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Abstract

The large-scale evolution of the SARS-CoV-2 virus has been marked by rapid turnover of 

genetic clades. New variants show intrinsic changes, notably increased transmissibility, as well 

as antigenic changes that reduce cross-immunity induced by previous infections or vaccinations. 

How this functional variation shapes global evolution has remained unclear. Here we establish 

a predictive fitness model for SARS-CoV-2 that integrates antigenic and intrinsic selection. The 

model is informed by tracking of time-resolved sequence data, epidemiological records, and 

cross-neutralisation data of viral variants. Our inference shows that immune pressure, including 

contributions of vaccinations and previous infections, has become the dominant force driving the 

recent evolution of SARS-CoV-2. The fitness model can serve continued surveillance in two ways. 

First, it successfully predicts the short-term evolution of circulating strains and flags emerging 

variants likely to displace the previously predominant variant. Second, it predicts likely antigenic 

profiles of successful escape variants prior to their emergence.

In brief:

A cross-scale analysis of acquired population immunity maps evolutionary forces of SARS-CoV-2 

and predicts near-future changes of viral variants, based on molecular data and time-resolved 

surveillance.
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Introduction

Two classes of molecular adaptation have been observed in the evolution of SARS-CoV-2 

to date. Multiple mutations carry intrinsic changes of viral functions, such as increasing 

the binding affinity to human receptors1, the efficiency of cell entry2,3, or the stability of 

viral proteins4,5. Other mutations, referred to as antigenic changes, decrease the neutralizing 

activity of human antibodies6–10, thereby reducing the immune protection against secondary 

infections11,12. The strains descending from a given mutant strain define a clade of the 

evolving viral population. Several of these molecular changes had drastic evolutionary and 

epidemiological impact, inducing global turnover of viral clades and concurrent waves 

of the pandemic. Since the start of the pandemic, 7 major evolved variants successively 

gained global predominance: Alpha and Delta in 2021, the Omicron variants BA.1, BA.2, 

BA.4/5, BQ.1, and XBB since 2022. These were named Variants of Concern (VOCs) by 

the World Health Organization13; other VOCs gained temporary regional majority. Several 

studies reported fitness advantages of VOCs inferred from epidemiological trajectories 

and comparative functional studies3,14–17. Importantly, however, the evolutionary impact of 

antigenic changes is time-dependent, because it depends on previously acquired population 

immunity: a larger amount of previous infections or vaccinations increases the global fitness 

advantage of an antigenic escape mutation. Specifically, multi-strain epidemiological models 

and simulations suggest that vaccinations can favour the emergence of escape variants18–

21 and influence the turnover of circulating clades22,23; effects of this kind have been 

Meijers et al. Page 2

Cell. Author manuscript; available in PMC 2024 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reported for some clades of human influenza24. In the case of SARS-CoV-2, pandemic 

infection and massive vaccination programs, with a global count of >10 billion vaccinations 

and >700 million confirmed cases up to 01-03-202325, have built up partial population 

immunity, but its feedback on viral evolution has not been quantified. This leads to the 

central questions of this paper: what is the feedback of vaccination and infection on the 

subsequent turnover of SARS-CoV-2 clades, and how can this information be harvested for 

evolutionary predictions? To address these questions, we infer a data-driven fitness model 

for SARS-CoV-2 variants with distinct components of intrinsic fitness and antigenic fitness 

induced by vaccination and infection.

Results

Evolutionary, epidemiological and immune tracking of SARS-CoV-2.

As a basis for our fitness model, we track time-resolved data of SARS-CoV-2 in a set of 

13 regions (countries or US states) that satisfy uniform criteria of data availability for the 

period of main interest for this study (spring 2021 to present; these criteria are detailed in 

Methods). First, we obtain the cumulative population fractions of reported infections and 

of primary, booster and bivalent-booster vaccinations25,26. These data show that population 

immunity rose sharply during the SARS-CoV-2 pandemic, first primarily by vaccination, 

later also by more frequent infections (Figure 1A).

Second, we track the evolution of SARS-CoV-2 from a set of >8M quality-controlled 

SARSCoV-2 sequences obtained from the GISAID database27. Sequences are assigned 

to genetic clades using a standard set of amino acid changes28; time-dependent clade 

frequencies, xi(t)(i = 1, Alpha, Delta, ...), are inferred from strain counts smoothened over 

a period of 30 days in each region (Figure 1B). Here, 1 denotes the set of clades circulating 

prior to Alpha, including the wild type (wt) and the early 614G mutation in the spike 

protein. A sequencebased, timed tree shows the genealogical relationships between these 

clades (Figure 1C; see Methods for details of tree reconstruction). The evolutionary tracking 

of SARS-CoV-2 displays the well-known clade shifts to successive major variants, 1–Alpha, 

Alpha–Delta, Delta–BA.1, BA.1–BA.2, BA.2–BA.4/5, BA.4/5–BQ.1, and BQ.1–XBB. The 

variants BA.4 and BA.5 are treated as a single clade, because they have identical spike 

proteins. Starting in 2022, we note an increased diversity, with multiple sub-clades of BA.2 

and BA.4/5 circulating simultaneously at significant frequency.

