

a comparable (in terms of false-positive rate) quotient filter.

The CQF also supports efficient enumeration of the set ℎ(S). Enumerating ℎ(S) involves a 

linear scan of the quotient filter, so it is both computationally efficient and I/O efficient, if 

the CQF is stored on disk. This enables efficient merges of several counting quotient filters 

into a single filter. We use this functionality during the construction phase of Mantis.

Since the CQF stores ℎ(S), exactly, the CQF reports inaccurate counts only when there is 

a collision in ℎ. Thus the CQF can be made exact (i.e., =0) by using an invertible hash 

function.

Mantis—Mantis takes as input a collection of experiments and produces a data structure 

that can be queried with a given k-mer to determine the set of experiments containing 

that k-mer. Mantis supports these queries by building a colored de Bruijn graph. In the 

colored de Bruijn graph, each k-mer has an associated color, which is the set of experiments 

containing that k-mer.

The Mantis index is essentially a colored de Bruijn graph, represented using two dynamic 

data structures: a counting quotient filter and a color-class table. The counting quotient filter 

is used to map each k-merto a color ID, and then that ID can be looked up in the color-class 

table to find the actual color (the list of experiments containing that k-mer). This approach of 

using color classes was also used in Bloom filter Trie Holley et al. (2016) and Rainbowfish 

Almodaresi et al. (2017). Mantis re-purposes the CQF’s counters to store color IDs instead. 

In other words, to map a k-mer k to a color ID c, we insert c copies of k into the CQF. The 

CQF supports not only insertions and deletions, but directly setting the counter associated 

with a given k-mer, so this can be done efficiently (i.e., we do not need to insert k repeatedly 

to increment the counter to c, we instead directly set it to c).
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Each color class is represented as a bit vector in the color-class table, with one bit for each 

input experiment (Figure 1). All the bit vectors are concatenated and compressed using RRR 

compression Raman et al. (2002) as implemented in the sdsl library Gog (2017).

Construction—To construct the Mantis index, we first count k-mers for each input 

experiment using Squeakr. Because Squeakr can either perform exact or approximate k-mer 

counting, the user has the freedom to trade off space and count accuracy. The output of 

Squeakr is a counting quotient filter containing k-mers and their counts. Mantis builds its 

index by performing a k-way merge of the CQFs, creating a single counting quotient filter 

and a color-class table. The merge process follows a standard k-way merge approach Pandey 

et al. (2017b) with a small tweak.

During a standard CQF merge, the merging algorithm accumulates the total number of 

occurrences of each key by adding together its counters from all the input CQFs. In Mantis, 

rather than accumulating the total count of a k-mer, we accumulate the set of all input 

experiments that contain that k-mer.

As with SBT-based indexes, once we have computed the set of experiments containing a 

given k-mer, we filter out experiments that contain only a few instances of a given k-mer. 

This filtered set is the color class of the k-mer. The merge algorithm then looks up whether 

it has already seen this color class. If so, it inserts the k-mer into the output CQF with 

the previously assigned color-class ID for this color class. Otherwise, it assigns the next 

available color-class ID for the new color, adds the k-mer’s color class to the set of observed 

color classes, and inserts the k-mer into the output CQF with the new color-class ID. Figure 

1 gives an overview of the Mantis build process and indexing data structure.

We detect whether we have seen a color class previously by hashing each color-class bit 

vector to a 128-bit hash. We then store these hashes in an in-memory hash table. Each time 

we compute the color class of a new k-mer, we check whether we have seen this color 

class before by looking up its hash in this table. This approach may have false positives if 

two distinct color classes collide under the hash function, but that never happened in our 

experiments. Furthermore, assuming that the hash function behaves like a random function 

and that there are less than 4 billion distinct color classes, the odds of having a collision are 

less than 264.

Each color-class bit vector is stored in a separate buffer. The size of the buffer may vary 

based on the amount of RAM available for the construction and the final size of the index 

representation. In our experiments, we used a buffer of size 6GB. Once the buffer becomes 

full, we compress the color-class bit vector using RRR compression Raman et al. (2002) and 

write it to disk.

Sampling Color Classes Based on Abundance—Mantis stores the color-class ID 

corresponding to each k-mer as its count in the counting quotient filter. In order to save 

space in the output CQF, we assign smaller IDs to the most abundant color classes. We could 

achieve this using a two-pass algorithm. In the first pass, we count the number of k-mers that 

belong to each color class. In the second pass, we would sort the color classes based on their 
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abundances and assign the IDs in increasing order Almodaresi et al. (2017). However, two 

passes through the data is expensive.

