
Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search
Index

Prashant Pandey1, Fatemeh Almodaresi1, Michael A. Bender1, Michael Ferdman1, Rob
Johnson1,2, Rob Patro1,3,*

1Computer Science Department, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794,
USA

2VMware Research, 3425 Hillview Ave, Palo Alto, CA 94304, USA

3Lead Contact

SUMMARY

Sequence-level searches on large collections of RNA sequencing experiments, such as the NCBI

Sequence Read Archive (SRA), would enable one to ask many questions about the expression

or variation of a given transcript in a population. Existing approaches, such as the sequence

Bloom tree, suffer from fundamental limitations of the Bloom filter, resulting in slow build and

query times, less-than-optimal space usage, and potentially large numbers of false-positives. This

paper introduces Mantis, a space-efficient system that uses new data structures to index thousands

of raw-read experiments and facilitates large-scale sequence searches. In our evaluation, index

construction with Mantis is 6× faster and yields a 20% smaller index than the state-of-the-art

split sequence Bloom tree (SSBT). For queries, Mantis is 6–108× faster than SSBT and has no

false-positives or -negatives. For example, Mantis was able to search for all 200,400 known human

transcripts in an index of 2,652 RNA sequencing experiments in 82 min; SSBT took close to 4

days.

Graphical Abstract

*Correspondence: rob.patro@cs.stonybrook.edu.
AUTHOR CONTRIBUTIONS
Conceptualization, P.P., F.A., M.A.B., M.F., R.J., and R.P.; Methodology, P.P., F.A., M.A.B., M.F., R.J., and R.P.; Software, P.P., F.A.,
M.A.B., M.F., R.J., and R.P.; Validation, P.P., F.A., M.A.B., M.F., R.J., and R.P.; Formal Analysis, P.P., F.A., M.A.B., M.F., R.J., and
R.P.; Investigation, P.P., F.A., M.A.B., M.F., R.J., and R.P.; Data Curation, P.P., F.A., M.A.B., M.F., R.J., and R.P.; Writing — Original
Draft, P.P., F.A., M.A.B., M.F., R.J., and R.P.; Writing — Review & Editing, P.P., F.A., M.A.B., M.F., R.J., and R.P.; Visualization,
P.P., F.A., M.A.B., M.F., R.J., and R.P.; Supervision, M.A.B., M.F., R.J., and R.P.; Project Administration, M.A.B., M.F., R.J., and R.P.

SUPPLEMENTAL INFORMATION
Supplemental Information includes one figure and one table and can be found with this article online at https://doi.org/10.1016/
j.cels.2018.05.021.

DECLARATION OF INTERESTS
The authors declare no competing interests.

DATA AND SOFTWARE AVAILABILITY
The data we used for our analyses are the same set of 2652 the human sequencing experiments from blood, breast, and brain tissues
used in SSBT Solomon and Kingsford (2017). The list of SRRs for these experiments in addition to the url to download the dataset
and the cutoffs we used for each of them (which is based on the same cutoff definition as in SSBT) are all available via Zenodo with
https://doi.org/10.5281/zenodo.1186393. Mantis is written in C++11 and is available at https://github.com/splatlab/mantis.

HHS Public Access
Author manuscript
Cell Syst. Author manuscript; available in PMC 2024 March 26.

Published in final edited form as:
Cell Syst. 2018 August 22; 7(2): 201–207.e4. doi:10.1016/j.cels.2018.05.021.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/splatlab/mantis

In Brief

Mantis is a system to index and search through large collections of raw sequencing data. The

query sequence can be a known or newly assembled gene or any valid nucleotide sequence. Mantis

is faster and smaller than existing sequence-search tools and is exact in the sense that it does not

report false-positives. To construct the index, Mantis indexes the k-mers (substrings of size k)

in the reads of an experiment and then groups k-mers across experiments that exhibit the same

patterns of occurrence.

INTRODUCTION

The ability to issue sequence-level searches over publicly available databases of assembled

genomes and known proteins has played an instrumental role in many studies in the field

of genomics, and has made BLAST (Altschul et al., 1990) and its variants some of the

most widely used tools in all of science. Much subsequent work has focused on how to

extend tools such as BLAST to be faster, more sensitive, or both (Buchfink et al., 2015;

Daniels et al., 2013; Remmert et al., 2012; Steinegger and Söding, 2017). However, the

strategies applied by such tools focus on the case where queries are issued over a database of

reference sequences. However, the vast majority of publicly available sequencing data (e.g.,

the data deposited in the Sequence Read Archive [SRA]; Kodama et al., 2011) exist in the

form of raw, unassembled sequencing reads. As such, these data have mostly been rendered

Pandey et al. Page 2

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

impervious to sequence-level search, which substantially reduces the utility of such publicly

available data.

There are a number of reasons that typical reference-database-based search techniques

cannot easily be applied in the context of searching raw, unassembled sequences. One major

reason is that most current techniques do not scale well as the amount of data grows to the

size of the SRA (which today is ≈4 petabases of sequence information). A second reason

is that searching unassembled sequences means that relatively long queries (e.g., genes) are

unlikely to be present in their entirety as an approximate substring of the input.

Recently, new computational schemes have been proposed that hold the potential to allow

searching raw SARs while overcoming these challenges. Solomon and Kingsford (2016)

introduced the sequence bloom tree (SBT) data structure and an associated algorithm that

enables an efficient type of search over thousands of sequencing experiments. Specifically,

they re-phrase the query in terms of k-mer set membership in a way that is robust to the

fact that the target sequences have not been assembled. The resulting problem is coined as

the experiment discovery problem, where the goal is to return all experiments that contain

at least some user-defined θ fraction of the k-mers present in the query string. The space

and query time of the SBT structure has been further improved by Solomon and Kingsford

(2017) and Sun et al. (2017) by applying an All-Some set decomposition over the original

sets of the SBT structure. This seminal work introduced both a formulation of this problem

and the initial steps toward a solution.

SBTs build on prior work using Bloom filters Bloom (1970). A Bloom filter is a compact

representation of a set S. Bloom filters support insertions and membership queries, and they

save space by allowing a small but tunable false-positive probability. That is, a query for an

element x ∉ S might return “present” with probability δ. Allowing false-positives enables the

Bloom filter to save space; a Bloom filter can represent a set of size n with a false-positive

probability of δ using O n log2
1
δ bits. Bloom filters have an interesting property that the

bitwise-or of two Bloom filters representing S1 and S2 yields a Bloom filter for S1 ∪ S2.

However, the false-positive rate of the union may increase substantially above δ.