Third, we record the antigenic evolution of SARS-CoV-2 from molecular cross-immunity 

data between variants. Cross-immunity induced by a primary infection against subsequent 

infections by related pathogens is routinely tested by neutralisation assays, which measure 

the minimum antiserum concentration required to neutralise the second antigen. Relative, 

inverse concentrations are reported as serum dilution titers; here we use logarithmic titer 

values, T  (with base 2). For SARS-CoV-2, recent work7–9,29–32 has established a matrix of 

titers, T i
k, measuring neutralisation of variant i in immunisation class k (Table S1). These 

immunisation classes distinguish infections by different variants (k = Alpha, Delta, BA.1, ...), 
as well as primary, booster, and bivalent booster vaccinations (k = vac, bst, biv). Together, 

these data provide a coarse-grained cross-immunity landscape of SARS-CoV-2 (Figure 1D). 
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Infection-induced cross-immunity titers are maximal when primary infection and secondary 

challenge are by the same variant; antigenic evolution generates a gradual decline in 

subsequent variants. Cross-immunity induced by wt-based vaccines declines in a similar 

way, for primary vaccination mostly in the clade shifts from Alpha to BA.1, for wt boosters 

in the shifts from BA.1 to XBB. For bivalent boosters, significant titer drops are first 

observed in the currently most advanced variants XBB and CH.1.

Population immunity trajectories.

Recent work for SARS-CoV-2 has shown that neutralisation titers predict the cross-

immunity ci
k, defined as the relative drop of secondary infections in human cohorts. This 

dependence is approximately given by a Hill function11,12, ci
k = H T i

k , for secondary 

infections shortly after the primary immunisation. This form is consistent with the 

underlying biophysics of antibody-antigen binding and with results for other viral 

pathogens33–36. The intra-host concentration of neutralising antibodies decays exponentially 

with time after immunisation37,38. This translates into a linear titer reduction, such that the 

cross-immunity at later times is given as ci
k(Δt) = H T i

k − Δt/τ . Together, cross-immunity 

depends in a predictable, nonlinear way on neutralisation titer and on time since primary 

immunisation.

To track population immunity over time, we combine the cross-immunity factors ci
k(Δt)

with the population rates of new infections and vaccinations, ωk(t), in different immunisaton 

classes k. Here, clade-specific infection data are obtained by multiplying the total rate of 

new infections reported in each region, ωinf(t) (i.e., the time derivative of the cumulative 

population fraction shown in Figure 1A) with the simultaneous viral clade frequencies, 

ωk(t) = xk(t)ωinf(t) (Figure 1B). Together, we infer the population cross-immunity against 

clade i by immunisation in class k,

Ci
k(t) = ∫

t
ci

k t − t′ ωk t′ dt′ .

(1)

Figure 2 shows the resulting regional and region-averaged population immunity trajectories 

for multiple immune classes and viral variants. These trajectories integrate three factors of 

change: increase by recent infections or vaccinations, and decrease by intra-host antibody 

decay and viral escape evolution.

Fitness model.

To quantify the feedback of cross-immunity on viral evolution, we use a minimal, 

computable fitness model,

F i(t) = F i
0 − ∑

k
γkCi

k(t),

(2)
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where F i(t) is the absolute fitness, or epidemic growth rate, of a viral variant. We compute 

fitness at the level of variants, neglecting fitness differences between strains within a clade. 

Absolute fitness depends on the effective reproductive number (the average number of 

new infections generated by an infected individual) and on the distribution of generational 

intervals (the time between infection and transmission)39,40 (Methods). Here, we write 

fitness as the sum of a time-independent intrinsic component, F i
0, and of time-dependent 

antigenic components, F i
k(t) = − γkCi

k(t) (Methods). Each component is proportional to the 

corresponding cross-immunity factor Ci
k(t) with a weight factor γk for each immune class k. 

Hence, antigenic selection is generated by cross-immunity differences between competing 

strains. The relative fitness, or growth rate difference to the mean population, of a given 

variant governs its adaptive frequency change as predicted by the fitness model,

d
dtxi(t) = xi(t)fi(t),

(3)

where fi(t) = F i(t) − ∑j xj(t)F j(t). This type of fitness model has been established for 

evolutionary predictions of human influenza22,41,42 and is grounded in multi-strain 

epidemiological models43–45. Here we develop model-based predictions based on human 

cross-immunity data, systematically including vaccination effects. In this model, equations 

(1), (2), and (3) describe the co-evolution of the viral population and human population 

immunity. The minimal fitness model does not account for differences in cross-immunity 

between human hosts in the same immune class (for example, through differences in 

immunodominance46) and for correlations between multiple prior infections (antigenic 

sin47).

Model training and validation.

To calibrate the fitness model, we use empirical fitness values inferred from observed 

frequency trajectories. Assuming that large-scale frequency shifts of viral clades are adaptive 

processes, we apply the reverse of equation (3), f i(t) = dxi(t)/dt /xi(t), to the tracked 

frequency data (Figure 1B). Empirical frequency and fitness trajectories are distinguished by 

a hat from their model-based counterparts. We infer the maximum-likelihood (ML) fitness 

model by comparing these empirical fitness trajectories with their model-based counterparts, 

fi(t), computed from equations (1) and (2). The model-based fitness values are derived from 

regional population immunity trajectories for all regions included in the analysis. We use 

a minimal antigenic model with just two dynamical parameters (Methods): a uniform γvac

for vaccination and boosting (downweighted in the shifts Delta-BA.1 and later, to account 

for double infections48) and a uniform γk = bγvac for all infection classes k (upweighted by a 

factor b to correct for relative underreporting; this factor is updated from past infection data).

A region- and time-resolved analysis is essential for the accurate inference of selection, 

because it allows to delineate spatial and temporal variation of selection. Growth differences 

between regions reflect inhomogeneous conditions of contact limitations, surveillance, 

geography, and population structure that are not included in the minimal model. In a given 
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region, however, variants compete under more homogeneous conditions and growth rate 

differences, sij(t) = fi(t) − fj(t), reflect selection. Our model calibration procedure focuses on 

the frequency trajectories of major variants, which allow a reliable evaluation of empirical 

selection coefficients in all regions of this study (Data S1). Because the temporal variation 

of model selection coefficients sij(t) in a given region depends only on antigenic selection, 

we can separately infer antigenic and intrinsic selection components. Details of the inference 

procedure are given in Methods; ML model parameters and selection coefficients for all 

clade shifts are reported in Table S2 and S3.