In Mantis, we instead adopt a single-pass algorithm that works as follows. We perform a 

sampling phase in which we analyze the color-class distribution of a subset of k-mers (in 

Mantis, we look at first ≈67M k-mers in the sampling phase). We sort the color classes 

based on their abundances and assign IDs giving the smallest ID to the most abundant 

color class, an observation that helps in optimizing the size of other data structures like 

the Bloom Filter Trie Holley et al. (2016) and Rainbowfish Almodaresi et al. (2017). We 

then use this color-class table as the starting point for the rest of the k-mers. Given the 

uniform-randomness property of the hash function used by Squeakr to hash k-mers, there is 

a very high chance that we will see the most abundant colors class in the first few million 

k-mers and will assign the smallest ID to it. Figure S1 shows that the smallest ID is assigned 

to the color class with the largest number of k-mers. Also, the number of k-mers belonging 

to a color class generally reduces as the color class ID increases.

Queries—A query consists of a transcript T  and a threshold θ. Let Q be the set of the 

k-mers in T . The query algorithm should return the set of experiments that contain at least a 

fraction θ of the k-mers in Q.

Given a query transcript T  and a threshold θ, Mantis first extracts the set Q of all k-mers 

from T . It then queries the CQF for each k-mer x ∈ Q to obtain x′s color-class ID cx. Mantis 

then looks up cx in the color-class table to get the bit vector vx representing the set of 

experiments that contain x. Finally, Mantis performs vector addition (treating the vectors as 

vectors of integers) to obtain a single vector v, where v[i] is the number of k-mers from Q
that occur in the itℎ experiment. It then outputs each experiment i such that v[i] > θ ∣ Q ∣.

In order to avoid decoding the same color-class bit vector multiple times, we maintain a 

map from each color-class ID to the number of times a k-mer with that ID has appeared 

in the query. This is done so that, regardless of how many times a k-mer belonging to 

a given color-class appears in the query, we need to decode each color-class at most one 

time. Subsequently, these IDs are looked up in the color-class table to obtain the bit vector 

corresponding to the experiments in which that k-mer is present. We maintain a hash table 

that records, for each experiment, the number of query k-mers present in this experiment, 

and the bit vector associated with each color-class is used to update this hash table until the 

color-classes associated with all query k-mers have been processed. This second phase of 

lookup is particularly efficient, as it scales in the number of distinct color-classes that label 

k-mers from the query. For example, if all n query k-mers belonged to a single color-class, 

we would decode this color-class’ bit vector only once, and report each experiment present 

in this color class to contain n of the query k-mers.

Mantis supports both approximate and exact indexes. When used in approximate mode, 

queries to Mantis may return false positives, i.e., experiments that do not meet the threshold 

θ. Theorem 1 shows that, with high probability, any false positives returned by Mantis 

are close to the threshold (an event Ec, n occurs with high probability if it occurs with 
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probability at least 1 − 1 ∕ nc). positives in Mantis are not simply random experiments—they 

are experiments that contain a significant fraction of the queried k-mers.

Theorem 1—A query for q k-mers with threshold θ returns only experiments containing at 

least θq − O(δq + logn) queried k-mers w.h.p.

Proof: This follows from Chernoff bounds and the fact that the number of queried k-mers 

that are false positives in an experiment is upper bounded by a binomial random variable 

with mean δq.

Dynamic Updates—We now describe a method that a central authority could use 

to maintain a large database of searchable experiments. Researchers could upload new 

experiments and submit queries over previously uploaded experiments. In order to make 

this service efficient, we need a way to incorporate new experiments without rebuilding the 

entire index each time a new experiment is uploaded.

Our solution follows the design of cascade filters Pandey et al. (2017b) and LSM-trees 

O’Neil et al. (1996). In this approach, the index consists of a logarithmic number of levels, 

each of which is a single index. The maximum size of each level is a constant factor 

(typically 4–10) larger than the previous level’s maximum size. New experiments are added 

to the index at the smallest level (i.e. level 0). Since level 0 is small, it is feasible to add new 

experiments by simply rebuilding it. When the index at level i exceeds its maximum size, 

we run a merge algorithm to merge level i into level i + 1, recursively merging if this causes 

level i + 1 to exceed its maximum size.

We now describe how to rebuild a Mantis index (i.e. level 0) to include new experiments. 

First compute CQFs for the new experiments using Squeakr. Then update the bit vectors in 

the Mantis index to include a new entry (initially set to 0) for each new experiment. Then 

run a merge algorithm on the old index and the CQFs of the new experiments. The merge 

will take as input the old Mantis CQF, the old Mantis mapping from color IDs to bit vectors, 

and the new CQFs, and will produce as output a new CQF and new mapping from color IDs 

to bit vectors.