In k-mer-counting tools, Bloom filters are used to filter out single-occurrence (and likely

erroneous) k-mers from raw-read data (Melsted and Pritchard, 2011). In a high-coverage

genomic dataset, any k-mer that occurs only once is almost certainly an error and can thus

be ignored. However, such k-mers can constitute a large fraction of all the k-mers in the

input (typically 30%–50%) so allocating a counter and an entry in a hash table for these

k-mers can waste a lot of space. Tools such as BFCounter (Melsted and Pritchard, 2011) and

Jellyfish (Marçais and Kingsford, 2011) save space by inserting each k-mer into a Bloom

filter the first time it is seen. For each k-mer in the input, the tool first checks whether the

k-mer is in the Bloom filter. If not, then this is the first time this k-mer has been seen, so

it is inserted into the filter. If the k-mer is already in the filter, then the counting tool stores

the k-mer in a standard hash table, along with a count of the number of times this k-mer has

been seen. In this application, a false-positive in the Bloom filter simply means that the tool

Pandey et al. Page 3

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

might count a few k-mers that occur only once. Using Bloom filters in this way can reduce

space consumption by roughly 50%.

SBTs use Bloom filters to index large sets of raw sequencing data probabilistically. In

an SBT, each experiment is represented by a Bloom filter of all the k-mers that occur a

sufficient number of times in that experiment. A k-mer counter can create such a Bloom

filter by first counting all the k-mers in the experiment and then inserting every k-mer

that occurs sufficiently often into a Bloom filter. The SBT then builds a binary tree by

logically or-ing Bloom filters until it reaches a single root node. To find all the experiments

that contain a k-mer x, the query procedure starts from the root and tests whether x is

in the Bloom filter of each of the root’s children. Whenever a Bloom filter indicates that

an element might be present in a subtree, the search procedure recurses into that subtree.

Since Bloom filters do not admit false-negatives, k-mer absence from a filter allows early

termination of the search procedure.

SBTs support queries for entire transcripts as follows. First compute the set Q of k-mers that

occur in the transcript. Then, when descending down the tree, only descend into subtrees

whose root Bloom filter contains at least a fraction θ of the k-mers in Q. Typical values

for θ proposed by Solomon and Kingsford (2016) are in the range 0.7–0.9. That is, any

experiment that contains 70%–90% of the k-mers in Q has a reasonable probability of

containing the transcript (or a closely related variant).

The SSBT and the All-Some SBT have a similar structure to the SBT, but they use more

efficient encodings. The All-Some SBT has a shorter construction time and query time than

the SBT. The SSBT has a slower construction time than the SBT, answers queries faster than

the SBT, and uses less space than either the SBT or the All-Some SBT.

Both structures use a similar high-level approach for saving space and thus making queries

fast. Namely, instead of retaining a single Bloom filter at each internal node, the structures

maintain two Bloom filters. One Bloom filter stores k-mers that appear in every experiment

in the descendant leaves. These k-mers do not need to be stored in any descendants of the

node, thus reducing the space consumption by reducing redundancy. If a queried k-mer is

found in this Bloom filter, then it is known to be present in all descendant experiments. If the

required fraction of k-mers for a search (i.e., θ) ever appear in such a filter, then search of

this subtree can terminate early as all descendant leaf nodes satisfy the query requirements.

The other Bloom filter stores the rest of the k-mers, those that appear in some, but not all,

of the descendants. All-Some SBT saves additional space by clustering similar leaves into

subtrees so that more k-mers can be stored higher up in the tree and with less duplication.

Due to limitations of the Bloom filter, all of these SBT-like structures are forced to balance

between the false-positive rate at the root and the size of the filters representing the

individual experiments. Because Bloom filters cannot be resized, they must be created with

enough space to hold the maximum number of elements that might be inserted. Furthermore,

two Bloom filters can only be logically or-ed if they have the same size (and use the same

underlying hash functions). Thus, the Bloom filters at the root of the tree must be large

enough to represent every k-mer in every experiment indexed in the entire tree, while still

Pandey et al. Page 4

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

maintaining a good false-positive rate. On the other hand, the Bloom filters at the leaves of

the tree represent only a relatively small amount of data and, since there are many leaves,

should be as small as possible.

Further complicating the selection of Bloom filter size is that individual dataset sizes vary by

orders of magnitude, but all datasets must be summarized using Bloom filters of the same

size. For these reasons, most of the Bloom filters in the SBT are, of necessity, sub-optimally

tuned and inefficient in their use of space. SBTs partially mitigate this issue by compressing

their Bloom filters using an off-the-shelf compressor (Bloom filters that are too large are

sparse bit vectors and compress well). Nonetheless, SBTs are typically constructed with a

Bloom filter size that is too small for the largest experiments and for the root of the tree. As

a result, they have low precision: typically, only about 57%–67% of the results returned by a

query are actually valid (i.e., contain at least a fraction θ of the query k-mers).

We present a new k-mer-indexing approach, which we call Mantis, that overcomes these

obstacles. Mantis has several advantages over prior work:

• Mantis is exact. A query for a set Q of k-mers and threshold θ returns exactly

those datasets containing at least θ fraction of the k-mers in Q. There are no

false-positives or false-negatives. In contrast, we show that SBT-based systems

exhibit only 57%–67% precision, meaning that many of the results returned for a

given query are, in fact, false-positives.

• Mantis supports much faster queries than existing SBT-based systems. In our

experiments, queries in Mantis ran up to 100× faster than in SSBT.

• Mantis supports much faster index construction. For example, we were able

to build the Mantis index on 2,652 datasets in 16 hr. SSBT reported 97 hr to

construct an index on the same collection of datasets.

• Mantis uses less storage than SBT-based systems. For example, the Mantis index

for the 2,652 experiments used in the SSBT evaluation is 20% smaller than the

compressed SSBT index for the same data.

• Mantis returns, for each experiment containing at least 1 k-mer from the

query, the number of query k-mers present in this experiment. Thus, the full

spectrum of relevant experiments can be analyzed. While these results can be

post-processed to filter out those not satisfying a θ query, we believe the Mantis

output is more useful, since one can analyze which experiments were close to

achieving the θ threshold, and can examine if there is a natural “cutoff” at which

to filter experiments.