In Figure 3A, we plot the resulting ML fitness trajectories, fi(t), against the corresponding 

empirical trajectories f i(t) (dots) for the sequence of major variants 1,Alpha,..., BQ.1. These 

trajectories are averaged over all 13 regions; region-specific results are given in Figure S1. 

We obtain a remarkable data compression: the antigenic fitness computed from equation (2) 

reproduces the empirical fitness changes in multiple regions and clade shifts.

The antigenic fitness seascape.

Our fitness model posits that time-dependent selection is predominantly antigenic, i.e., 

caused by differences in population immunity against competing variants. Antigenic 

selection generates two opposing effects. A high rate of recent infections or vaccinations 

induces increasing positive selection for an antigenic escape variant by strengthening 

population immunity against previous variants. Conversely, waning of population immunity 

against ancestral variants, as well as immunity generated by the invading variant against 

itself, can decrease antigenic selection over time. Here, we trace both of these effects in 

the dynamics of clade shifts. From the fitness model, we compute the time-dependent 

selection coefficient between ancestral and invading variant, s(t) = F inv(t) − Fanc(t), and its 

decomposition into intrinsic and antigenic selection, s(t) = s0 + sag(t) with sag(t) = ∑k sk(t)
(arrows in Figure 3B); this computation uses past epidemic data (Figure 1, 2). For the 

Alpha–Delta shift, we find net increase of selection, caused predominantly by the concurrent 

buildup of vaccination-induced immunity against Alpha. For the subsequent shifts Delta–

BA.1, BA.2–BA.4/5, and BA.4/5– BQ.1, immune waning and self-immunity generate a net 

decrease of selection. For the early shift 1–Alpha, selection is only weakly time-dependent 

because ancestral and invading variant are antigenically similar population immunity is still 

small; for BA.1–BA.2, selection components of opposite time dependence generate similarly 

small net effect. This pattern is confirmed by the empirical selection pattern inferred from 

regional clade frequency data (Figure S2). During the Alpha–Delta shift, selection increases 

with time in 16/16 regional trajectories; during the Delta–BA.1, BA.2–BA.4/5, and BA.4/5–

BQ.1 shifts, selection decreases in 35/37 trajectories. Hence, compared to a reference of 

time-independent selection, the Alpha–Delta shift runs at an accelerating speed, the three 

subsequent shifts at a decelerating speed. In all 4 cases, the temporal variation of selection 

is statistically significant (P < 10−11 for each shift; two-sided Wald test) and substantial (a 

linear regression gives Var slin > 2 × 10−3d−2). In the remaining shifts, the time dependence 

of selection is insignificant or weak (P > 0.01 for 1–Alpha, Var slin = 3 × 10−4d−2 for BA.1–

BA.2).
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To test our fitness model and selection inference, we examine whether intrinsic selection 

can produce a comparable signal of time-dependence. Sources of intrinsic selection include 

changes in transmissibility, intra-host replication rate, and pathogenicity, which affect the 

basic reproductive number and the distribution of generation intervals. Such changes have 

been reported for some of the early major variants1,3,49,50. In Methods, we show that 

the resulting intrinsic selection is coupled to absolute growth in some cases (Figure S3). 

Because absolute growth depends on time through multiple factors including temperature, 

population density, and non-pharmaceutical containment measures, this coupling could 

induce time-dependent intrinsic selection, at variance with our fitness model40. To assess 

this possibility, we evaluate the empirical variation of absolute growth along regional 

trajectories. We find only a small co-variation with selection and, hence, no evidence for 

time-dependent intrinsic selection (Methods, Figure S3). We conclude that antigenic changes 

are the dominant source of time-dependent selection, corroborating our minimal fitness 

model and the resulting decomposition of selection (Figure 3B). Similarly, our inference of 

selection is robust under time-dependent non-pharmaceutical interventions (Methods, Figure 

S3).

Intrinsic, infection-induced, and vaccination-induced selection.

The ML fitness model provides a breakdown of the selection forces driving the observed 

sequence of major clade shifts (Figure 3B). Intrinsic selection is strong and positive in 

the pre-BA.2 shifts, with average selection coefficients s0 = 0.03 − 0.08 between invading 

and ancestral variant, consistent with strong functional differences observed between early 

variants3,51 (Table S3, all selection coefficients are given in units d−1). In the post-BA.2 

shifts, intrinsic selection is inferred to be small (a recent exception, XBB.1.5, will be noted 

below). Antigenic selection follows an opposite trend: the average selection coefficients 

between invading and ancestral variants are initially small but reach values sag ≥ 0.05 in 

all post-Alpha shifts, except BA.1–BA.2. The recent decline, from sag ≈ 0.08 for Delta–

BA.1 and BA.2–BA.4/5 to sag = 0.05 for BA.4/5–BQ.1, reflects decreasing infection and 

vaccination rates towards the end of the pandemic, as well as waning protection from 

earlier immunisations. Consistently, the empirical total selection declines from its peak 

value s = 0.13 ± 0.03 for Delta–BA.1 to s = 0.05 ± 0.01 for BA.4/5–BQ.1. That is, evolution 

decelerates in the transition to an endemic state.

