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Abstract

Study Design: Systematic review and meta-analysis.

Objectives: In an effort to prevent intraoperative neurological injury during spine surgery, the use of intraoperative neu-
rophysiological monitoring (IONM) has increased significantly in recent years. Using IONM, spinal cord function can be
evaluated intraoperatively by recording signals from specific nerve roots, motor tracts, and sensory tracts. We performed a
systematic review and meta-analysis of diagnostic test accuracy (DTA) studies to evaluate the efficacy of IONM among patients
undergoing spine surgery for any indication.

Methods: The current systematic review and meta-analysis was performed using the Preferred Reporting Items for a Sys-
tematic Review and Meta-analysis statement for Diagnostic Test Accuracy Studies (PRISMA-DTA) and was registered on
PROSPERO. A comprehensive search was performed using MEDLINE, EMBASE and SCOPUS for all studies assessing the
diagnostic accuracy of neuromonitoring, including somatosensory evoked potential (SSEP), motor evoked potential (MEP) and
electromyography (EMG), either on their own or in combination (multimodal). Studies were included if they reported raw
numbers for True Positives (TP), False Negatives (FN), False Positives (FP) and True Negative (TN) either ina 2 X 2 contingency
table or in text, and if they used postoperative neurologic exam as a reference standard. Pooled sensitivity and specificity were
calculated to evaluate the overall efficacy of each modality type using a bivariate model adapted by Reitsma et al, for all spine
surgeries and for individual disease groups and regions of spine. The risk of bias (ROB) of included studies was assessed using the
quality assessment tool for diagnostic accuracy studies (QUADAS-2).
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Results: A total of 163 studies were included; 52 of these studies with 16,310 patients reported data for SSEP, 68 studies with
71,144 patients reported data for MEP, |6 studies with 7888 patients reported data for EMG and 69 studies with 17,968 patients
reported data for multimodal monitoring. The overall sensitivity, specificity, DOR and AUC for SSEP were 71.4% (95% Cl 54.8-
83.7), 97.1% (95% Cl 95.3-98.3), 41.9 (95% CI 24.1-73.1) and .899, respectively; for MEP, these were 90.2% (95% Cl 86.2-93.1),
96% (95% Cl 94.3-97.2), 103.25 (95% CI 69.98-152.34) and .927; for EMG, these were 48.3% (95% CI 31.4-65.6), 92.9% (95% Cl
84.4-96.9), 11.2 (95% Cl 4.84-25.97) and .773; for multimodal, these were found to be 83.5% (95% CI 81-85.7), 93.8% (95% ClI
90.6-95.9), 60 (95% CI 35.6-101.3) and .895, respectively. Using the QUADAS-2 ROB analysis, of the 52 studies reporting on SSEP,
13 (25%) were high-risk, 10 (19.2%) had some concerns and 29 (55.8%) were low-risk; for MEP, 8 (1 1.7%) were high-risk, 21 had
some concerns and 39 (57.3%) were low-risk; for EMG, 4 (25%) were high-risk, 3 (18.75%) had some concerns and 9 (56.25%)
were low-risk; for multimodal, 14 (20.3%) were high-risk, 13 (18.8%) had some concerns and 42 (60.7%) were low-risk.

Conclusions: These results indicate that all neuromonitoring modalities have diagnostic utility in successfully detecting
impending or incident intraoperative neurologic injuries among patients undergoing spine surgery for any condition, although it

is clear that the accuracy of each modality differs.

PROSPERO Registration Number: CRD42023384158
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Introduction

Intraoperative neurological injury is a feared complication in
surgical spinal procedures, with significant medical, social and
economic consequences.' The use of intraoperative neurophysi-
ologic monitoring (IONM) has thus been employed to prevent
neurological deficits and identify intraoperative maneuvers that
can lead to neurological injury, such as in deformity correction or
during intramedullary spinal tumor resections.”* [ONM in current
practice refers to various techniques used to assess neural system
integrity intraoperatively, including somatosensory evoked po-
tentials (SSEP), motor evoked potentials (MEP), D-waves, and
electromyography (EMG).>™* The purpose of using IONM is to
detect neurophysiological changes during a surgical procedure that
could result in neurological deficits.*> While the value of using
IONM is becoming increasingly recognized, a quantitative as-
sessment of the diagnostic accuracy of various IONM modalities is
lacking. Moreover, there is no clear consensus on the use of IONM
for spinal surgery.

There have been previous systematic reviews with and
without meta-analyses, which have attempted to summarize
the role of neurophysiologic monitoring for intraoperative
spinal cord injury (ISCI).**"'® However, these reviews have
focused on a specific question or have only included studies
comparing one modality to another. A comprehensive as-
sessment of diagnostic test accuracy (DTA) of neuro-
monitoring following the PRISMA-DTA guidelines and
GRADE guidelines has yet to be performed.

Key Question: What is the accuracy of neurophysiological
monitoring for diagnosis of intraoperative spinal cord injury (ISCI)
compared with immediate postoperative clinical assessment?

Methods

This systematic review and meta-analysis was performed
using the Preferred Reporting Items for Systematic Review

and Meta-analysis of Diagnostic Test Accuracy Studies
(PRISMA-DTA).!” The abstract was drafted using the Pre-
ferred Reporting Items for a Systematic Review and Meta-
analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA)
abstract. A comprehensive search was performed using
MEDLINE, EMBASE and SCOPUS for all studies assessing
the diagnostic accuracy of neuromonitoring, including SSEP,
MEP and EMG, either on their own (unimodal) or in com-
bination (multimodal).

Criteria for Inclusion/Exclusion of Studies in the Review

The criteria for inclusion and exclusion of studies for this
systematic review were specified a priori for population, in-
terventions, outcomes, reference standard, timing, and
settings/studies (PICOTS) and are listed in Table 1. Only
studies reporting raw numbers for True Positives (TP), False
Negatives (FN), False Positives (FP) and True Negative (TN)
either in a 2 X 2 contingency table or in text were included.
Moreover, only studies using postoperative neurologic exam
as a reference standard were included.

Study Design. Randomized control trials (RCTs) and high-
quality prospective comparative cohort studies that control
for confounding and met inclusion criteria were included as
the primary evidence source. In the absence of high-quality
studies, lower quality studies (eg retrospective observational
studies) were considered.

Literature Search Strategies

Literature Databases. MEDLINE®, EMBASE and SCOPUS
were searched using an appropriate search strategy. We in-
cluded studies published in English and kept track of studies
with English abstracts but not fully published in English that
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appeared to be relevant. Citations suggested by the clinical
authors and guideline development group were compared
against the s criteria for inclusion and exclusion. The search
strategy for MEDLINE/EMBASE and SCOPUS is summa-
rized in Table 2.

Publication Date Range. The search included citations from
database inception to September 2022.

Hand Searching. Reference lists of included studies, relevant
systematic reviews, and pertinent gray literature were also
evaluated for eligible studies.

Process for Selecting Studies

All studies retrieved through the search strategy were up-
loaded to Covidence.'® The pre-established criteria above
were used by 2 reviewers to screen the titles and abstracts of
the citations identified through our searches (MAA and AQ).
Any citation deemed not relevant for full-text review was
reviewed by a second researcher to assure accuracy and
completeness. Each full-text article was independently

Table 2. Search Strategy.

reviewed for eligibility by 2 team members (MAA and NH).
Any disagreements were resolved by consensus. A record of
studies excluded at the full-text level with reasons for ex-
clusion was maintained (supplemental material).

Some of the included studies presented data for more than
one type of IONM modality. For example, a study utilizing
multimodal neuromonitoring presented data for SSEP, MEP
and EMG separately, and all of these were included in their
respective groups. Moreover, some studies reported data using
different thresholds to define neurologic injury. For example, a
study presented data for MEP using both a 75% and 50%
threshold and both were included.

Data Abstraction and Data Management

Abstraction of information related to the key question was
limited to information needed to answer the questions. General
patient characteristics, relevant surgical information, character-
istics of neurophysiological monitoring (including any thresh-
olds) as well as metrics of diagnostic accuracy were abstracted.