Mantis (overview in Figure 1) builds on Squeakr (Pandey et al., 2017c), a k-mer counter

based on the counting quotient filter (CQF) Pandey et al. (2017b). The CQF is a Bloom

filter alternative that offers several advantages over the Bloom filter. First, the CQF supports

counting; i.e., queries to the CQF return not only “present” or “absent” but also an estimate

on the number of times the queried item has been inserted. Analogous to the Bloom filter’s

false-positive rate, there is a tunable probability that the CQF may return a count that is

higher than the true count for a queried element. CQFs can also be resized, and CQFs of

Pandey et al. Page 5

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

different sizes can be merged together efficiently. Finally, CQFs can be used in an “exact”

mode where they act as a compact exact hash table; i.e., we can make δ = 0. CQFs are also

faster and more space efficient than Bloom filters for all practical configurations (i.e., any

false-positive rate <1/64).

Prior work has shown how CQFs can be used to improve performance and simplify the

design of k-mer-counting tools (Pandey et al., 2017c) and de Bruijn graph representations

(Pandey et al., 2017a). For example, Squeakr is essentially a thin wrapper around a CQF;

it just parses fastq files, extracts the k-mers, and inserts them into a CQF. Other k-mer

counters use multiple data structures (e.g., Bloom filters plus hash tables) and often contain

sophisticated domain-specific strategies (e.g., minimizers) to get good performance. Despite

its simplicity, Squeakr is memory efficient, offers competitive counting performance, and

supports queries for counts up to 10 faster than other k-mer counters. Performance is similar

in exact mode, in which case, the space is comparable with other k-mer counters.

In a similar spirit, Mantis uses the CQF to create a simple space- and time-efficient index for

searching for sequences in large collections of experiments. Mantis is based on colored de

Bruijn graphs. The “color” associated with each k-mer in a colored de Bruijn graph is the set

of experiments in which that k-mer occurs. We use an exact CQF to store a table mapping

each k-mer to a color identifier (ID), and another table mapping color IDs to the actual set

of experiments containing that k-mer. Mantis uses an off-the-shelf compressor (Raman et al.,

2002) to store the bit vectors representing each set of experiments.

Mantis takes as input the collection of CQFs representing each dataset and outputs the

search index. Construction is efficient because it can use sequential input and output (I/O) to

read the input and write the output CQFs. Similarly, queries for the color of a single k-mer

are efficient since they require only two table lookups.

We believe that, since Mantis is also a colored de Bruijn graph representation, it may be

useful for more than just querying for the existence of sequences in large collections of

datasets. Mantis supports the same fast de Bruijn graph traversals as Squeakr, using the

same traversal algorithm as described in the Squeakr (Pandey et al., 2017c) and deBGR

papers (Pandey et al., 2017a). Hence Mantis may be useful for topological analyses such

as computing the length of the query covered in each experiment (rather than just the

fraction of k-mers present). Mantis can be used for de Bruijn graph traversal by querying the

possible neighboring k-mers of a given k-mer and extending the path in the de Bruijn graph

(Belazzougui et al., 2016; Muggli et al., 2017; Pell et al., 2012). It can also naturally support

operations such as bubble calling (Iqbal et al., 2012) and hence could allow a natural,

assembly-free way to analyze variation among experiments.

RESULTS

In this section we compare the performance and accuracy of Mantis against SSBT (Solomon

and Kingsford, 2017).

Pandey et al. Page 6

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Evaluation Metrics

Our evaluation aims to compare Mantis with the state of the art, SSBT (Solomon and

Kingsford, 2017), on the following performance metrics:

• Construction time. How long does it take to build the index?

• Index size. How large is the index, in terms of storage space?

• Query performance. How long does it take to execute queries?

• Quality of results. How many false-positives are included in query results?

Experimental Procedure

For all experiments in this paper, unless otherwise noted, we consider the k-mer size to

be 20 to match the parameters adopted by Solomon and Kingsford (2016). To facilitate

comparison with SSBT, we use the same set of 2,652 experiments used in the evaluation

done by Solomon and Kingsford (2017) and as listed on their website (Kingsford, 2017).

These experiments consist of short-read RNA sequencing runs of human blood, brain, and

breast tissue. We obtained these files directly from the European Nucleotide Archive (ENA)

(NIH, 2017) since they provide direct access to gzipped FASTQ files, which are more

expedient for our purposes than the SRA format files. We discarded 66 files that contained

only extremely short reads (i.e., less than 20 bases) (we believe that the SBT authors just

treated these as files containing zero 20-mers). Thus the actual number of files used in our

evaluation was 2,586.

We first used Squeakr-exact to construct CQFs for each experiment. We used 40-bit hashes

and an invertible hash function in Squeakr-exact to represent k-mers exactly. Before running

Squeakr-exact, we needed to select the size of the CQF for each experiment. We used the

following rule of thumb to estimate the CQF size needed by each experiment: singleton

k-mers take up one slot in the CQF, doubletons take up two slots, and almost all other

k-mers take up three slots. We implemented this rule of thumb as follows. We used ntCard

(Mohamadi et al., 2017) to estimate the number of distinct k-mers F0 and the number of

k-mers of count 1 and 2 (f1 and f2, respectively) in each experiment. We then estimated the

number of slots needed in the CQF as s = f1 + 2f2 + 3(F0 − f1 − f2). The number of slots in

the CQF must be a power of 2, so let s′ be the smallest power of 2 larger than or equal to s.

In order to be robust to errors in our estimate, if s was more than 0.8 s′, then we constructed

the CQF with two s′ slots. Otherwise, we constructed the CQF with s′ slots.

We then used Squeakr-exact to construct a CQF of the counts of the k-mers in each

experiment. The total size of all the CQFs was 2.7 TB.

We then computed cutoffs for each experiment according to the rules defined in the SBT

paper (Solomon and Kingsford, 2017), shown in Table S1. The SBT paper specifies cutoffs

based on the size of the experiment, measured in bytes, but does not specify how the size

of an experiment is calculated (e.g., compressed or uncompressed). We use the size of the

compressed file downloaded from ENA.

Pandey et al. Page 7

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We then invoked Mantis to build the search index using these cutoffs. Based on a few trial

runs, we estimated that the number of slots needed in the final CQF would be 234, which

turned out to be correct.

Query Datasets

For measuring query performance, we randomly selected sets of 10, 100, and 1,000

transcripts from the Gencode annotation of the human transcriptome (Gencode, 2017).

Also, before using these transcripts for queries, we replaced any occurrence of “N” in the

transcripts with a pseudo-randomly chosen valid nucleotide. We then performed queries

for these three sets of transcripts in both Mantis and SSBT. For SSBT, we used θ = 0.7,

0.8, and 0.9. For Mantis, θ makes no difference to the run-time, since it is only used to

filter the list of experiments at the very end of the query algorithm. Thus performance was

indistinguishable, so we only report one number for Mantis’s query performance.