Of particular interest is the pattern of vaccination-induced antigenic selection, which maps 

the feedback of vaccination on the subsequent evolutionary trajectory of the virus (Figure 

3B). Primary vaccination contributes substantial positive selection, svac = 0.05 − 0.06, in the 

shifts Alpha–Delta and Delta–BA.1, which are the main steps of antigenic escape from 

the wt-based vaccine (Figure 1B). Booster vaccinations have increased breadth compared 

to primary vaccinations8,9,52,53 (Table S1, Figure 1D); that is, they induce higher cross-

immunity and initially weaker selection for antigenic escape. In the Delta–BA.1 shift, 

boosters even generate a negative selection coefficient sbst = − 0.01, because they remove 

cross-immunity differences and antigenic selection generated by the preceding primary 

vaccination. Positive selection is inferred for the post-BA.2 shifts, when the virus partially 

escapes from booster-induced immunity (Figure 1D). Similarly, positive selection induced 
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by bivalent boosters is first seen in the new variants XBB and CH.1 and is expected to be 

peaked in the post-BQ.1 shifts (see Figure 5 below).

Vaccination- and infection-induced selection are statistically significant parts of the 

calibrated fitness model for SARS-CoV-2 (Figure 3B); partial models with only one 

component have a strongly reduced posterior likelihood (differences in model complexity 

are accounted for by a Bayesian information criterion; see Methods and Table S2). These 

results show that vaccination and previous infections induced sizeable antigenic selection 

on circulating SARS-CoV-2 variants and modulated the speed of successive clade shifts. 

However, the fitness model and our data analysis do not predict any simple relation between 

vaccination coverage and the speed of evolution. This is because cross-immunity classes 

are correlated: fewer vaccinations lead to more infections, generating a buildup of cross-

immunity in other classes and complex long-term effects.

Predicting short-term evolution.

The post-BA.2 evolution of SARS-CoV-2 is characterised by the prevalence of antigenic 

selection (Figure 3B) and by the emergence of multiple, competing antigenic variants. 

Besides the major variants BA.4/5, BQ.1, and XBB, these include the clades BA.4.6, BF.7, 

BN.1, and CH.1, all of which show initial growth and antigenic differences from their 

parent clade (Figure 1CD). Can the fitness model predict the short-term evolution of such 

complex viral populations? To address this question, we first plot the timed tree of all strains 

descending from BA.2, colouring each isolate by the relative fitness computed from the 

antigenic fitness components at the time of sampling, fi
ag(t) (Figure 4A). The fitness model is 

seen to predict subsequent frequency shifts of clades: high fitness signals frequency increase, 

low fitness frequency decline.

To assess the predictive power more quantitatively, we compare predicted 

frequency changes, W i(t, t + τ) = xi(t + τ)/xi(t), with their observed counterparts, 

W i(t, t + τ) = xi(t + τ)/xi(t), for a prediction period τ = 60d and for post-BA.2 variants (Figure 

4B). To compute the frequencies xi(t + τ), we evaluate the fitness model at time t, using 

tracking data and parameter inference only up to that time (Methods). We evaluate regional 

frequency trajectories of each clade at multiple time points, including periods of observed 

increase (W > 1) and of decrease (W < 1). Predicted and observed frequency changes are 

seen to be strongly correlated (coefficient of determination R2 = 0.84); frequency increase is 

correctly predicted in 142/182 cases, decline in 144/149 cases.

Next, we test whether the fitness model can flag new variants of concern at an early point 

of their frequency trajectory. Whenever a new variant emerges at global frequency x = 0.01, 

we predict its subsequent evolution in a window of 200d, together with all variants present 

at the start of prediction with frequency > 0.005 (Methods). Figure 4C shows reduced 

frequency trajectories, yi(t), which are defined in these sets of competing variants. We 

compute predicted trajectories (dashed lines) from the antigenic fitness model at the start of 

each window, using tracking data and parameter inference only up to that time, and compare 

them to empirical trajectories tracked from posterior data (solid lines). Of 7 variants with 

available antigenic data, BF.7, BQ.1, and XBB are correctly predicted to outcompete all 
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variants present at the time of their emergence, i.e., to reach reduced frequencies > 0.5, 

within 200d. The other 4 variants are correctly predicted to remain below majority within 

that time interval. We note that XBB shows a pronounced fitness increase two months after 

emergence. This can be traced to the subclade XBB.1.5 with the additional intrinsic change 

S:S486P, which increases ACE2 binding54.

Selection windows and antigenic profiles of new variants.

The preceding analysis predicts predominance changes in a set of variants coexisting at 

the start of prediction, but it remains agnostic about variants that emerge later. The genetic 

identity of new variants is highly stochastic and unlikely to be predictable55. However, the 

antigenic characteristics of successful variants are constrained by the history of previous 

infections and vaccinations. According to our fitness model, temporally localised windows 

of strong antigenic selection are generated when high population immunity coincides with 

high expected loss of cross-immunity on the steep flank of a Hill landscape in one or more 

immune classes.

To exploit this constraint for predictions, we first display the antigenic evolution on cross-

immunity landscapes (Figure 5A–E). For each of the major variants Delta, BA.1/2, BA.4/5, 

BQ.1, and XBB as antigenic background, a family of landscapes maps the titer T  and the 

cross-immunity factor c = H(T ) for the background major variant and the competing minor 

variants (colored dots) in all immune classes relevant for the next evolutionary step. Here 

we treat the antigenically similar variants BA.1 and BA.2 as a single antigenic background 

(Table S1). From these landscapes, we can read off the class-specific antigenic advance 

or titer drop, ΔT , and the resulting incremental escape from cross-immunity, Δc, of each 

competing variant compared to the background variant. A hypothetical “standard” mutant 

with a uniform ΔT = 2 against the background variant is marked by yellow circles; this 

antigenic advance is close to the average of observed mutants. In the post-BA.2 period (cf. 