After studies were selected for inclusion for the key
question, standardized data abstraction included the

Count of
String # Search String articles
| (neuromonitoring or intraoperative monitoring or neurophysiologic monitoring or neurophsiological monitoring 254696
or intraoperative neurophsiologic monitoring or intraoperative neurophysiological monitoring or IONM or
SSEP or somatosensory evoked potential or motor evoked potential or MEP or electromyography or
electroneuromyography or d-wave or multi-modal monitoring or multimodal neuromonitoring or multimodal
intraoperative neuromonitoring or multimodal intraoperative monitoring or multimodal intraoperative
neurophysiologic monitoring).mp. [mp = ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy]
2 Limit | to human 201046
3 (Spine surgery or cervical spine or thoracic spine or lumbar spine or lumbosacral spine or thoracolumbar or 347753
cervicothoracic or spinal surgery or spin* surg* or spin* deformity or scoliosis or spin* extradural or spin*
intradual or extramedullary tumor or intramedullary tumor or spin * tumor or degenerative spine or spin*
myelopathy).mp. [mp = ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy]
4 Limit 3 to human 291603
5 (Sensitivity or sensiti* or specificity or specif* or accuracy* or true positive or true negative or false positive or false 13186005
negative).mp. [mp = ti, ab, hw, tn, ot, dm, mf, dv, kf, fx, dq, bt, nm, ox, px, rx, ui, sy]
6 Limit 5 to human 7681782
7 2and 4 and 6 2574
SCOPUS.

(TITLE-ABS-KEY ( “neuromonitoring” OR “intraoperative monitoring” OR “neurophysiologic monitoring” OR “neurophsiological monitoring” OR “intra-
operative neurophsiologic monitoring” OR “intraoperative neurophysiological monitoring” OR “IONM” OR “SSEP” OR *somatosensory evoked potential” OR
“motor evoked potential” OR “MEP” OR “electromyography” OR “electroneuromyography” OR “d-wave” OR “multi-modal monitoring” OR “multimodal
neuromonitoring” OR “multimodal intraoperative neuromonitoring” OR “multimodal intraoperative monitoring” OR “multimodal intraoperative neuro-

physiologic monitoring”).
AND.

TITLE-ABS-KEY (“spine surgery” OR “cervical spine” OR “thoracic spine” OR “lumbar spine” OR “lumbosacral spine” OR “thoracolumbar” OR “cervi-
cothoracic” OR “spinal surgery” OR “scoliosis” OR “intradual tumor” OR *“extramedullary tumor” OR “intramedullary tumor” OR “spinal tumor” OR

“degenerative spine”).
AND.

TITLE-ABS-KEY (“sensitivity” OR “specificity” OR *accuracy” OR “true positive” OR “true negative” OR “false positive” OR “false negative”).

Number of Documents: 854.
Embase Classic+Embase <1947 to 2022 November 17>
Ovid MEDLINE(R) ALL <1946 to November 17, 2022>
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following (at minimum): patient characteristics (age, sex,
comorbidities), completeness (AIS) and level of spinal cord
injury (SCI), indication for spine surgery (eg, scoliosis,
tumor), clinical/pathology characteristics (eg, myelopathy),
surgical procedure characteristics (eg approach, levels, in-
strumentation), adjunctive treatments (eg, steroids, vaso-
pressors), study-related characteristics (eg, sample size,
design, control of confounding, timing of follow-up), in-
tervention characteristics (eg, type, such as MEP, SEPP,
timing, thresholds) and outcomes with a focus on the primary
outcomes related to neurological recovery and adverse
events listed in Table 1.

Assessment of Methodological Risk of Bias of
Individual Studies

The risk of bias (ROB) and applicability of included studies
was assessed using the quality assessment tool for diagnostic
accuracy studies (QUADAS-2)."” Four primary domains
make up QUADAS-2:

Patient Selection
Index Test
Reference Standard
Flow and Time

Each domain is evaluated for risk of bias, and the first 3
are evaluated for issues about application. Signaling ques-
tions are offered to help with the assessment of bias risk. We
also created traffic light and summary plots to illustrate risk
of bias for each study using the robvis tool.>"*! Each study
was classified as either “low risk, some concerns, or high
risk.”

Data Synthesis and Statistical Analysis

The summary statistics and summary line from 4 sets of
fundamental data—TP, FP, FN and TN—were used to de-
scribe the DTA. Sensitivity, specificity, diagnostic odds ratio
(DOR), forest plot, and summary receiver operating charac-
teristic (SROC) curve are examples of representative summary
statistics and summary curves, respectively. Sensitivity is
calculated using the formula (TP/(TP+FN)), while specificity
is calculated using the formula (TN/(TN+FP)). Logit-
transformed data are more frequently used than raw data
for such proportion-type data. The logit transformation is a
technique for modifying the distribution of data in accordance
with statistical hypotheses. The lowest and upper bounds of
the proportion-type data are 0 and 1, respectively. Their upper
and lower limits should be freed by conducting multiplication
and log transformations, respectively, to make the data suit-
able for the assumptions of statistics.

As with pairwise meta-analysis, a suitable model should be
chosen in order to determine the DTA’s summary statistics.

The Moses-Littenberg SROC model,**** the bivariate
model,>* and the hierarchical SROC (HSROC) model* are
examples of models that take both sensitivity and specificity
into account. The Moses-Littenberg model, a relatively
straightforward approach developed early on to compute
DTA, uses simple linear regression to estimate the SROC.
This is comparable to the fixed-effect model used in
pairwise meta-analysis and is unable to evaluate study
heterogeneity. Additionally, because this model just offers
the SORC curve without providing parameter estimates,
standard deviation, or confidence intervals, it can only
perform restricted analysis and cannot discriminate be-
tween within-study and between-study variations in any
variations (CIs). The bivariate model and HSROC model
were created based on the hierarchical model to address the
shortcomings of the Moses-Littenberg model.”® When there
is no covariate, these 2 models mathematically provide the
same value.”’-*® This is comparable to the pairwise meta-
analysis random-effect model. Both models are capable of
estimating the heterogeneity, or the variation of studies both
within and between studies. In the bivariate model, the
sensitivity and specificity for within-study variations are
directly modeled by a binominal distribution, while the
sensitivity and specificity for between-study variations
are assumed by a bivariate normal distribution. Therefore,
we followed a bivariate model for performing pooled
DTA analysis. Analyses were performed on R-Studio using
the “mada”*® “mvtnorm”>° “elll’pse”,31 “mvtmeta”,>?
“meta”,

)3 34 »
33 “metafor”,** “rmeta’> packages.

Publication Bias Assessment

DTA meta-analyses differ from conventional intervention
meta-analysis in a number of ways, making it more difficult to
estimate the likelihood of publication bias. The Egger test is a
statistical method for identifying funnel plot asymmetry in
conventional meta-analysis.* In order to test the global null
hypothesis that “all of the univariate funnel plots for multiple
outcomes are symmetric,” Hong et al (2020) first proposed an
expanded version of this test for multivariate meta-analysis.>’
In comparison to the common univariate publication bias test,
this overall test contains various outcome information, and the
statistical power is often increased. The Hong’s test (also
known as MSSET) avoids correlation data among various
outcomes that are occasionally absent under some circum-
stances of multivariate meta-analysis. However, for DTA
meta-analysis, the Reitsma’s bivariate meta-analysis model
has all of the correlation data, and since MSSET does not
make use of this data, its statistical power may be wasteful.**
For the same global null hypothesis, Noma (2020) created
alternative generalized Egger tests that successfully take into
account the correlation data (called as MSSET2 and
MSSET?3). Because Noma'’s tests make use of correlation data,
it is anticipated that they will have greater statistical power
than the MSSET when applied to DTA meta-analysis.*® Using
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this information, we used the “MVPBT” package in R to
compute funnel plots and perform statistical tests for
asymmetry.39

Grading the Strength of Evidence for Major
Comparisons and Outcomes

The overall quality (strength) of evidence (SOE) for the
primary (critical) outcomes of neurological recovery and
adverse events was assessed based on the application of
GRADE, particularly for DTA.*® TSOE was initially evalu-
ated by one methodologist and reviewed independently by a
second for consistency and validity before the final assess-
ment. Disagreements were resolved by consensus. For a DTA
evidence synthesis, RCT and observational prospective/
retrospective studies were initially considered to be high
quality of evidence; however, the evidence was downgraded
based on the aggregate assessment of risk of bias across
studies reporting on the outcome, consistency, imprecision,
directness, and publication bias. Comparative observational
studies begin as low quality of evidence. There are also sit-
uations where the observational evidence may be upgraded
(eg, large magnitude of effect, presence of dose-response
relationship or existence of plausible unmeasured con-
founders) as described in the AHRQ Methods Guide.*!

The sSOE was computed for the main diagnostic groups
(SSEP, MEP, EMG and multimodal) and also for subgroups.
The SOE was assigned an overall grade of high, moderate,
low, or very low according to a four-level scale by evaluating
and weighing the combined results of the above domains
(Table 3).