For SSBT, we used the tree provided to us by the SSBT authors via personal

communication. We also compared the quality of results from Mantis and SSBT. Mantis

is an exact representation of k-mers and therefore all the experiments reported by Mantis

should also be present in the results reported by SSBT. However, SSBT results may

contain false-positive experiments. Therefore, we can use Mantis to empirically calculate

the precision of SSBT. Precision is defined as TP ∕ (TP + FP), where TP and FP are the

number of true- and false-positives, respectively, in the query result.

Experimental Setup

All experiments were performed on an Intel Xeon CPU (E5-2699 v4 @2.20 GHz with 44

cores and 56 MB L3 cache) with 512 GB RAM and a 4 TB TOSHIBA MG03ACA4 ATA

HDD running ubuntu 16.10 (Linux kernel 4.8.0-59-generic), and were carried out using a

single thread. The data input to the construction process (i.e., FASTQ files and the Squeakr

representations) was stored on four-disk mirrors (eight disks total), and each is a Seagate

7200 rpm 8 TB disk (ST8000VN0022). They were formatted using ZFS and exported via

NFS over a 10 Gb link.

All the input CQF files were mmaped. However, we also used asynchronous reads (aio read)

to perform prefetch of data from the remote storage. Since the input CQFs were accessed

in sequential order, prefetching can help the kernel cache the data that will be accessed

in the immediate future. We adopted the following prefetching strategy: each input CQF

had a separate buffer wherein the prefetched data were read. The sizes of the buffers were

proportional to the number of slots in the input CQF. We used 4,096 B buffers for the

smallest CQFs and 8 MB for the largest CQF. The time reported for construction and query

benchmarks is the total time taken measured as the wall-clock time using “/usr/bin/time”.

We compare Mantis and SSBT on their in-memory query performance. For Mantis, we

warmed the cache by running the query benchmarks twice; we report the numbers from

the second run. We followed the SSBT author’s procedure for measuring SSBT’s in-RAM

performance (Solomon and Kingsford, 2017), as explained to us in personal communication.

Specifically, we copied all the nodes in the tree to a ramfs (in-RAM file system). We

Pandey et al. Page 8

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

then ran SSBT on the files stored in the ramfs. (We also tried running SSBT twice, as

with Mantis, and performance was identical to that from following the SSBT authors’

procedures.)

SSBT query benchmarks were run with θ thresholds 0.7, 0.8, and 0.9, and the max-filter

parameter was set to 11,000. By setting max-filter to 11,000, we ensured that SSBT never

had to evict a filter from its cache.

Experiment Results

In this section we present our benchmark results comparing Mantis and SSBT to answer the

questions posed above.

Build Time and Index Space—Table 1 shows that Mantis builds its index 6× faster

than SSBT. Also, the space needed by Mantis to represent the final index is 20% smaller

than SSBT. Most of the time is spent in merging the hashes from the input CQFs and

creating color-class bit vectors. The merging process is fast because there is no random disk

I/O. We read through the input CQFs sequentially and also insert hashes in the final CQF

sequentially. The number of k-mers in the final CQF was ≈3.69 billion. Writing the resulting

CQF to disk and compressing the color-class bit vectors took only a small fraction of the

total time.

The maximum RAM required by Mantis to construct the index, as given by “/usr/bin/time”

(maximum resident set size), was 40 GB. The maximum RAM usage broke down as follows.

The output CQF consumed 17 GBs. The buffer of uncompressed bit vectors used 6 GBs,

and the compressor uses another 6 GB output buffer. The table of hashes of previously seen

bit vectors consumed about 5 GBs. The prefetch buffers used about 1 GB. There were also

some data structural overheads, since we used several data structures from the C++ standard

library.

Query Performance—Table 2 shows the query performance of Mantis and SSBT on three

different query datasets. Even for θ = 0.9 (the best case of SSBT), Mantis is 5×, 16×, and

75× faster than SSBT for in-memory queries. For θ = 0.7, Mantis is up to 137 times faster

than SSBT.

The query time for SSBT reduces with increasing θ values because with higher θ queries will

terminate early and have to perform fewer accesses down the tree. In Table 2, for Mantis we

only have one column because Mantis reports experiments for all θ values.

In Mantis, only two memory accesses are required per k-mer; one in the CQF and, if

the k-mer is present, then the ID is looked up in the color-class table. SSBT has a fast

case for queries that occur in every node in a subtree or in no node of a subtree, so it

tends to terminate quickly for queries that occur almost everywhere or almost nowhere.

However, for random transcript queries, it may have to traverse multiple root-to-leaf paths,

incurring multiple memory accesses. This can cause multiple cache misses, resulting in

slower queries.

Pandey et al. Page 9

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Quality of Results—Table 3 compares the results returned by Mantis and SSBT on the

queries described above. All the comparisons were performed for θ = 0.8. Since Mantis

is exact, we use the results from Mantis to calculate the precision of SSBT results. The

precision of SSBT results varied from 0.577 to 0.679.

Mantis is an exact index and SSBT is an approximate index with one-sided error (i.e., only

false-positives). Therefore, the experiments reported by SSBT should be a super-set of the

experiments reported by Mantis. However, when we compared the results from Mantis and

SSBT, there were a few experiments reported by Mantis that were not reported by SSBT.

This could be because of a bug in Mantis or SSBT.

In order to determine whether there was a bug in Mantis, we randomly picked a subset

of experiments reported only by Mantis and used KMC2 to validate Mantis’s results. The

results reported by KMC2 were exactly the same as the results reported by Mantis. This

means that there were some experiments that actually had at least 80% of the k-mers from

the query but were not reported by SSBT.

We contacted the SSBT authors about this anomaly, and they found that some of the datasets

were corrupted during download from SRA. This resulted in the SSBT tree having corrupted

data for those particular datasets, which was revealed by comparison with results from

Mantis. We believe only a handful of datasets were corrupted, so that these issues do not

materially affect the results reported in the SSBT paper.

DISCUSSION AND CONCLUSION

We have introduced Mantis, a new method and system for tackling the experiment discovery

(i.e. large-scale sequence-search) problem. Though inspired by the SBT and subsequent

work, Mantis takes a completely different approach to this problem. Specifically, rather than

adopting a hierarchy of Bloom filters, as suggested by previous approaches (Solomon and

Kingsford, 2016, 2017; Sun et al., 2017), we build our system on top of the CQF (Pandey

et al., 2017b), using this data structure both for counting and as a general key-value store.