Figure 4), we compute the resulting antigenic selection profile, i.e., the time-dependent 

selection coefficient and its breakdown into immune classes, for the standard mutant 

against the successive major variants (Figure 5F, shaded areas). This reveals a strongly 

time-dependent pattern: selection in a given immune class builds up by recent infections or 

vaccinations; it gets depleted by immune waning and, even more rapidly, by the shift to a 

new major variant that has largely completed the immune escape in that class.

The antigenic selection profiles of Figure 5B predict antigenic characteristics of new, yet 

unseen variants that can successfully escape population immunity. The predicted profile 

is conditional on the new variant’s emergence at time t; the computation uses tracking 

and antigenic data up to that time. Remarkably, the observed profiles of new high-fitness 

variants at their actual time of emergence are in broad agreement with the predicted pattern 

(Figure 5F, stacked bars). That is, the overall amplitude and the directions of antigenic 

escape evolution are constrained by selection computable from prior data. Three immune 

classes, booster vaccinations and infections by BA.1 and BA.2, drive the antigenic shift 

BA.2–BA.4/5. Primary vaccinations are no longer relevant for this shift, because BA.1 and 

BA.2 have already largely completed the immune escape in this class (Figure 5A). The 

variant BA.4/5 escapes only partially in the classes BA.1/2 and bst. Hence, these classes 
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remain relevant for the variants emerging on the antigenic background of BA.4/5, including 

BA.4.6, BF.7, and BQ.1, while selection induced by BA.4/5 infections is building up. This 

class, together with BQ.1 infections and bivalent booster vaccinations, governs the following 

variants XBB and CH.1, which emerge on the antigenic background of BQ.1.

All of these post-BA.4/5 variants show pronounced convergent evolution in few epitope 

sites; this canalisation of genome evolution has been linked to immune imprinting from 

previous infections or vaccinations10. Escape effects of such mutations, as measured by 

deep mutational scanning (DMS), can serve as input to our antigenic selection profiles and 

growth predictions (Methods). Specifically, the post-BA.4/5 variants differ from their recent 

ancestor BA.4/5 in up to 6 point mutations in the receptor binding domain, some of which 

show large escape effects from BA.4/5 breakthrough infections10. These effects explain the 

large antigenic advance of BQ.1 in immune class k = BA.4/5 (Figure 5C) and the resulting 

fitness advantage against the competing strains BA.4.6 and BF.7 (Figure 4C). However, 

the initial antigenic advance and the resulting fitness gain of the recombinant variant XBB 

against BQ.1 (Figures 5D, 4C) is larger than expected from the sum of DMS escape effects 

of its point mutations (Methods).

The next shift, which will take place from an XBB background, is predicted to be driven by 

bivalent booster vaccinations, BQ.1 infections, and a smaller component of XBB infections 

reflecting reduced case numbers (Figure 5E). We note that the predicted profiles list the 

spectrum of immune classes inducing selection for new variants. Given the increasing 

differentiation of population immunity, we also expect variants that carry antigenic change 

in some but not all of these classes.

Discussion

Here we have established a data-driven, multi-component fitness model for the evolution 

of SARS-CoV-2. The model establishes a computable, cross-scale analysis of how 

immunity shapes evolution: molecular interactions between protective antibodies and 

the viral proteins, measured by neutralization assays, govern the immune protection of 

individuals11,12; cross-immunity data, together with epidemiological and sequence data, can 

be scaled up to population immunity; trajectories of population immunity shape fitness 

seascapes, on which viral variants compete for evolutionary success. By applying this 

model to tracked evolutionary trajectories in multiple regions, we have quantified intrinsic 

and antigenic selection driving the genetic and functional evolution of SARS-CoV-2. In 

particular, primary vaccination impacted on the speed of global clade shifts in 2021; booster 

vaccination provided higher cross-protection in the same period, but generated significant 

selection for antigenic escape only several months later (Figure 3). These results underscore 

that vaccine breadth is important for constraining antigenic escape evolution. More broadly, 

they highlight the need to integrate evolutionary feedback into vaccine design.

Three global trends in the recent evolution of SARS-CoV-2 are revealed by our analysis. 

First, antigenic selection has increased in relative strength and has broadened its target. 

That is, primary infection by distinct viral variants has generated an increasing number 

of immune classes and antigenic selection components; in parallel, multiple competing 
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antigenic variants have appeared in recent shifts (Figure 3, Figure 5). Second, intrinsic 

selection has broadly decreased in strength, and some compensatory intrinsic changes have 

been reported56. Third, the overall speed of clade shifts has decreased substantially since 

the peak of the pandemic. These trends mark the transition from initial, post-zoonotic 

adaptation of the virus to evolution in a well-adapted endemic state. A plausible end 

point of this transition becomes clear by comparison with influenza, a long-term endemic 

virus in humans. The evolution of influenza is a continuous adaptive process driven by 

antigenic selection, where multiple variants with different antigenic profiles compete for 

predominance57. In contrast, non-antigenic mutations in influenza proteins are under broad 

negative selection; observed changes often compensate the deleterious collateral effects of 

antigenic evolution on conserved molecular traits, including protein stability and receptor 

binding55,57,58.