Results

Study Selection

The search strategy using EMBASE, MEDLINE and
SCOPUS yielded a total of 2270 articles after removing 305
duplicates. Of these, 1915 abstracts were considered irrel-
evant. The full texts of the remaining 355 articles were re-
viewed. Of these, 189 were excluded. A flowchart
summarzing the selection of studies is provided in Figure 1.
Details related to excluded studies, including reasons for

exclusion, are presented in Supplementary Table 1. A total of
164 studies> 4252 52-62. 62-72, 72-82, 82-92, 92-102, 102112,

112-122, 122132, 132142, 142-152, 152-162, 162-172, 172—-182, 182—-192,

1927203 consisting of 99937 patients were included. Of the

164 studies, 16 (9.75%) were prospective while 148
(90.25%) were retrospective. In terms of disease group, most
studies included patients with mixed pathology (29.87%, n =
49), followed by deformity (26.83%, n = 44), degenerative
disease (21.95%, n = 36), tumors (17.68%, n = 29), trauma
(1.83%, n = 3), congenital diseases (1.2%, n = 2) and AVM
(.6%, n=1). Most studies featured centers/hospitals from the
United States (35.36%, n = 58), followed by Japan (15.85%,

n=26), China (9.1%, n = 15), Korea, UK (5.5% each,n=9),
Canada, Switzerland (4.9% each, n = 8), and others. Several
studies consisted of only adult patients (50%, n = 82), while
others included both adolescent and adult patients (34.7%,
n = 57) or only adolescent patients (9.1%, n = 15). Ten
studies (6%) did not specify patient age. Of the 164 studies,
52 studies (31.7%) presented data for SSEP, 75 studies
(45.7%) presented data for MEP, 16 studies (9.75%) pre-
sented data for EMG, and 69 studies (42.07%) presented data
for multimodal neuromonitoring. These study characteristics
are summarized in Table 4.

SSEP

A total of 52 studies presented data for SSEP on a total of
18,076 patients. Overall, the sensitivity of SSEP was 67.5%
(95% CI 50.9-80.6, Heterogeneity: 12 = 62%, 12 =5.9269, P <
.01) (Figure 2), while the specificity was 96.8% (95% CI 94.8-
98.1, Heterogeneity: 12 = 95%, 12 = 3.8246, P < .01)
(Figure 3). Overall, the AUC value was .899, while the DOR
was 41.9 (95% CI 24.1-73.1) (Figure 4).

We also performed subgroup analysis for various thresh-
olds for IONM alerts, different reported disease groups, and
different regions.

Subgroup Analyses:

1. Thresholds:

The most commonly reported threshold for alert was 50%
(n = 43 studies), followed by 60% (n = 4 studies), 25%, 75%
(n = 2 studies each) and “all or none” (n = 1 study). Seven
studies either reported a different threshold/alert criterion or
did not report the actual alert criterion in explicit details; these
were classified under “other”. The pooled sensitivities for the
25% threshold, 50% threshold, 60% threshold, 75% threshold,
“all or none” alert and other threshold were 90% (95% CI
76.2-96.2, Heterogeneity: 12 = 38%, 12 = 0, P = .20), 71.6%
(95% CI 49.5-86.6 Heterogeneity: 12 = 62%, 12 =8.4139, P <
.01, Heterogeneity: 12 = 0%, 12 = 2.5549, P = .99),
62.9% (95% CI 12.9-95.1, Heterogeneity: 12 = 0%, 12 = 2.55,
P=.99),71.2% (95% CI 59.2-80.8, Heterogeneity: 12 = 45%,
12 =0, P = .18), 24.3% (95% CI 11.8-41.2, Heterogeneity:
12 =45%, ©2 = 0, P = .1) and 41.2% (95% CI 28.6-55,
Heterogeneity: 12 = 0%, 12 = 0, P = .93), respectively
(Supplemental Figure 1(a)). The pooled specificities for the
25% threshold, 50% threshold, 60% threshold, 75% threshold,
“all or none” alert and other threshold were 27.3% (95% CI
20.3-35.7, Heterogeneity: 12 = 0%, 12 = 0, P = .65), 97.5%
(95% CI1 95.6-98.6, Heterogeneity: 12 =94%, 12=3.5177, P<
.01), 98.5% (90.5-99.8, Heterogeneity: 12 =48%, 12 =3.1291,
P=.12),78.4% (95% CI 11.5-88.4, Heterogeneity: 12 = 96%,
12 =1.4229, P <.01), 97.1% (95% CI 85.1-99.9) and 95.3%
(95% CI1 92.3-97.2, Heterogeneity: 12 = 73%, 12 = .2627, P <
.01), respectively (Supplemental Figure 1(b)).
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Table 3. Description of the Quality (Strength) of Evidence Grades.

Strength of

evidence Description

High We are very confident that the estimate of risk lies close to the true effect for this outcome. The body of evidence has few
or no deficiencies. We believe that the findings are stable, ie, another study would not change the conclusions

Moderate We are moderately confident that the estimate of risk lies close to the true effect for this outcome. The body of evidence
has some deficiencies. We believe that the findings are likely to be stable, but some doubt remains

Low We have limited/low confidence that the estimate of risk lies close to the true effect for this outcome. The body of
evidence has major or numerous deficiencies (or both). We believe that additional evidence is needed before
concluding either that the findings are stable or that the estimate of effect is close to the true effect

Very low We have extraordinarily little confidence in the estimate for this outcome. The body of evidence has unacceptable

deficiencies

2575 studies imported for screening

l

2270 studies screened

l

355 full-text studies assessed for eligibility

164 studies included

305 duplicates removed

1915 studies irrelevant

191 studies excluded

134 Wrong outcomes

19 Wrong intervention

13 Wrong study design

13 No 2x2 Diagnostic Results
§ Wrong patient population

2 Full Text Not in English

3 Pediatric population

2 Full Text not available

Figure |. PRISMA-DTA Flowchart for selection of studies.

2. Disease Group:

In terms of disease group, most studies presenting data
for SSEP consisted of patients with mixed diseases (n = 15),
followed by deformity (n = 14), degenerative diseases
(n =13), tumors (n = 5), trauma (n = 3), and others (n = 2).
The pooled sensitivity for studies consisting of patients with
mixed diseases was 52% (95% CI 26.5-76.5, Heterogeneity:
12 = 78%, 12 = 3.9806, P < .01), for deformity it was 94%
(95% C177.6-98.6, Heterogeneity: 12 =3%, 12 =5.2433, P=
42), for degenerative it was 49.9% (95% CI 11.5-88.4
Heterogeneity: 12 = 0%, 12 = 10.9146, P = .99), for tumor it
was 33.2% (95% C19.2-70.9, Heterogeneity: 12 = 67%, 12 =

2.7226, P=.01), for trauma it was 69.4% (95% CI 42.8-87.3,
Heterogeneity: 12 = 11%, 12 = .4518, P = .35), and for other
diseases group, it was 35.3% (95% CI 16.8-59.6, Hetero-
geneity: 12 =0%, 12 =0, P=.52) (Supplemental Figure 2(a)).

The pooled specificity for studies consisting of patients
with mixed diseases was 97.6% (95% CI 94.2-99, Hetero-
geneity: 12 =93%, 12 =2.8975, P <.01), for deformity it was
96% (95% CI 89.7-98.5, Heterogeneity: 12 = 95%, 12 =
4.698, P < .01), for degenerative it was 99.1% (95% CI
97.6-99.7, Heterogeneity: 12 = 91%, 12 = 2.1, P < .01), for
tumor it was 93.5% (95% CI 83.4-97.6, Heterogeneity: 12 =
81%, 12 = 1.16, P < .01), for trauma it was 83.4% (95% CI
42.8-87.3, Heterogeneity: 12 = 11%, 12 =.4518, P =.35), and
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Study Events Total Proportion 95%-CI
Abdelkader 2019 18 20 i — 0.900 [0.683; 0.988]
Bhagat 2015 13 23 — 0.565 [0.345; 0.768]
Bose 2007 0 sB— | 0.000 [0.000; 0.522]
Chandanwale 2008 15 17 ——-— 0.882 [0.636; 0.985]
Chen Yu 2021 2 7 —8&——+ 0.286 [0.037;0.710]
Chung 2009 — 1.000 [0.664; 1.000]
Deutsch 2000 — 0.000 [0.000; 0.602]
Ding 2008 ; 0.750 [0.194;0.994]
Dinner 1986 e 0.429 [0.099; 0.816]
Duncan 2012 —t 1.000 [0.478; 1.000]
Feyissa 2015 — 0.000 [0.000; 0.842]
Forster 2012 1 1 | 0.933 [0.681; 0.998]
Gundanna 2003 R | 0.000 [0.000; 0.522]