We combine this data structure with a color-encoding scheme similar to that adopted by

Holley et al. (2016) and Almodaresi et al. (2017) for colored de Bruijn graph representation.

This different approach allows Mantis to represent, in similar memory to the split-SBT

(SSBT) (Solomon and Kingsford, 2017), a data structure for rapid and exact k-mer search

over thousands of experiments. Specifically, we have shown that Mantis can be constructed

efficiently, that the final structure takes slightly less space than the compressed SSBT,

and that it can be queried very rapidly. Moreover, since the representation of Mantis is

exact, it exhibits no false-positive results. Even though the false-positive rate of SBT-based

solutions is generally low (false-positives occur at a typical rate of 5% in our experiments),

this can still translate into a considerable number of experiments when the query space is

large. Thus, Mantis represents an attractive methodology for indexing experiments and for

addressing the experiment discovery problem.

For a similar space requirement as the best-in-class solution, it is faster to construct,

provides considerably faster queries, and is exact where other systems are approximate.

Pandey et al. Page 10

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We note that Mantis can easily be made approximate, and that this can be done with a tightly

controlled error rate (Theorem 1). In the future, it will be interesting to scale Mantis to

even larger collections of data and to experiment with approximate versions of the system.

Also, given that Mantis encodes what is essentially a colored de Bruijn graph over all of

the indexed experiments, future work will explore other uses of this representation apart

from experiment discovery. For example, Mantis could be used to efficiently search for

and categorize variants among unassembled experiments by adopting the “bubble-calling”

algorithm over colored de Bruijn graphs proposed by Iqbal et al. (2012). Finally, it could be

promising to combine certain concepts from Mantis with ideas from SBT-based solutions;

specifically the idea of making the indexing structure hierarchical. Good partitionings of the

experimental data, if they can be discovered efficiently, could lead to an even more compact

index.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact, Rob Patro (rob.patro@cs.stonybrook.edu)

METHOD DETAILS

Mantis builds on Squeakr Pandey et al. (2017c), a k-mer counter that uses a counting

quotient filter Pandey et al. (2017b) as its primary data structure. We first review Squeakr

and the CQF, and then we explain how to build upon CQFs to construct our search index.

Squeakr and the Counting Quotient Filter—Squeakr is essentially a thin wrapper

around the counting quotient filter. It parses k-mers from a collection of input files, and

inserts them into a counting quotient filter. It then serializes the CQF to disk.

The CQF is a compact representation of a multi-set S, similar in spirit to how a Bloom filter

is a compact representation of a set. Thus a CQF supports inserts and queries. A query for

an item x returns an estimate of the number of instances of x in S. Like a Bloom filter, a

CQF has only one-sided error, i.e., the count returned by a CQF is never smaller than the

true count. The CQF also supports a tunable false-positive rate δ, which means that a query

to the CQF for the count of an item returns the true count of x with probability at least 1 − δ.

The counting quotient filter represents S by storing a compact, lossless representation of

the multiset ℎ(S), where ℎ :U {0, …2p − 1} is a hash function and U is the universe from

which S is drawn. The CQF sets p = log2(n ∕ δ) to obtain a false-positive rate while handling

up to n insertions (Bender et al., 2012).

The counting quotient filter saves space by representing some of the bits of ℎ(x) implicitly

using a technique called quotienting. The CQF divides ℎ(x) into its first q bits, called the

quotient ℎ0(x), and its remaining r = p − q bits, called the remainder ℎ1(x). It maintains an

array Q of 2q r-bit slots, each of which can hold a single remainder. When an element x is

inserted, the CQF attempts to store the remainder ℎ1(x) in the home slot Q[ℎ0(x)]. If that slot

Pandey et al. Page 11

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is already in use, then the CQF uses a variant of linear probing (using few metadata-bits per

slot), to find an unused slot where it can store ℎ1(x) Pandey et al. (2017b).

Instead of storing multiple copies of the same item to count, like a quotient filter, the

CQF employs an encoding scheme to count the multiplicity of items. The encoding scheme

enables the counting quotient filter to maintain variable-sized counters. This is achieved by

using slots originally reserved to store the remainders to store count information instead.

The metadata bits maintained by the counting quotient filter allows this dynamic reuse of

remainder slots for large counters while still ensuring the correctness of all counting quotient

filter operations.

The variable-sized counters in the counting quotient filter enable the data structure to handle

highly skewed datasets efficiently. By reusing the allocated space, the counting quotient

filter avoids wasting extra space on counters and naturally and dynamically adapts to the

frequency distribution of the input data. The CQF never takes more space than a quotient

filter for storing the same multiset. For highly skewed distributions, like those observed in

HTS-based datasets, it occupies only a small fraction of the space that would be required by

a comparable (in terms of false-positive rate) quotient filter.

The CQF also supports efficient enumeration of the set ℎ(S). Enumerating ℎ(S) involves a

linear scan of the quotient filter, so it is both computationally efficient and I/O efficient, if

the CQF is stored on disk. This enables efficient merges of several counting quotient filters

into a single filter. We use this functionality during the construction phase of Mantis.

Since the CQF stores ℎ(S), exactly, the CQF reports inaccurate counts only when there is

a collision in ℎ. Thus the CQF can be made exact (i.e., =0) by using an invertible hash

function.

Mantis—Mantis takes as input a collection of experiments and produces a data structure

that can be queried with a given k-mer to determine the set of experiments containing

that k-mer. Mantis supports these queries by building a colored de Bruijn graph. In the

colored de Bruijn graph, each k-mer has an associated color, which is the set of experiments

containing that k-mer.

The Mantis index is essentially a colored de Bruijn graph, represented using two dynamic

data structures: a counting quotient filter and a color-class table. The counting quotient filter

is used to map each k-merto a color ID, and then that ID can be looked up in the color-class

table to find the actual color (the list of experiments containing that k-mer). This approach of

using color classes was also used in Bloom filter Trie Holley et al. (2016) and Rainbowfish

Almodaresi et al. (2017). Mantis re-purposes the CQF’s counters to store color IDs instead.

In other words, to map a k-mer k to a color ID c, we insert c copies of k into the CQF. The

CQF supports not only insertions and deletions, but directly setting the counter associated

with a given k-mer, so this can be done efficiently (i.e., we do not need to insert k repeatedly

to increment the counter to c, we instead directly set it to c).

Pandey et al. Page 12

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Each color class is represented as a bit vector in the color-class table, with one bit for each

input experiment (Figure 1). All the bit vectors are concatenated and compressed using RRR

compression Raman et al. (2002) as implemented in the sdsl library Gog (2017).