Looking forward, our analysis establishes methods to predict the short-term evolution of 

SARS-CoV-2. The antigenic fitness model predicts how likely emerging variants will rise 

to predominance in the population of circulating strains, provided cross-immunity data for 

these variants are available at the time of prediction (Figure 4). Antigenic selection profiles 

for new variants, which build up and can be computed even prior to their emergence, 

constrain the directions of likely antigenic evolution (Figure 5). Such profiles can serve to 

identify informative immune cohorts for antigenic surveillance by neutralisation tests. Deep 

mutational scanning10,59 and high-throughput in-vitro evolution56,60 have recently been 

established to map the genetic profile of SARS-CoV-2 evolution, including the genomic 

distribution of likely escape mutations, as well as their antigenic and receptor binding 

effects. These approaches may eventually provide genotype-phenotype maps for antigenic 

evolution61. Combined with our population-level antigenic selection profiles, such data can 

further constrain the likely paths of escape from human immunity.

In a broader context, our results show how the coupled dynamics of human population 

immunity and viral evolution can be digested into predictions for global pathogens. The 

approach addresses a notorious problem: sequence-based data of the evolving pathogen 

alone, including the genetic changes and the initial growth rates of emerging mutants, 

provide only limited information on their eventual fixation and evolutionary impact57,62. 

This is because antigenic escape evolution is complex: a given escape mutation has a 

spectrum of effects in multiple classes of population immunity (Figure 5). Within each 

class, selection is epistatic and timedependent: pressure for escape is peaked on the steep 

flanks of cross-immunity Hill functions, and its strength is modulated by new infections or 

vaccinations and by immune waning. We have shown that immune selection is computable 

despite this complexity, given integrated molecular and epidemiological data. Thus, our 

analysis calls for continued, comprehensive surveillance of SARS-CoV-2, combining 

tracking of genome sequences and incidence data with timely cross-immunity analysis. This 

input will be critical for our ability to predict antigenic escape evolution and to harvest such 

predictions for pre-emptive vaccine design.
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Limitations of the study.

Our analysis uses population immunity trajectories inferred by combined tracking of 

epidemiological, sequence, and cross-immunity data. Undersampling or biases in any of 

these source data limit the accuracy of the inference. Sequencing biases between clades also 

affect the inference of empirical fitness. To mitigate these effects, the longitudinal analysis 

is carried out in a set of 13 regions with comparable data quality (selection criteria are 

detailed in Methods). Hence, the breakdown of selection components applies to the set 

of regions accessible to our analysis; the availability of comparable data precludes a fully 

global model-based inference of selection. Data on cross-immunity between viral variants 

is aggregated from multiple studies (Methods, Table S4). Biases and sensitivity differences 

between datasets propagate into the model-based fitness differences between viral variants.

The minimal fitness model uses a simplified representation of immune classes, enabling 

the use of available neutralisation data for cross-scale analysis of population immunity. The 

model effectively averages over the variation of cross-immunity between human hosts within 

the same immune class and neglects correlations between multiple infections. In particular, 

as noted above, this treatment assumes that host-to-host differences in immunodominance, 

antigenic sin, or immune waning have only limited impact on global antigenic selection 

and the resulting evolutionary dynamics. Furthermore, our fitness model is derived from an 

underlying multi-strain epidemiological model under specific assumptions, which decouple 

relative fitness from absolute growth and imply additivity of antigenic and intrinsic fitness 

components. These assumptions are detailed in Methods; see also Figure S3 for validity 

checks and error margins of the selection-growth decoupling.

Our predictive analysis leverages population immunity derived from past data to signal near-

future prevalence shifts between variants and to constrain antigenic profiles of emerging 

variants. Antigenic surveillance is the main limiting factor of these and future evolutionary 

predictions. More dense and timely antigenic data are required to fully assess and harvest the 

predictive power of the fitness model. Furthermore, a comprehensive statistical validation 

will require longer time series of tracked evolutionary data.

Star Methods

Resource availability

Lead Contact—Further information and requests for data should be directed to and will be 

fulfilled by the lead contact, Michael Lässig (mlaessig@uni-koeln.de).

Materials availability—This study did not generate new unique reagents, but raw data and 

code generated as part of this research can be found on public resources as specified in the 

Data and Code Availability section below.

Data and code availability

• This paper analyzes existing, publicly available data. These accession numbers 

for the datasets are listed in the key resources table.
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• Results, and analyses can be found at https://github.com/m-meijers/

Population_Immunity_SARSCOV2 and is publicly available as of the date of 

publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Method Details

Antigenic data—Neutralisation assays for SARS-CoV-2 test the potency of antisera 

induced by a given primary immunisation to neutralise viruses of different variants. Log 

dilution titers measure the minimum antiserum concentration required for neutralisation,

T i
k = log2

K0

Ki
k ,

(S4)

relative to a reference concentration K0. Hence, log2 titer differences, or neutralisation 

fold changes, ΔT ij
k ≡ ΔT i

k − T j
k, measure differences in antigenicity between variants, 

ΔT ij
k = log2 Kj

k/Ki
k . We note that these differences are specific to a given primary infection 

or vaccination (immune class) k. For example, the inequality TAlphaDelta
bst < TAlphaDelta

vac  reflects the 

increased breadth of booster vaccinations compared to primary vaccinations. In contrast, 

uni-valued antigenic distances between variants, dij, can be computed from the titer matrix 

T i
k  by multi-dimensional scaling methods63,64. Such distance measures average over 

inhomogeneities between immune classes. Here we define a matrix of titer drops ΔT i
k,

ΔT i
k = T*

k − T i
k (i = Alpha, Delta, ..., CH.1; k = Alpha, Delta, ..., XBB, vac, bst, biv),

(S5)

with respect to a reference titer for each immune class, T*
k = Tk

k(k = Alpha, Delta, …, XBB)
and T*

k = T1
k (k = vac, bst, biv). This procedure eliminates technical differences between 

assays in absolute antibody concentration. We assemble this matrix in Table S1, using 

primary data from different sources3,7,8,10,29–32,52,53,65–85 (see also Table S4.). We proceed 

as follows: (i) For matrix elements with available data, ΔT i
k is the average of the 

corresponding primary measurements. (ii) If no data are available for ΔT i
k but the conjugate 

titer ΔTk
i  has been measured, we use the approximate substitution ΔT i

k ≈ ΔTk
i , as discussed in 

ref. 86. (iii) If no data are available for ΔT i
k but the titer ΔT j

k of a closely related clade has 

been measured, we use the approximate substitution ΔT i
k ≈ ΔT j

k, which should be understood 

as a lower bound. Approximate substitutions are indicated by italics in Table S1.