Hilibrand 2006
Hu_AmplitudeLatency 2011
Hu_TFA 2011
Huang_>50% 2016
Huang_>60% 2016

-

WL 000U N=NOOOORBROPODDOOINDON B RO

o 0.250 [0.055; 0.572]
— 1.000 [0.158; 1.000]
— 1.000 [0.158; 1.000]

1.000 [0.398; 1.000]
1.000 [0.398; 1.000]

—_—— -
—— 0.556 [0.212; 0.863]
-
———

lzumi 1993

Kelleher 2008 2 3 0.743 [0.567;0.875]
Khan 2006 2 3 . 0.771 [0.599; 0.896]
Kim 2021 ! 0.000 [0.000; 0.522]
Kim 2019 —— , 0.000 [0.000; 0.410]
Koffie 2022 2 —_— 0.333 [0.146; 0.570]
Krishnakumar 2011 — 1.000 [0.158; 1.000]
Leung 2005 _— 1.000 [0.478; 1.000]
Li_PermanentChanges 2018 —— 0.444 [0.137;0.788]
Li_TemporaryChanges 2018 —a— 0.167 [0.004; 0.641]
Loder 1991 2 2, —i 1.000 [0.877; 1.000]

Luk_CSEP_Cv2 2001
Luk_CSEP_Cz 2001
Luk_SCEP 2001
Luk_SSEP 2001

0.000 [0.000; 0.975]
0.000 [0.000; 0.975]
1,000 [0.025; 1.000]
0.000 [0.000; 0.975]

Makarov 2012 53 5 L — 1,000 [0.933; 1.000]
Manninen 1998 7 — 0.571 [0.184;0.901]
May, 2006 10 —_ = 0.900 [0.555; 0.997]
Melachuri 2020 1 57 —=— 0.193 [0.100; 0.319]

N2 W2 20 WO L0002 U0INNOCONOTOERONWOROUIWWOCW

Melachuri 2019 36 —— : 0.028 [0.001;0.145]
Melachuri 2017 15 —&—— 0.200 [0.043; 0.481]
Meyer 1988 1 — 1.000 [0.025; 1.000]
Neira 2016 15 —— 0.467 [0.213;0.734]
Noordeen_>25% 1997 34 37 ! — 0.919 [0.781;0.983]
Noordeen_>50% 1997 34 39 v —— 0.872 [0.726; 0.957]
Noordeen_>75% 1997 46 63 *'—'— 0.730 [0.603; 0.834]
Padberg 1996 11 j 1.000 [0.025; 1.000]
Papastefanou 2000 10 10 i— 1.000 [0.692; 1.000]
Paradiso 2006 2 0.500 [0.013; 0.987]
Park 2011 4 0.250 [0.006; 0.806]

Park_50% 2018

Park_AllorNone 2018 0.243 [0.118;0.412]

8 : 0.237 [0.114;0.402]

Qiu 2022 3 1.000 [0.292; 1.000]
Randall 1991 2 28 —a 1.000 [0.877; 1.000]
Smith 2006 1 - 1.000 [0.025; 1.000]
Stechison 1995 4 —_— 1.000 [0.398; 1.000]
Thirumala 2014 20 P — 0.950 [0.751;0.999]
Tohmeh 2022 —u 1.000 [0.877; 1.000]

Tsirikos_25% 2004
Tsirikos_50% 2004
Tsirikos_60% 2004
Tsirikos_75% 2004
Tsirikos_Cervical 2020
Tsirikos_Caortical 2020

0.667 [0.094; 0.992]
0.667 [0.094: 0.992]
0.333 [0.008; 0.906]
0.333 [0.008; 0.906]
0.182 [0.023; 0.518]
0.182 [0.023; 0.518]

N o=
= =2 NN = 2NN 0O R = 0WOO ==
n
@

Wilent 2020 7 — 0.286 [0.037;0.710]
Xu 2011 3 — 0.333 [0.008; 0.906]
Yang 1994 1 — 1.000 [0.025; 1.000]
Common effect model 867 < 0.616 [0.583; 0.648]
Random effects model _ 0.675 [0.509; 0.806]

Heterogeneity: I° = 62%, t° = 5.9269, p <0.01 ! ‘ I I ‘ !
0 02 04 06 08 1
sensitivity

Figure 2. Forest plot for sensitivity of SSEP.
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Figure 3. Forest plot for specificity of SSEP.
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Overall SROC for SSEP
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Figure 4. Overall sSROC plot for SSEP.

for other diseases group, it was 35.3% (95% CI 16.8-59.6,
Heterogeneity: 12 = 0%, 12 = .68, P = 1.00) (Supplemental
Figure 2(b)).

The AUC for mixed pathology group, deformity, degen-
erative, tumor and trauma were .911, .908, .948, .791 and .744,
respectively (Supplemental Figure 2(c)).

3. Regions

In terms of region of surgery, most studies presenting
data for SSEP consisted of patients undergoing surgery for
any region (n = 20), followed by surgery in the cervical
spine (n = 11), lumbosacral (n = 9), thoracolumbar and
cervicothoracic (n = 6 each) segments. The pooled sen-
sitivity for studies consisting of patients with all regions
was 77.2% (95% CI 60.4-88.3, Heterogeneity: 12 = 49%,
12=13.27, P<.01), for cervical spine surgery it was 46.6%
(95% CI124.3-70.4, Heterogeneity: 12=59%,12=1.91, P<
.01), for thoracolumbar spine surgery it was 99.1% (95%
CI 29.1-100. Heterogeneity: 12 = 0%, 12 = 16.9, P = .99),
for lumbosacral it was 49.7% (95% CI 3.5-96.4, Hetero-
geneity: 12 = 0%, 12 = 20.5, P = .68) and for cervico-
thoracic spine it was 24% (95% CI 17.8-31.5,
Heterogeneity: 12 = 0%, 12 = 0, P = .56) (Supplemental
Figure 3(a)).

The pooled specificity for studies consisting of patients
with surgery for any region was 95.5% (95% CI 90.5-97.9,
Heterogeneity: 12 =95%, 12 =4.57, P <.01), for cervical spine
it was 98.5% (95% CI 95.2-99.6, Heterogeneity: 12 = 88%,
12 = 3.3, P <.0l), for thoracolumbar surgery it was 88.6%
(95% CI 74.1-95.4, Heterogeneity: 12 = 91%, 12 = 1.7, P <
.01), for lumbosacral it was 99% (95% CI 3.5-96.4, Het-
erogeneity: 12 = 0%, 12 =20.5, P <.01), for cervicothoracic it
was 96% (95% CI 94.4-97.1, Heterogeneity: 12 = 0%, 12 =0,
P =.01) (Supplemental Figure 3(b)).

The AUC for cervical spine, cervicothoracic, thor-
acolumbar, lumbosacral and all regions were .928, .729, .879,
926 and .911, respectively (Supplemental Figure 3(c)).

MEP

A total of 75 studies presented data for MEP on 79,545 patients.
Overall, the sensitivity of MEP was 90% (95% CI 86.1-92.9,
Heterogeneity: 12 = 32%, 12 = 1.91, P < .01) (Figure 5), while the
specificity was 95.6% (95% CI 94-96.7, Heterogeneity: 12 = 97%,
12 =2.7, P < .01) (Figure 6). Overall, the AUC value was .927,
while the DOR was 103.25 (95% CI 69.98—152.34) (Figure 7).

We also performed subgroup analysis for various thresh-
olds for IONM alerts u, different reported disease groups and
different regions.
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Figure 5. Forest plot for sensitivity of MEP.