For each k-mer during the merge, compute the new set of experiments containing that k-mer 

by adding any new experiments containing that k-mer to the old bit vector for that k-mer. 

Then assign that set a color ID as described above and insert the k-mer and its color ID into 

the output CQF.

Merging two levels together is similar. During the merge, simply union the sets of 

experiments containing a given k-mer. This process is I/O efficient since it requires only 

sequentially reading each of the input indexes. During a query, we have to check each level 

for the queried k-mers. However, since queries are fast and there are only a logarithmic 

number of levels, performance should still be good.
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QUANTIFICATION AND STATISTICAL ANALYSIS

We used precision as the main accuracy metric to compare Mantis with SSBT. For a query 

string with a set Q of ∣ Q ∣ = m distinct k-mers, an experiment-query pair (E, Q) is defined as 

a true positive (TP) at threshold θ if E contains at least θm fraction of the k-mers occurring in 

Q. By the same definition, false positive (FP) hits are those experiment-query pairs reported 

as found that do not contain at least θm fraction of the k-mers occurring in Q. Finally, we 

define a false negative (FN) as an experiment-query pair where E does contain at least θm
fraction of the k-mers occurring in Q, but the experiment is not reported by the system 

as containing the query. Having all of these, we define precision as TP ∕ (TP + FP) and 

sensitivity as TP ∕ (TP + FN). None of the tools, Mantis, SBT, or SSBT, should have any 

FNs, so the sensitivity defined as TP ∕ (TP + FN) is 1 for all these tools. In addition, the 

precision is also 1 for Mantis, since it is exact and doesn’t report any FPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mantis is a tool to search through large collections of raw sequencing 

experiments

• Mantis index is 20% smaller than the Split-Sequence Bloom Tree (SSBT) 

search index

• Mantis index is 6x faster to build and 6–100× faster to query than the SSBT

• Mantis index is exact; query results contain no false-positives or -negatives
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Figure 1. The Mantis Indexing Data Structures
The CQF contains mappings from k-mers to color-class IDs. The color-class table contains 

mappings from color-class IDs to bit vectors. Each bit vector is N bits, where N is the 

number of experiments from which k-mers are extracted. The CQF is constructed by 

merging N input CQFs each corresponding to an experiment. A query first looks up the 

k-mer(s) in the CQF and then retrieves the corresponding color-class bit vectors from the 

color-class table.
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Table 1.

Time and Space Measurement for Mantis and SSBT

Mantis SSBT

Build time 16 hr 35 min 97 hr

Representation size 32 GB 39.7 GB

Total time taken by Mantis and SSBT to construct the representation. Total space needed to store the representation by Mantis and SSBT. Numbers 
for SSBT were taken from the SSBT paper (Solomon and Kingsford, 2017).
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Table 2.

Time Taken by Mantis and SSBT to Perform Queries on Three Sets of Transcripts

Mantis SSBT (0.7) SSBT (0.8) SSBT (0.9)

10 Transcripts 25 s 3 min 8 s 2 min 25 s 2 min 7 s

100 Transcripts 28 s 14 min 55 s 10 min 56 s 7 min 57 s

1000 Transcripts 1 min 3 s 2 hr 22 min 1 hr 54 min 1 hr 20 min

The set sizes are 10, 100, and 1000 transcripts. For SSBT we used three different threshold values: 0.7, 0.8, and 0.9. All the experiments were 
performed by making sure that the index structure either is cached in RAM or is read from ramfs.
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Table 3.

Comparison of Query Benchmark Results for Mantis and SSBT

Both Only Mantis Only SSBT Precision

10 Transcripts 2,018 19 1,476 0.577

100 Transcripts 22,466 146 10,588 0.679

1000 Transcripts 160,188 1,409 95,606 0.626

“Both” means the number of those experiments that are reported by both Mantis and SSBT. “Only Mantis” and “Only SSBT” mean the number of 
experiments reported by only Mantis and only SSBT. All three query benchmarks are taken from Table 2 for θ = 0.8.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

NIH brain, breast, and blood tissue (2652 experiments) Various https://doi.org/10.5281/zenodo.1186393

Software and Algorithms

Nt-card Mohamadi et al., 2017 https://github.com/bcgsc/ntCard

SSBT Solomon and Kingsford, 2017 https://github.com/Kingsford-Group/splitsbt

Mantis This paper https://github.com/splatlab/mantis
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