The matrix of absolute neutralisation titers, T i
k, is then computed by equation 

(S5), combining the titer drops ΔT i
k of Table S1 and the reference titers 

T*
k = 6.5 (k = Alpha, Delta,, BQ.1), T*

vac = 7.8, T*
bst = T*

biv = 9.8 reported in ref. [87]. A titer 

difference between vaccination and booster, T*
bst − T*

vac ≈ 2.0, has been observed in several 
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studies8,9,52. The resulting titers T i
k are shown in Table S1; they enter the cross-immunity 

functions ci
k and Ci

k(t) defined below.

The decay of antibody concentration after primary immunisation has been characterised in 

recent work37,38. Here we describe this effect by a linear titer reduction with time after 

primary challenge,

T i
k(Δt) = T i

k − Δt
τ ,

(S6)

corresponding to an exponential decay of antibody concentration, with a uniform decay 

time 90d (i.e., half life τ = 65d). This is broadly consistent with experimental data; we infer 

decay times in the range [60,170]d from several studies7,8,37,38,52. In addition, we check that 

varying τ in this range does not affect our results (in particular, the rank order of variants 

with respect to antigenic fitness remains unchanged).

Sequence data and primary sequence analysis—The study is based on sequence 

data from the GISAID EpiCov database27 available until 2023–04-01. For quality control, 

we truncate the 3’ and 5’ regions of sequences and remove sequences that contain more 

than 5% ambigous sites or have an incomplete collection date. We align all sequences 

against a reference isolate from GenBank88 (MN908947), using MAFFT v7.49089. Then 

we map sequences to Variants of Concern/Interest (VOCs/VOIs), using the set of identifier 

amino acid changes given in Outbreak.info28. As a cross-check, we independently infer 

a maximum-likelihood (ML) strain tree from quality-controlled sequences under the 

nucleotide substitution model GTR+G of IQTree90, using the reference isolate hCoV-19/

Wuhan/Hu-1/2019 (GISAID-Accession: EPI ISL 402125) as root. For assessment of the tree 

topology, we use the ultrafast bootstrap function91 with 1000 replicates. Internal nodes are 

timed by TreeTime92 with a fixed clock rate of 8 × 10−4 under a skyline coalescent tree 

prior93. Consistently, variants are mapped to unique genetic clades (subtrees) of the ML tree 

(Figure 1C, 4A).

Frequency trajectories of variants—For a given variant i, we define the smoothened 

count ni(t) = ∑ν ∈ i exp − t − tν
4/δ4 , where the sum runs over all sequences v mapped to 

variant i and tv is the collection date of sequence v. We use a smoothening period δ = 33d, 

which gives significant weight to sequences collected at times t ± 15d. The empirical variant 

frequency is then defined by normalisation over all co-existing variants, xi(t) = ni(t)/∑j nj(t). 
Frequencies are computed until the cutoff 2023–03-01, one month before data download. 

These frequency trajectories, evaluated separately for each region of this study, as well as 

averaged over regions, are shown in Figure 1B.

Infection and vaccination trajectories—Daily infection and vaccination rates for 

individual regions have been obtained from Ourworldindata.org25 and from CDC COVID 

Data Tracker26 for US states (download date: 2023–04-01). The resulting cumulative 

population fractions of infected individuals, together with cumulative population fractions of 
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primary, booster, and bivalent booster vaccinations are reported in Figure 1A. Clade-specific 

infection rates ωk(t) are computed by multiplying the total daily infection rates reported in 

each region with the simultaneous viral clade frequencies xk(t).

Data integration for regional analysis—This study uses sequence data and 

epidemiological data from multiple regions for parallel analysis. Sequence data serves to 

infer empirical fitness trajectories for individual clades from their frequency trajectories. 

Epidemiological records provide input to the antigenic fitness model, equations (1) and 

(2). The evaluation of the fitness model, which is detailed below, integrates data of both 

categories and requires stringent criteria of data availability and comparability between 

regions.

In each region, we require the following criteria for a given clade shift: (i) The smoothened 

sequence count ni(t) exceeds 500 sequences per day in the period from 2021–04-01 to 

2022–09-01, which covers the majority clades from Alpha to BA.4/5. This criterion ensures 

that the empirical relative fitness, especially for minority frequencies, can be estimated 

with reasonable statistical errors. Most exclusions of regions based on insufficient sequence 

data. (ii) Both the invading and ancestral variant are majority variants in different time 

intervals for each of the major global clade shifts. This criterion excludes regions where 

other variants are predominant during the clade shifts (e.g., Brazil and South Africa had 

xAlpha < 0.5 throughout the 1–Alpha shift). (iv) The empirical selection trajectory s contains at 

least 6 measured points s ti  for the Alpha–Delta clade shift, and at least 4 measured points 

for later clade shifts. This criterion ensures a sufficient signal-to-noise ratio for inference 

of temporal variation along the trajectory. (v) The total number of reported infections 

exceeds 5% of the population on 2022–02-01. This criterion excludes regions with very 

low number of reported infections at the height of the pandemic (e.g., Japan) and ensures 

that cross-immunity trajectories, as given by equation (1), can be evaluated across regions 

with sufficient consistency. (vi) Vaccinations have been predominantly by mRNA vaccines 

and epidemiological records in the database are complete. This criterion ensures population 

immunity computed in the vaccination immune classes are comparable between regions. It 

excludes regions with substantial use of viral vector vaccines (e.g., the UK).