Construction—To construct the Mantis index, we first count k-mers for each input

experiment using Squeakr. Because Squeakr can either perform exact or approximate k-mer

counting, the user has the freedom to trade off space and count accuracy. The output of

Squeakr is a counting quotient filter containing k-mers and their counts. Mantis builds its

index by performing a k-way merge of the CQFs, creating a single counting quotient filter

and a color-class table. The merge process follows a standard k-way merge approach Pandey

et al. (2017b) with a small tweak.

During a standard CQF merge, the merging algorithm accumulates the total number of

occurrences of each key by adding together its counters from all the input CQFs. In Mantis,

rather than accumulating the total count of a k-mer, we accumulate the set of all input

experiments that contain that k-mer.

As with SBT-based indexes, once we have computed the set of experiments containing a

given k-mer, we filter out experiments that contain only a few instances of a given k-mer.

This filtered set is the color class of the k-mer. The merge algorithm then looks up whether

it has already seen this color class. If so, it inserts the k-mer into the output CQF with

the previously assigned color-class ID for this color class. Otherwise, it assigns the next

available color-class ID for the new color, adds the k-mer’s color class to the set of observed

color classes, and inserts the k-mer into the output CQF with the new color-class ID. Figure

1 gives an overview of the Mantis build process and indexing data structure.

We detect whether we have seen a color class previously by hashing each color-class bit

vector to a 128-bit hash. We then store these hashes in an in-memory hash table. Each time

we compute the color class of a new k-mer, we check whether we have seen this color

class before by looking up its hash in this table. This approach may have false positives if

two distinct color classes collide under the hash function, but that never happened in our

experiments. Furthermore, assuming that the hash function behaves like a random function

and that there are less than 4 billion distinct color classes, the odds of having a collision are

less than 264.

Each color-class bit vector is stored in a separate buffer. The size of the buffer may vary

based on the amount of RAM available for the construction and the final size of the index

representation. In our experiments, we used a buffer of size 6GB. Once the buffer becomes

full, we compress the color-class bit vector using RRR compression Raman et al. (2002) and

write it to disk.

Sampling Color Classes Based on Abundance—Mantis stores the color-class ID

corresponding to each k-mer as its count in the counting quotient filter. In order to save

space in the output CQF, we assign smaller IDs to the most abundant color classes. We could

achieve this using a two-pass algorithm. In the first pass, we count the number of k-mers that

belong to each color class. In the second pass, we would sort the color classes based on their

Pandey et al. Page 13

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

abundances and assign the IDs in increasing order Almodaresi et al. (2017). However, two

passes through the data is expensive.

In Mantis, we instead adopt a single-pass algorithm that works as follows. We perform a

sampling phase in which we analyze the color-class distribution of a subset of k-mers (in

Mantis, we look at first ≈67M k-mers in the sampling phase). We sort the color classes

based on their abundances and assign IDs giving the smallest ID to the most abundant

color class, an observation that helps in optimizing the size of other data structures like

the Bloom Filter Trie Holley et al. (2016) and Rainbowfish Almodaresi et al. (2017). We

then use this color-class table as the starting point for the rest of the k-mers. Given the

uniform-randomness property of the hash function used by Squeakr to hash k-mers, there is

a very high chance that we will see the most abundant colors class in the first few million

k-mers and will assign the smallest ID to it. Figure S1 shows that the smallest ID is assigned

to the color class with the largest number of k-mers. Also, the number of k-mers belonging

to a color class generally reduces as the color class ID increases.

Queries—A query consists of a transcript T and a threshold θ. Let Q be the set of the

k-mers in T . The query algorithm should return the set of experiments that contain at least a

fraction θ of the k-mers in Q.

Given a query transcript T and a threshold θ, Mantis first extracts the set Q of all k-mers

from T . It then queries the CQF for each k-mer x ∈ Q to obtain x′s color-class ID cx. Mantis

then looks up cx in the color-class table to get the bit vector vx representing the set of

experiments that contain x. Finally, Mantis performs vector addition (treating the vectors as

vectors of integers) to obtain a single vector v, where v[i] is the number of k-mers from Q
that occur in the itℎ experiment. It then outputs each experiment i such that v[i] > θ ∣ Q ∣.

In order to avoid decoding the same color-class bit vector multiple times, we maintain a

map from each color-class ID to the number of times a k-mer with that ID has appeared

in the query. This is done so that, regardless of how many times a k-mer belonging to

a given color-class appears in the query, we need to decode each color-class at most one

time. Subsequently, these IDs are looked up in the color-class table to obtain the bit vector

corresponding to the experiments in which that k-mer is present. We maintain a hash table

that records, for each experiment, the number of query k-mers present in this experiment,

and the bit vector associated with each color-class is used to update this hash table until the

color-classes associated with all query k-mers have been processed. This second phase of

lookup is particularly efficient, as it scales in the number of distinct color-classes that label

k-mers from the query. For example, if all n query k-mers belonged to a single color-class,

we would decode this color-class’ bit vector only once, and report each experiment present

in this color class to contain n of the query k-mers.

Mantis supports both approximate and exact indexes. When used in approximate mode,

queries to Mantis may return false positives, i.e., experiments that do not meet the threshold

θ. Theorem 1 shows that, with high probability, any false positives returned by Mantis

are close to the threshold (an event Ec, n occurs with high probability if it occurs with

Pandey et al. Page 14

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

probability at least 1 − 1 ∕ nc). positives in Mantis are not simply random experiments—they

are experiments that contain a significant fraction of the queried k-mers.

Theorem 1—A query for q k-mers with threshold θ returns only experiments containing at

least θq − O(δq + logn) queried k-mers w.h.p.

Proof: This follows from Chernoff bounds and the fact that the number of queried k-mers

that are false positives in an experiment is upper bounded by a binomial random variable

with mean δq.

Dynamic Updates—We now describe a method that a central authority could use

to maintain a large database of searchable experiments. Researchers could upload new

experiments and submit queries over previously uploaded experiments. In order to make

this service efficient, we need a way to incorporate new experiments without rebuilding the

entire index each time a new experiment is uploaded.

Our solution follows the design of cascade filters Pandey et al. (2017b) and LSM-trees

O’Neil et al. (1996). In this approach, the index consists of a logarithmic number of levels,

each of which is a single index. The maximum size of each level is a constant factor

(typically 4–10) larger than the previous level’s maximum size. New experiments are added

to the index at the smallest level (i.e. level 0). Since level 0 is small, it is feasible to add new

experiments by simply rebuilding it. When the index at level i exceeds its maximum size,

we run a merge algorithm to merge level i into level i + 1, recursively merging if this causes

level i + 1 to exceed its maximum size.