Subgroup Analyses:

1. Thresholds:

The most commonly reported change in amplitude
threshold for alert was 50% (n = 24 studies), followed by 70%
(n = 20 studies), 80% (n = 16 studies), “all or none” (n =5
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Figure 6. Forest plot for specificity of MEP.

studies), 65% (n = 5 studies), 75% (n = 3 studies), change in
latency of >10% and >15% (n = 2 each), 10%, 20%, 30%,
40%, 50%—65%, 50%—-80%, 60% (n =1 each), and significant
change. Nine studies either did not specify the criteria for
alarm or reported a method other than amplitude change or
latency change. The pooled sensitivities for 50% threshold,
70% threshold, 80% threshold, “all or none” alert, 65%
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Figure 7. Overall sSROC plot for MEP.

threshold and 75% threshold were 85.4% (95% CI 75-92,
Heterogeneity: 12 = 50%, 12 = 1.47, P <.01), 91.3% (95% CI
85.4-95, Heterogeneity: 12 = 38%, 12 =1.16, P = .03), 92.3%
(95% CI 79.2-97.4, Heterogeneity: 12 = 0%, 12 = 2.59, P =
.65), 56.8% (95% CI 45.3-67.5, Heterogeneity: 12 = 0%, 12 =
0, P =.92), 94% (95% CI 85.1-97.7, Heterogeneity: 12 = 0%,
12 =0, P=.99) and 89.7% (95% CI 75.7-96.1, Heterogeneity:
12 = 0%, 12 = 0, P = .43), respectively (Supplemental
Figure 4(a)). The pooled specificity for 50% threshold,
70% threshold, 80% threshold, “all or none” alert, 65%
threshold and 75% threshold were 94.2% (95% CI 88.2-97.2,
Heterogeneity: 12 = 99%, 12 = 3.42, P < .01), 90.4% (95% CI
85.4-93.9, Heterogeneity: 12 = 94%, 12 = 1.39, P < .01),
96.7% (95% C194.2-98.1, Heterogeneity: 12 = 88%, 12 =1.47,
P <.01), 96.1% (95% CI 92.7-98, Heterogeneity: 12 = 69%,
12 =.39, P <.01), 98.2% (95% CI 97.3-98.8, Heterogeneity:
12 =0%, 12 =0, P =.72) and 99% (95% CI 94.1-99.8,
Heterogeneity: 12 = 25%, 12 = 1.39, P = .43), respectively
(Supplemental Figure 4(b)).

2. Disease Group:

In terms of disease group, most studies presenting data
for MEP consisted of patients with mixed diseases (n=27),
followed by deformity (n = 19), degenerative diseases (n =
17), tumors (n = 12), and others (n = 2). The pooled

sensitivities for studies consisting of patients with mixed
diseases was 93.9% (95% CI 87.1-97.2, Heterogeneity:
12 = 20%, 12 = 3.63, P = .12), for deformity it was 92.4%
(95% CI 89.3-94.7, Heterogeneity: 12 = 0%, 12 = 0, P =
.95), for degenerative it was 80% (95% CI 66.3-89, Het-
erogeneity: 12 =0%, 12 = 1.0, P =.99), and for tumor it was
85.4% (95% CI 72.9-92.7, Heterogeneity: 12 = 73%, 12 =
1.58, P < .01) (Supplemental Figure 5(a)).

The pooled specificities for studies consisting of patients
with mixed diseases was 97% (95% CI 94.6-98.3, Hetero-
geneity: 12 = 93%, 12 = 2.8975, P <.01), for deformity it was
96.1% (95% CI 93-97.9, Heterogeneity: 12 = 93%, 12 = 3.51,
P < .01), for degenerative it was 94.9% (95% CI 91.5-97,
Heterogeneity: 12 = 99%, 12 = 2.1, P < .01) and for tumor it
was 85.4% (95% CI 72.9-92.7, Heterogeneity: 12 = 95%, 12 =
1.94, P < .01) (Supplemental Figure 5(b)).

The AUC for mixed pathology group, deformity, degen-
erative and tumor were .937, .934, 948, .722 and 915, re-
spectively (Supplemental Figure 5(c)).

3. Regions

In terms of region of surgery, most studies presenting data
for MEP consisted of patients undergoing surgery for any
region (n = 20), followed by surgery in the cervical spine (n =
11), lumbosacral (n = 9), thoracolumbar and cervicothoracic
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(n = 6 each) segments. The pooled sensitivity for studies
consisting of patients with all regions was found to be 91.6%
(95% CI 87.2-94.6, Heterogeneity: 12 = 35%, 12 = 1.7, P <
.01), for cervical spine surgery it was 80.2% (95% CI 64.7-
89.9, Heterogeneity: 12 = 0%, 12 = 1.26, P=1.00), for thoracic
spine surgery it was 100% (95% CI 0-100. Heterogeneity: 12 =
0%, 12 =0, P =.99), for lumbosacral it was 74.7% (95% CI
65.1-82.5, Heterogeneity: 12 = 0%, 12 = 0, P = .78) and for
cervicothoracic spine it was 90.6% (95% CI 77.6-96.4,
Heterogeneity: 12 = 45%, 12 = 2.37, P = .02) (Supplemental
Figure 6(a)).

The pooled specificity for studies consisting of patients
with surgery for any region was 97% (95% CI 95.1-98.2,
Heterogeneity: 12 = 93%, 12 = 3.44, P < .01), for cervical
spine, it was 93.3% (95% CI 89.8-95.6, Heterogeneity: 12 =
96%, 12 =1.38, P<.01), for thoracic spine, it was 77.6% (95%
CI71.2-82.8, Heterogeneity: 12 =35%, 12 =.007, P <.01), for
lumbosacral it was 98% (95% CI 91.1-99.6, Heterogeneity:
12=99%, 12 =2.7, P <.01), for cervicothoracic it was 92.8%
(95% CI 87.1-96.1, Heterogeneity: 12 = 92%, 12 = 1.47, P <
.01) (Supplemental Figure 6(b)).

The AUC for cervical spine, cervicothoracic, thoracic,
lumbosacral and all regions were .742, .919, .895, .804 and
.934, respectively (Supplemental Figure 6(c)).

EMG

A total of 16 studies presented data for EMG on 7004 patients.
Opverall, the pooled sensitivity for EMG was 48.3% (95% CI
31.4-65.6, Heterogeneity 12 = 54, 12 = 1.27, P < .01)
(Figure 8), while the pooled specificity was 92.9% (95% CI
84.4-96.9, Heterogeneity 12 =97,12=3.1, P<.01) (Figure 9).
The AUC was .773 and the DOR was 11.2 (95% CI 4.84-
25.97) (Figure 10).

We also performed subgroup analysis for type of EMG,
different reported disease groups, and different regions.

1. Type of EMG

Eleven studies reported on free-running or spontaneous
EMG, 2 studies reported on evoked/triggered/stimulated
EMG, and 4 studies reported on combined free-running and
triggered EMG. The pooled sensitivity for free-running EMG
was 54.6% (95% CI 33.8-74, Heterogeneity: 12 = 55%, 12 =
1.13, P = .02), for evoked/triggered/stimulated EMG it was
33.3% (95% CI 31.4-65.6, Heterogeneity: 12 =0%, 12 =0, P=
.61), and for combined free-running and triggered EMG it was
40.7% (95% CI1 9.4-82, Heterogeneity: 12 = 60%, 12 =2.5, P=
.06) (Supplemental Figure 7(a)).

The pooled specificity for free-running EMG was 91.9%
(95% CI 82.4-96.5, Heterogeneity: 12 = 98%, 12 = 1.98, P <
.01), for evoked/triggered/stimulated EMG it was 91.7% (95%
CI 90-93.2, Heterogeneity: 12 = 0%, 12 = 0, P =.75), and for
combined free-running and triggered EMG it was 96.4% (95%
CI 48.2-99, Heterogeneity: 12 = 97%, 12 = 10.01, P < .01)
(Supplemental Figure 7(b)).

The AUC for free-running was .773, for triggered EMG it
was .873, and for combined free-running and triggered EMG it
was .792 (Supplemental Figure 7(c)).

2. Disease Group

Three studies reported data on EMG for deformity surgery, 5
studies reported data for degenerative diseases and 5 studies
reported data for surgery of mixed pathologies. One study each
reported data for EMG for detethering, tumor and unspecified.
The pooled sensitivity for EMG for deformity studies was
found to be 30.2% (95% CI 14.7-52.1, Heterogeneity: 12 = 0%,
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Figure 8. Forest plot for sensitivity of EMG.
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Figure 9. Forest plot for specificity of EMG.
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12 =0, P = .38), for degenerative studies it was found to be
76.2% (95% CI 61.1-86.7, Heterogeneity: 12 = 0%, 12 =0, P =
.93), while for mixed pathology studies it was found to be
29.2% (95% CI 19.9-40.6, Heterogeneity: 12 = 0%, 12 =0, P =
.50) (Supplemental Figure 8(a)).

The pooled specificity for EMG for deformity studies was
found to be 94.7% (95% CI 64.1-99.4, Heterogeneity: 12 =
95%, 12 = 3.73, P <.01), for degenerative studies it was found
to be 97.3% (95% CI 95.6-98.3, Heterogeneity: 12 =40%, 12 =
.36, P=.75), while for mixed pathology studies it was found to
be 88.6% (95% CI 77.6-94.6, Heterogeneity: 12 = 99%, 12 =
.83, P <.01) (Supplemental Figure 8(b)).

The AUC for deformity was found to be .659, for de-
generative it was found to be .888, while for various diseases it
was found to be .552 (Supplemental Figure 8(c)).

3. Regions

Eight studies provided data for EMG for lumbosacral
surgery, 5 studies provided data for cervicothoracic surgery, 2
studies provided data for EMG for surgery for any region, and
one study provided data for EMG for cervical spine surgery.