We now describe how to rebuild a Mantis index (i.e. level 0) to include new experiments.

First compute CQFs for the new experiments using Squeakr. Then update the bit vectors in

the Mantis index to include a new entry (initially set to 0) for each new experiment. Then

run a merge algorithm on the old index and the CQFs of the new experiments. The merge

will take as input the old Mantis CQF, the old Mantis mapping from color IDs to bit vectors,

and the new CQFs, and will produce as output a new CQF and new mapping from color IDs

to bit vectors.

For each k-mer during the merge, compute the new set of experiments containing that k-mer

by adding any new experiments containing that k-mer to the old bit vector for that k-mer.

Then assign that set a color ID as described above and insert the k-mer and its color ID into

the output CQF.

Merging two levels together is similar. During the merge, simply union the sets of

experiments containing a given k-mer. This process is I/O efficient since it requires only

sequentially reading each of the input indexes. During a query, we have to check each level

for the queried k-mers. However, since queries are fast and there are only a logarithmic

number of levels, performance should still be good.

Pandey et al. Page 15

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

QUANTIFICATION AND STATISTICAL ANALYSIS

We used precision as the main accuracy metric to compare Mantis with SSBT. For a query

string with a set Q of ∣ Q ∣ = m distinct k-mers, an experiment-query pair (E, Q) is defined as

a true positive (TP) at threshold θ if E contains at least θm fraction of the k-mers occurring in

Q. By the same definition, false positive (FP) hits are those experiment-query pairs reported

as found that do not contain at least θm fraction of the k-mers occurring in Q. Finally, we

define a false negative (FN) as an experiment-query pair where E does contain at least θm
fraction of the k-mers occurring in Q, but the experiment is not reported by the system

as containing the query. Having all of these, we define precision as TP ∕ (TP + FP) and

sensitivity as TP ∕ (TP + FN). None of the tools, Mantis, SBT, or SSBT, should have any

FNs, so the sensitivity defined as TP ∕ (TP + FN) is 1 for all these tools. In addition, the

precision is also 1 for Mantis, since it is exact and doesn’t report any FPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We gratefully acknowledge support from NSF grants BBSRC-NSF/BIO-1564917, IIS-1247726, IIS-1251137,
CNS-1408695, CCF-1439084, CCF-1617618, CCF-1716252, CNS-1755615, CCF 1725543, and from Sandia
National Laboratories. Editor’s note: an early version of this paper was submitted to and peer reviewed at the 2018
Annual International Conference on Research in Computational Molecular Biology (RECOMB). The manuscript
was revised and then independently further reviewed at Cell Systems.

REFERENCES

Marçais G, and Kingsford C (2011). A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics 27, 764–770. [PubMed: 21217122]

Almodaresi F, Pandey P, and Patro R (2017). Rainbowfish: a succinct colored de Bruijn graph
representation. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017),
Schwartz R and Reinert K, eds. (Dagstuhl), pp. 18:1–18:15, Vol. 88 of Leibniz International
Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. http://
drops.dagstuhl.de/opus/volltexte/2017/7657.

Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ (1990). Basic local alignment search tool.
J. Mol. Biol 215, 403–410. [PubMed: 2231712]

Belazzougui D, Gagie T, Mäkinen V, and Previtali M (2016). Fully dynamic de Bruijn graphs. In
International Symposium on String Processing and Information Retrieval, Inenaga S, Sadakane K,
and Sakai T, eds. (Springer), pp. 145–152.

Bender MA, Farach-Colton M, Johnson R, Kaner R, Kuszmaul BC, Medjedovic D, Montes P, Shetty
P, Spillane RP, and Zadok E (2012). Don’t thrash: how to cache your hash on flash. Proceedings
VLDB Endowment 5, 1627–1637.

Bloom BH (1970). Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13,
422–426.

Buchfink B, Xie C, and Huson DH (2015). Fast and sensitive protein alignment using DIAMOND.
Nat. Methods 12, 59–60. [PubMed: 25402007]

Daniels NM, Gallant A, Peng J, Cowen LJ, Baym M, and Berger B (2013). Compressive genomics for
protein databases. Bioinformatics 29, i283–i290. [PubMed: 23812995]

Gencode. (2017), Release 25, https://www.gencodegenes.org/releases/25.html. [online; accessed 06-
Nov-2017].

Pandey et al. Page 16

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://drops.dagstuhl.de/opus/volltexte/2017/7657
http://drops.dagstuhl.de/opus/volltexte/2017/7657
https://www.gencodegenes.org/releases/25.html

Gog S. (2017), Succinct data structure library, https://github.com/simongog/sdsl-lite. [online; accessed
01-Feb-2017].

Holley G, Wittler R, and Stoye J (2016). Bloom filter trie: an alignment-free and reference-free data
structure for pan-genome storage. Algorithms Mol. Biol 11, 3. [PubMed: 27087830]

Iqbal Z, Caccamo M, Turner I, Flicek P, and McVean G (2012). De novo assembly and genotyping of
variants using colored de Bruijn graphs. Nat. Genet 44, 226–232. [PubMed: 22231483]

Kingsford C. (2017), Srr list, https://www.cs.cmu.edu/~ckingsf/software/bloomtree/srr-list.txt. [online;
accessed 06-Nov-2017].

Kodama Y, Shumway M, and Leinonen R (2011). The sequence read archive: explosive growth of
sequencing data. Nucleic Acids Res. 40, D54–D56. [PubMed: 22009675]

Melsted P, and Pritchard JK (2011). Efficient counting of k-mers in DNA sequences using a Bloom
filter. BMC bioinformatics 12, 1. [PubMed: 21199577]

Mohamadi H, Khan H, and Birol I (2017). ntCard: a streaming algorithm for cardinality estimation in
genomics data. Bioinformatics 33, 1324–1330. [PubMed: 28453674]

Muggli MD, Bowe A, Noyes NR, Morley P, Belk K, Raymond R, Gagie T, Puglisi SJ, and Boucher C
(2017). Succinct colored de Bruijn graphs. Bioinformatics 33, 3181–3187. [PubMed: 28200001]

NIH. (2017), ‘Sra’, https://www.ebi.ac.uk/ena/browse. [online; accessed 06-Nov-2017].

O’Neil P, Cheng E, Gawlic D, and O’Neil E (1996). The log-structured merge-tree (LSM-tree). Acta
Inform. 33, 351–385.