The pooled sensitivity for lumbosacral surgery was 49.6%
(95% CI 26.6-72.8, Heterogeneity: 12 = 63%, 12 = 1.41, P <
.01), for cervicothoracic surgery it was 36.1% (95% CI 16-
62.7, Heterogeneity: 12 = 0%, 12 = .3, P <.01) and for surgery
for any region it was 80% (95% CI 53-93.4, Heterogeneity:
12 = 0%, 12 = 0, P < .01) (Supplemental Figure 9(a)).

The pooled specificity for lumbosacral surgery was 94.7%
(95% CI 78.6-98.8, Heterogeneity: 12=97%, 12 =5.1, P<.01),
for cervicothoracic surgery it was 94.9% (95% CI 89.9-97.5,
Heterogeneity: 12 = 91%, 12 = .50, P <.01) and for surgery for
any region it was 64.5% (95% CI 55.6-72.5, Heterogeneity:
12 = 0%, 12 = 0, P < .01) (Supplemental Figure 9(b)).

The AUC values for lumbosacral surgery, cervicothoracic
surgery and for surgery for any region were .738, .492 and
.655, respectively (Supplemental Figure 9(c)).

Multimodal

A total of 69 studies presented data for multimodal neuro-
monitoring on 58,325 patients. Overall, the sensitivity of
multimodal neuromonitoring was 91% (95% CI 86%—94.3%)
(Figure 11), while the pooled specificity was 93.8% (95% CI
90.6%—-95.9%) (Figure 12). The AUC value was .903 while
the DOR was 71.97 (95% CI 42.17-122.8) (Figure 13).

We also performed subgroup analyses based on type of
multimodal neuromonitoring, disease subset, and region of

surgery.
1. Type of Multimodal Neuromonitoring.

A total of 33 studies presented data for combined SSEP and
MEP, 27 studies for combined SSEP, MEP and EMG, 6
studies for combined SSEP, MEP and D-wave, 4 studies for

combined MEP and EMG, 3 studies for combined MEP and
D-wave, 2 studies for combined SSEP and EMG, and one
study for combined SSEP and D-wave. The pooled sensitivity
for SSEP and MEP was 93.5% (95% CI 83.1-97.7, Hetero-
geneity: 0%, 12 = 3.8, P =.65), for combined SSEP, MEP and
EMG it was 87.7% (95% CI 80-92.7, Heterogeneity: 18%,
12 =1.22, P=.19), for combined SSEP, MEP and D-wave it
was 90.2% (95% CI 63.5-98, Heterogeneity: 63%, 12 = 2.68,
P =.01), for combined MEP and EMG it was 92.3% (95% CI
53.8-99.2, Heterogeneity: 0%, 12 = 2.06, P = .65), for
combined MEP and D-wave it was 90.4% (95% CI 86-94.3,
Heterogeneity: 0%, 12 =0, P=.81), and for SSEP and EMG it
was 90.7% (95% CI 3.6-100, Heterogeneity: 0%, 12 = 9.91,
P =.99) (Supplemental Figure 10(a)).

The pooled specificity for SSEP and MEP was 95.3% (95%
CI 90.7-97.7, Heterogeneity: 95%, 12 = 4.11, P < .01), for
combined SSEP, MEP and EMG it was 94.3% (95% CI 88.7-
97.2, Heterogeneity: 96%, 12 = 4.27, P < .01), for combined
SSEP, MEP and D-wave it was 93.1% (95% CI 83.6-97.3,
Heterogeneity: 90%, 12 = 1.48, P <.01), for combined MEP and
EMG it was 77.2% (95% CI 40-94.5, Heterogeneity: 91%, 12 =
2.35, P = .65), for combined MEP and D-wave it was 99.2%
(95% C198.9-99.4, Heterogeneity: 77%, 12 =0, P=.01), and for
SSEP and EMG it was 63.3% (95% CI 14.6-94.5, Heteroge-
neity: 100%, 12 = 2.75, P < .01) (Supplemental Figure 10(b)).

The AUC values for combined SSEP and MEP was found
to be .908; .881 for combined SSEP, MEP and EMG:; .938 for
SSEP, MEP and D-wave, and .848 for MEP and EMG
(Supplemental Figure 10(c)).

2. Disease Group

A total of 23 studies presented data for multimodal neu-
romonitoring for deformity surgery, 17 studies for spinal
tumors, 16 studies for various disease groups, 12 studies for
degenerative, and 1 study for trauma.

The pooled sensitivity for multimodal neuromonitoring for
deformity was 98.8% (95% CI 88.9-99.9, Heterogeneity: 12 =
0%, 12 =7.92, P=.51), for degenerative disease it was 74.7%
(95% CI 62.3-84, Heterogeneity: 12 = 0%, 12 = .35, P = .84),
for mixed pathology it was 95.6% (95% CI 84.1-98.9, Het-
erogeneity: 12 = 68%, 12 =4.94, P <.01), and for tumor it was
83.9% (95% CI 75.6-89.8, Heterogeneity: 12 = 31%, 12 = .66,
P = .08) (Supplemental Figure 11(a)).

The pooled specificity for multimodal neuromonitoring for
deformity was 96% (95% CI 91.4-98.2, Heterogeneity: 12 =
95%, 12 =3.78, P <.01) for degenerative disease it was 95.2%
(95% CI 86.7-98.3, Heterogeneity: 12 = 96%, 12 = 4.50, P <
.01), for mixed pathology it was f 95.8% (95% CI 90.8-98.1,
Heterogeneity: 12 = 98%, 12 = 3.27, P <.01), and for tumor it
was 88.6% (95% CI77.1-94.7, Heterogeneity: 84%, 12 =3.49,
P < .01) (Supplemental Figure 11(b)).

The AUC for deformity was .946, for degenerativ disease it
was .787, for mixed pathology it was .958, and for tumor it
was .844 (Supplemental Figure 11(c)).
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Figure I1. Forest plot for sensitivity of Multimodal Neuromonitoring.
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Figure 12. Forest plot for specificity of Multimodal Neuromonitoring.
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Figure 13. Overall sSROC plot for Multimodal Neuromonitoring.

3. Regions

Six studies provided data for multimodal neuromonitoring
for lumbosacral surgery, 3 studies for cervicothoracic surgery,
37 studies for surgery for any region, 10 studies for cervical
spine surgery, 11 studies for thoracolumbar surgery, and 2
studies for thoracic spine surgery.

The pooled sensitivity for lumbosacral surgery was 76.2%
(95% CI 54.4-89.6, Heterogeneity: 12 = 32%, 12 = 1.35, P =
.15), for cervicothoracic surgery it was 98.4% (95% CI 6.4-
100, Heterogeneity: 12 = 0%, 12 = 13.02, P =.99), for surgery
for any region it was 92.5% (95% CI 86.9-95.8, Heteroge-
neity: 12 =41%, 12 =1.92, P <.01), for cervical spine surgery
it was 81.2% (95% CI 54-94.1, Heterogeneity: 27%, 12 =2.4,
P = .19), for thoracolumbar surgery it was 96.9% (95% CI
82.6-99.5, Heterogeneity: 0%, 12 = 1.49, P = .99), and for
thoracic surgery it was 67.7% (95% CI 49.7-81.7, Hetero-
geneity: 0%, 12 = 0, P = .74) (Supplemental Figure 12(a)).

The pooled specificity for lumbosacral surgery was 91.5%
(95% CI 69.3-98.1, Heterogeneity: 12 = 97%, 12 =5.78, P <
.01), for cervicothoracic surgery it was 59.5% (95% CI 33.7-
81, Heterogeneity: 12 = 77%, 12 = .84, P < .01), for surgery
for any region it was 95.2% (95% CI 91.4-97.4, Heteroge-
neity: 12=97%,12=4.03, P <.01), for cervical spine surgery
it was 97.6% (95% CI1 94.3-99.1, Heterogeneity: 94%, 12 =2,
P < .01), for thoracolumbar surgery it was 92.1% (95% CI

81.2-97, Heterogeneity: 96%, 12 =2.59, P <.01) and for thoracic
surgery it was 95.2% (95% CI 92.3-97, Heterogeneity: 0%, 12 =
0, P = .64) (Supplemental Figure 12(b)).

The AUC values for cervical surgery, cervicothoracic
surgery, thoracic surgery, thoracolumbar, lumbosacral and
surgery for any region were found to be .0.928, .718, .845, .89,
.791 and .916, respectively (Supplemental Figure 12(c)).

Publication Bias Assessment Using Funnel Plot

Publication bias was assessed using funnel plots and modified
Hong’s test proposed by Noma.*® For SSEP neuromonitoring,
(Figure 14), we observed slight asymmetry but the weighted
regression with multiplicative dispersion test for asymmetry
was not statistically significant (t=1.61, df =60, P=.11). For
MEP neuromonitoring, (Figure 15), we observed asymmetry
and the weighted regression with multiplicative dispersion test
for asymmetry was statistically significant (t = 4.42, df = 92,
P <.001). For multimodal neuromonitoring, (Figure 16), we
observed asymmetry but the weighted regression with
multiplicative dispersion test for asymmetry was not sta-
tistically significant (t = .72, df = 15, P = .48). For multi-
modal neuromonitoring, (Figure 17), we observed
asymmetry and the weighted regression with multiplicative
dispersion test for asymmetry was statistically significant (t =
5.03, df =79, P <.001).
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Figure 15. Funnel plot for Assessment of Publication Bias for MEP.
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Figure 16. Funnel plot for Assessment of Publication Bias for EMG.
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SO Risk of Bias Assessment Using QUADAS Tool
= : : : : : Risk of bias was assessed using the QUADAS tool. For SSEP
S o7 2 : : : g monitoring, of the 52 studies, 10 studies ((119.2%) had some
— concerns, 25% (n = 13) were high risk and the remaining 29
O 2009 : : : : : studies (55.8%) were low risk. For most of the studies that
a::x 8 : : : 8 were graded down, risk of bias was identified in the “reference
BN 0 & o @ standard” domain; the reason was lack of specification details
. : : : : : of the postoperative examination, or the use of a non-standard
=l @ © & 6 o exam (Figures 18 and 19).
. : : : : : For MEP monitoring, of the 75 studies, 21 studies (28%)
e : : : : : had some concerns, 10.7% (n = 8) were high risk and the
s | @ ® © ©® © remaining 46 studies (61.3%) were low risk. For most of the
e : : : : : studies that were graded down, risk of bias was identified in
Km0t : : : : : the “reference standard” donlllain (Figures 20 and 21).
e For EMG monitoring, of the 16 studies, 3 studies (18.75%)
B : : 9 : : had some concerns, 25% (n = 4) were high risk and the re-
e : : : : : maining 9 studies (56.25%) were low risk. For most of the
T I I B ) studies that were graded down, risk of bias was identified in
| — : : 8 : 8 the “index test” test domain; the reason was lack of
e | @ ® © O @ specification details of the changes in EMG monitoring that
e : : : : : were considered an alert (Figures 22 and 23).
e : : : : : For multimodal neuromonitoring, of the 69 studies, 14
e ©@ © © © © studies (20.3%) had some concerns, 14 studies (20.3%) were
R : : : : : high risk and the remaining 41 studies (59.4%) were low risk.
| ® ©® ©® © 2 © For most of the studies that were graded down, ris of bias was
oy : : 8 : 8 identified in the “index” domain; the reason was lack of
Paszon : : : : : specification/details of the criteria that constituted an alert.
== (Figures 24 and 25).
=0 o o o &
smas | @ ® O O @
S| @ ©® @@ O @ .
=T : : : : : GRADE Assessment of Strength of Evidence
] : : 9 : g We applied the GRADE assessment methodology described
el © © © © 0O by Yang et al to evaluate the strength of evidence for each of
o : : 8 : 8 the 4 groups:. SSEP, MEP, EMG and multimodal neuro-
. o monitoring. These are summarized in Tables 5a, 5b, Sc, and
BRI Hena 5d, respectively. For all 4 groups, the final quality of the
evidence was “Low”. Evidence was downgraded for “In-
Figure 18. QUADAS-2 risk of bias traffic light plot for SSEP. consistency,” “Imprecision” and “Publication Bias.” Studies
mnaexest [
0% 25% 50% 75% 100%
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Figure 19. QUADAS-2 risk of bias summary plot for SSEP.
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Figure 20. QUADAS-2 risk of bias traffic light plot for MEP.

were downgraded for inconsistency because of differences in
included population/pathology type (deformity vs tumor vs
degenerative vs mixed population) and because of the use of
different “thresholds”. Studies were downgrade for “Impre-
cision” due to low number of events (TP + FN) resulting in
large confidence intervals, particularly for sensitivity. Finally,
studies were downgraded for “Publication Bias” due to both
observed and statistically significant asymmetry.

Discussion

One of the potential benefits of neuromonitoring is that it
allows the surgical team to detect a SCI early on and to in-
stitute measures that may potentially reverse or minimize the
neurologic deficit. The earlier an injury is detected, the more
likely it is that corrective action can be taken to prevent or
minimize further damage.

Another potential benefit of neuromonitoring is that it may
help to reduce the risk of complications during surgery.
Neuromonitoring can also help to improve the accuracy and
precision of surgical procedures that involve the spinal cord.
By providing real-time information about the function of the
spinal cord sensory and motor tracts, neuromonitoring can
help the surgical team make more informed decisions about
how to proceed with the surgery. This may lead to better
outcomes and a lower risk of complications. In addition,
neuromonitoring can help to reduce the risk of legal liability
for the surgical team. If an SCI occurs during surgery, the
surgical team may be held responsible if they did not take
appropriate precautions to prevent the injury. By using neu-
romonitoring, the surgical team can demonstrate that they took
additional precautions to minimize the risk of injury and
protect the patient’s health.

In the current systematic review and meta-analysis, the
authors sought to comprehensively summarize all available
evidence related to the use of neuromonitoring to detect ISCL.
Using novel quantitative statistical methods, we found that all
neuromonitoring modalities have acceptable test character-
istics as evident from the SROC and AUC. Moreover, we were
also able to compute diagnostic test accuracy of each neu-
romonitoring type for specific disease groups and for specific
regions of surgery. We discuss briefly the role of neuro-
monitoring for specific disease groups.

Monitoring for Cervical Degenerative Surgery

IONM has been more commonly used in degenerative cervical
spine surgery recently, even though the risk of neurological
complications is low.”** SSEP is currently the IONM modality
that is used the most frequently.”*® It is used in cervical spine
surgery not only for assessment of the spinal cord and nerve
roots following surgical positioning, but also for the moni-
toring of sensory tracts throughout the procedure. However,
SSEP changes during surgery are not necessarily linked to
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Figure 21. QUADAS-2 risk of bias summary plot for MEP.
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Figure 24. QUADAS-2 risk of bias traffic light plot for multimodal
neuromonitoring.

postoperative neurological impairments due to its low spec-
ificity, as demonstrated in our analyses. As a result, many
experts advise against using it as the sole monitoring modality
in complicated cervical surgeries. This is evident from our
results given that the sensitivity of using SSEP alone in
cervical spine surgery was only 46%.

Numerous studies have proven that MEPs are reliable at
detecting probable neurological damage. In their study, Clark
et al found that using MEPs for predicting postoperative
impairments in patients undergoing surgery for degenerative
cervical myelopathy had a sensitivity of 71% and a specificity
0f 94%.>° In 427 consecutive patients who underwent cervical
spine surgery, Hilibrand et al compared the utilization of both
SSEP and transcranial MEP (tcMEP) monitoring.2 The au-
thors described 12 individuals who had considerable moni-
toring modifications, 2 of whom were later discovered to have
new neurological impairments. Since only one of the 2 pa-
tients with a deficiency had SSEP alterations, the authors came
to the conclusion that the reported sensitivity and specificity
for tctMEP were only 25% and 100%, respectively. However,
recent studies have shown more promising results and better
diagnostic ~ accuracy  for  detecting  intraoperative
injury. 499597157185 The pooled results yielded a net sen-
sitivity of 80.2% for MEP for cervical surgery.

In order to increase the effectiveness of IONM during
cervical decompression surgery, a combination of SSEP, MEP
and EMG has been explored due to the safety issues with the
use of only SSEPs and the limitations of MEPs, as previously
stated. While a previous qualitative analysis found an overall
sensitivity of 50%, our analyses yielded a pooled sensitivity of
81.2%.

Some experts argue against the use of IONM in non-
complex cervical spine surgeries, despite the fact that nu-
merous researchers have shown its value. Traynelis et al*
concluded that surgical decompression and reconstruction for
symptomatic cervical spine disease may be safely carried out
without the use of IONM after conducting a retrospective
examination of 720 patients. Ajiboye et al’®’ likewise dis-
covered no advantage of IONM in the prevention of new
postoperative neurological problems following anterior
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Flow & timing

Overall risk of bias

0% 25%
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Figure 25. QUADAS-2 risk of bias summary plot for multimodal neuromonitoring.
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Table 5. GRADE strength of evidence for different neuromonitoring approaches.