Pandey P, Bender MA, Johnson R, and Patro R (2017a). deBGR: an efficient and near-exact
representation of the weighted de Bruijn graph. Bioinformatics 33, i133–i141. [PubMed:
28881995]

Pandey P, Bender MA, Johnson R, and Patro R (2017b). A general-purpose counting filter: making
every bit count. In Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD Conference2017, Chicago, IL, USA, May 14-19, 2017, Salihoglu S,
Zhou W, Chirkova R, Yang J, and Suciu D, eds. (ACM), pp. 775–787. http://doi.acm.org/
10.1145/3035918.3035963.

Pandey P, Bender MA, Johnson R, and Patro R (2017c). Squeakr: an exact and approximate k-mer
counting system. Bioinformatics 34, 568–575.

Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, and Brown CT (2012). Scaling metagenome
sequence assembly with probabilistic de Bruijn graphs. Proc. Natl. Acad. Sci. USA 109, 13272–
13277. [PubMed: 22847406]

Raman R, Raman V, and Rao SS (2002). Succinct indexable dictionaries with applications to encoding
k-ary trees and multisets. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, Eppstein D, ed. (ACM/SIAM),
pp. 233–242. http://dl.acm.org/citation.cfm?id=545381.545411.

Remmert M, Biegert A, Hauser A, and Söding J (2012). HHblits: lightning-fast iterative protein
sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175.

Solomon B, and Kingsford C (2016). Fast search of thousands of short-read sequencing experiments.
Nat. Biotechnol 34, 300–302. [PubMed: 26854477]

Solomon B, and Kingsford C (2017). Improved search of large transcriptomic sequencing databases
using split sequence Bloom trees. In Research in Computational Molecular Biology - 21st Annual
International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings,
Sahinalp SC, ed. (springer), pp. 257–271, Vol. 10229 of Lecture Notes in Computer Science.
10.1007/978-3-319-56970-3_6.

Steinegger M, and Söding J (2017). MMseqs2 enables sensitive protein sequence searching for the
analysis of massive data sets. Nat. Biotechnol 35, 1026–1028. [PubMed: 29035372]

Sun C, Harris RS, Chikhi R, and Medvedev P (2017). Allsome sequence Bloom trees. In International
Conference on Research in Computational Molecular Biology, Sahinalp SC, ed. (Springer), pp.
272–286.

Pandey et al. Page 17

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/simongog/sdsl-lite
https://www.cs.cmu.edu/~ckingsf/software/bloomtree/srr-list.txt
https://www.ebi.ac.uk/ena/browse
http://doi.acm.org/10.1145/3035918.3035963
http://doi.acm.org/10.1145/3035918.3035963
http://dl.acm.org/citation.cfm?id=545381.545411

Highlights

• Mantis is a tool to search through large collections of raw sequencing

experiments

• Mantis index is 20% smaller than the Split-Sequence Bloom Tree (SSBT)

search index

• Mantis index is 6x faster to build and 6–100× faster to query than the SSBT

• Mantis index is exact; query results contain no false-positives or -negatives

Pandey et al. Page 18

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1. The Mantis Indexing Data Structures
The CQF contains mappings from k-mers to color-class IDs. The color-class table contains

mappings from color-class IDs to bit vectors. Each bit vector is N bits, where N is the

number of experiments from which k-mers are extracted. The CQF is constructed by

merging N input CQFs each corresponding to an experiment. A query first looks up the

k-mer(s) in the CQF and then retrieves the corresponding color-class bit vectors from the

color-class table.

Pandey et al. Page 19

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pandey et al. Page 20

Table 1.

Time and Space Measurement for Mantis and SSBT

Mantis SSBT

Build time 16 hr 35 min 97 hr

Representation size 32 GB 39.7 GB

Total time taken by Mantis and SSBT to construct the representation. Total space needed to store the representation by Mantis and SSBT. Numbers
for SSBT were taken from the SSBT paper (Solomon and Kingsford, 2017).

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pandey et al. Page 21

Table 2.

Time Taken by Mantis and SSBT to Perform Queries on Three Sets of Transcripts

Mantis SSBT (0.7) SSBT (0.8) SSBT (0.9)

10 Transcripts 25 s 3 min 8 s 2 min 25 s 2 min 7 s

100 Transcripts 28 s 14 min 55 s 10 min 56 s 7 min 57 s

1000 Transcripts 1 min 3 s 2 hr 22 min 1 hr 54 min 1 hr 20 min

The set sizes are 10, 100, and 1000 transcripts. For SSBT we used three different threshold values: 0.7, 0.8, and 0.9. All the experiments were
performed by making sure that the index structure either is cached in RAM or is read from ramfs.

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pandey et al. Page 22

Table 3.

Comparison of Query Benchmark Results for Mantis and SSBT

Both Only Mantis Only SSBT Precision

10 Transcripts 2,018 19 1,476 0.577

100 Transcripts 22,466 146 10,588 0.679

1000 Transcripts 160,188 1,409 95,606 0.626

“Both” means the number of those experiments that are reported by both Mantis and SSBT. “Only Mantis” and “Only SSBT” mean the number of
experiments reported by only Mantis and only SSBT. All three query benchmarks are taken from Table 2 for θ = 0.8.

Cell Syst. Author manuscript; available in PMC 2024 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pandey et al. Page 23

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

NIH brain, breast, and blood tissue (2652 experiments) Various https://doi.org/10.5281/zenodo.1186393

Software and Algorithms

Nt-card Mohamadi et al., 2017 https://github.com/bcgsc/ntCard

SSBT Solomon and Kingsford, 2017 https://github.com/Kingsford-Group/splitsbt

Mantis This paper https://github.com/splatlab/mantis

Cell Syst. Author manuscript; available in PMC 2024 March 26.

https://github.com/bcgsc/ntCard
https://github.com/Kingsford-Group/splitsbt
https://github.com/splatlab/mantis

	SUMMARY
	Graphical Abstract
	In Brief
	INTRODUCTION
	RESULTS
	Evaluation Metrics
	Experimental Procedure
	Query Datasets
	Experimental Setup
	Experiment Results
	Build Time and Index Space
	Query Performance
	Quality of Results

	DISCUSSION AND CONCLUSION
	STAR★METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING
	METHOD DETAILS
	Squeakr and the Counting Quotient Filter
	Mantis
	Construction
	Sampling Color Classes Based on Abundance
	Queries
	Theorem 1
	Proof

	Dynamic Updates

	QUANTIFICATION AND STATISTICAL ANALYSIS

	References
	Figure 1.
	Table 1.
	Table 2.
	Table 3.
	Table T4