Table 5a: GRADE strength of evidence for SSEP

Quality criteria

Rating (circle one
for each

Footnotes (explain reasons for up- or downgrading)

Quality of the evidence
(circle one per

criterion) outcome)
Risk of bias No serious (-1) All studies observational with majority of them being low risk of
" very serious (-2) bias
Inconsistency No serious (-1) Inconsistency in results/estimates/effects very likely due to
very serious (-2) differences in included population/pathology type (deformity
vs tumor vs degenerative vs mixed population) BDED
Indirectness No serious (-1) All studies employed a postoperative neurologic examination as High
very serious (-2) a reference standard using which the utility/diagnostic
efficacy of neuromonitoring was assessed e te |
Imprecision No serious (-1) Due to low number of events (true positive + false negatives), Moderate
very serious (-2) most studies have very large confidence intervals, particularly
for sensitivity dono
Publication bias Unlikely likely (-1) Test for asymmetry not statistically significant Low
very likely (-2)
Large effect Large (+1) No Gooo
Very large (+2) Very low
Dose-response gradient No Yes (+1) NA
Plausible confounding No Yes (+1) NA

would change the
effect

Table 5a: GRADE strength of evidence for MEP

Quality criteria Rating (circle one Footnotes (explain reasons for up- or downgrading) Quality of the evidence

for each (circle one per
criterion) outcome)
Risk of bias No serious (-1) All studies observational with majority of them being low risk of
very serious (-2) bias
Inconsistency No serious (-1) Inconsistency in results/estimates/effects very likely due to
very serious (-2) differences in included population/pathology type (deformity et
vs tumor vs degenerative vs mixed population) High
Indirectness No serious (-1) All studies employed a postoperative neurologic examination as
very serious (-2) a reference standard using which the utility/diagnostic e e m|
efficacy of neuromonitoring was assessed Moderate
Imprecision No serious (-1) Due to low number of events (true positive + false negatives),
very serious (-2) most studies have very large confidence intervals, particularly
for sensitivity oPoo
Publication bias Unlikely likely (-1) Test for asymmetry statistically significant Low
very likely (-2)
Large effect Large (+1) No
Very large (+2) oooa
Dose-response gradient No Yes (+1) NA Very low
P 8
Plausible confounding No Yes (+1) NA

would change the
effect

Table 5c: GRADE strength of evidence for EMG

Quality criteria

Rating (circle one
for each
criterion)

Footnotes (explain reasons for up- or downgrading)

Quality of the evidence
(circle one per
outcome)

(continued)
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Table 5. (continued)

Risk of bias No serious (-1)

very serious (-2) bias
Inconsistency
serious (-2)

All studies observational with majority of them being low risk of

No serious (-1) very Inconsistency in results/estimates/effects very likely due to
differences in included population/pathology type (deformity
vs tumor vs degenerative vs mixed population)

OODD
Indirectness No serious (-1) All studies employed a postoperative neurologic examination as High
very serious (-2) a reference standard using which the utility/diagnostic
efficacy of neuromonitoring was assessed FaYa e m|
Imprecision No serious (-1) very Due to low number of events (true positive + false negatives), Moderate
serious (-2) most studies have very large confidence intervals, particularly
for sensitivity Seilmlm
Publication bias Unlikely likely (-1) Test for asymmetry not statistically significant Low
very likely (-2)
Large effect Large (+1) No eoono
Very large (+2) Very low
Dose-response gradient No Yes (+1) NA
Plausible confounding No Yes (+1) NA

would change the
effect

Table 5d: GRADE strength of evidence for multimodal

Quality criteria Rating (circle one

Footnotes (explain reasons for up- or downgrading)

Quality of the evidence

for each (circle one per
criterion) outcome)
Risk of bias No serious (-1) All studies observational with majority of them being low risk of
very serious (-2) bias
Inconsistency No serious (-1) Inconsistency in results/estimates/effects very likely due to
very serious (-2) differences in included population/pathology type (deformity
vs tumor vs degenerative vs mixed population) BRDD
Indirectness No serious (-1) All studies employed a postoperative neurologic examination as High
very serious (-2) a reference standard using which the utility/diagnostic
efficacy of neuromonitoring was assessed feYetatm|
Imprecision No serious (-1) Due to low number of events (true positive + false negatives), Moderate
very serious (-2) most studies have very large confidence intervals, particularly
for sensitivity Seiom|m
Publication bias Unlikely likely (-1)  Test for asymmetry statistically significant Low
very likely (-2)
Large effect Large (+1) No Sood
Very large (+2) Very low
Dose-response gradient No Yes (+1) NA
Plausible confounding No Yes (+1) NA

would change the
effect

cervical surgery, supporting this study’s findings. Our ana-
lyses, when restricted to studies investigating the use of
multimodal monitoring for cervical spine and non-complex
degenerative diseases, yielded a sensitivity of 62.7%.
Therefore, there is ongoing debate in the spine community
over whether monitoring is necessary for routine, non-
complex cases.

Monitoring for Deformity Surgery

Several studies have highlighted the importance of using
IONM in spinal deformity surgery. The incidence of

neurological problems following scoliosis surgery has de-
creased dramatically since the 1970s, when SSEP monitoring
was first introduced.”® A large study by Nuwer et al published
the findings of a survey by the Scoliosis Research Society
(SRS), which asked its members to submit information on the
surgical outcomes of patients who had undergone surgery,
including the use of IONM. With stated sensitivity of 92% and
specificity of 98.9%, SSEP monitoring was used in 51263 of
97586 spinal cases (53%), and positive and negative pre-
dictive values were 42% and 99.9%, respectively. However,
given that this study did not provide 2 x 2 data for TP, FP, FN
and TN, it was not included in our analyses. Nevertheless, our
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results showed optimum performance of all modalities for
detecting ISCI during deformity surgery; 94% sensitivity
for SSEP, 92.4% for MEP, and 98.8% for multimodal
neuromonitoring.

Degenerative Lumbar Surgery

Although IONM is frequently employed in the treatment of
spinal deformity in the present day, its application in de-
generative lumbar surgery, particularly in straightforward
procedures, is still debatable.”’® Supporters of IONM em-
phasize the technology’s significance in accurately identi-
fying spinal nerve root damage, particularly in revision and
instrumented fusion cases.*®'¢*21%2!! The issue of moni-
toring spinal nerve root function is still debatable despite
developments.”’”?'>  Additionally, although numerous
studies have supported the use of IONM in lumbar fusion
surgery, it is still unclear whether the improved detection of
crisis events intraoperatively translates to a decreased rate of
postoperative neurological deficit.>'*> Our results indicate
that while EMG has poor sensitivity for most other surgeries,
its role in nerve root monitoring for degenerative spine
surgeries employing pedicle screw fixation and instrumen-
tation in most cases is still valuable, with a pooled sensitivity
of 76.2%.

Spinal Tumor Surgery

The value of neuromonitoring for spinal tumor surgery is also
well established. A previous systematic review by Rijs et al
included 14 studies and reported a pooled sensitivity of 80.8%
for SSEP, 83.8% for MEP, and 83.5% for multimodal mon-
itoring. We were able to identify 29 studies reporting the
results of various neuromonitoring techniques for tumor
surgery. We found the pooled sensitivity of SSEP for tumor
surgery to be 33.2% based on 5 studies; 85.4% for MEP based
on 12 studies; and 88.6% for multimodal based on 17 studies.
Moreover, we were also able to parse out the statistics based
on type of tumors, ie intra-medullary vs extra-medullary.
Among patients undergoing surgery for intra-medullary tu-
mors, the sensitivity for MEP monitoring was 74% and for
multimodal was 81.4%. For extra-medullary tumors, the
sensitivity for MEP and multimodal monitoring were 85.9%
and 82.9%, respectively.

It is clear that IONM is a tool with significant usefulness
when removing spinal cord tumors. It provides the surgeon
with crucial knowledge about potential spinal cord damage
and has enabled more complete tumor resections. Its important
to remember that IONM is a tool and not a cure. Its value
varies depending on the particular circumstance and how the
surgeon applies the knowledge from the IONM alert to the
resection technique. However, it would be much more useful
to gather information with a longer follow-up on both the
neurologic result and the quality of life in the present era of
value-based health care."’

Conclusion

The present systematic review and meta-analysis has summa-
rized the role of neuromonitoring for detecting ISCI during spine
surgery. Our results indicate that there is low level evidence that
all neuromonitoring modalities have acceptable performance in
terms of detecting ISCI, particularly for high-risk spinal surgery.
It is therefore recommended that some form of neuromonitoring
be employed, particularly in high-risk spinal surgery.
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