We identify a set of 13 regions that satisfy the above criteria in all clade shifts up to 

BA.4/5: Belgium, California (representative of US West Coast), Canada, Finland, France, 

Germany, Italy, Netherlands, Norway, New York (representative of US East Coast), Spain, 

Switzerland, US (remainder). This set is used for the longitudinal-tracking analysis of the 

main text (including Figures 1–5, S1). The inference of model parameters and shift-specific 

regional analysis (Figures S2, S3, Data S1) is performed in all regions that fulfil these 

criteria for a given clade shift.

Inference of empirical fitness—Using the reverse of equation (3), we infer relative 

fitness trajectories from regional frequency trajectories,

f i(t) = d
dt logxi(t)
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(S7)

with a time step Δt = 30 days for evaluation of the derivative. A hat distinguishes 

empirical relative fitness and frequency trajectories from their model-based counterparts 

introduced below. For a given variant, we compute empirical fitness trajectories, 

f = f t1 , f t2 , …, f tn , for the maximal time interval such that xi(t) > 0.01 along the entire 

trajectory. The start point t1 is the first day when xi(t) > 0.01. From this point, the relative 

fitness is recorded weekly. Single measurements f ti  are excluded when the sequence counts 

ni ti  is < 10. Statistical errors for relative fitness trajectories are evaluated by binomial 

sampling of counts with pseudocounts of 1. In Figure 3, we show trajectories of f i(t)
averaged over all longitudinally tracked regions; the corresponding regional trajectories are 

reported in Figure S1.

The selection coefficient between the invading and ancestral variant in a clade shift 

equals their difference in their relative fitness, s(t) = finv(t) − fanc(t). From equation (S7), the 

empirical selection coefficient between these variants takes the form

s(t) = d
dt log xinv(t)

xanc(t) .

(S8)

Empirical selection trajectories for clade shifts between majority clades, 

s = s t1 , s t2 , …, s tn , starting at a time t1 when xinv t1 > 0.01 and running until a time tn

when xanc tn < 0.01, are reported in Data S1 and Figure S2; these trajectories also serve the 

inference of antigenic model parameters detailed below.

The time dependence of empirical selection trajectories s in the completed clade shifts from 

1 to BQ.1 is analyzed in Figure S2. We evaluate two summary statistics: (i) the amount 

of systematic time-dependent variation of selection, defined as Var slin , averaged over 

regions, where slin(t) is a linear regression to the ensemble of trajectories; (ii) the statistical 

significance of the linear regression, P  (two-sided Wald test). These tests show strong and 

significant temporal variation the 4 clade shifts Delta–BA.1, BA.2–BA.4/5, BA.4/5–BQ.1 

(P < 10−11 and Var slin > 2 × 10−3). We find no significant time dependence for the shift 

1–Alpha (P > 0.01) and weak time dependence Var slin = 3 × 10−4  for BA.1–BA.2.

Cross-immunity trajectories—The antigenic, epidemic and sequence data, as described 

above, are combined in cross-immunity trajectories Ci
k(t) that describe the total protection 

in a population against a given variant i, as derived from an immune class k. First, the 

cross-immunity factor ci
k is defined as the relative reduction in infections by variant i induced 

by (recent) immunisation in class k. As shown in recent work11,12, absolute titers of SARS-

CoV-2 neutralisation assays can predict cross-immunity, ci
k = H T i

k  with

H(T ) = 1
1 + exp −λ T − T50

.
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(S9)

This relation has been established in ref. 11 with constants T50 = 4.2 and λ = 0.9. It takes 

the form of a thermodynamic Hill function, consistent with the fact that functional, near-

equilibrium binding of antigens and antibodies is a major determinant of neutralization. The 

resulting cross-immunity factors ci
k(Δt) include antibody decay, as given by equation (S6). 

Hence, they depend on the time since primary immunisation,

ci
k(Δt) = H T i

k − Δt
τ .

(S10)

These factors enter the population cross-immunity functions Ci
k(t), equation (1),

Ci
k(t) = ∫

t
H T i

k − t − t′
τ ωk(t)dt′ .

(S11)

where ωk(t) are the time-dependent population rates of immunisations in a given immune 

class. The cross-immunity functions inferred in this study are plotted in Figure 2; they enter 

all evaluations of the fitness model, equation (2) (Figures 3–5, S1).

Minimal fitness model—The analysis of the main text is based on a fitness model with 

two main components. Intrinsic fitness depends on the the clade-specific basic reproductive 

number, R0, i. Antigenic fitness is mediated by population cross-immunity, which enters the 

epidemic dynamics through a reduction of the susceptible population and a proportional 

reduction of the effective reproductive number, Ri(t). In a multi-strain epidemic, we describe 

this reduction by a multiplicative superposition of immune classes,

Ri(t) = R0, iexp −∑
k

γkCi
k(t) ,

(S12)

This form accounts for the bookkeeping of multiple (breakthrough) infections in an 

individual’s immune history in an approximate way45 and has the correct asymptotics Ri 0
when ∑kCi

k(t) becomes large. The weight factors γk rescale the cross-immunity functions 

computed from reported data to their actual fitness effect. These factors are free model 

parameters; their inference will be detailed below.

Linking reproductive number to epidemic growth requires a model for the distribution 

of time intervals between subsequent infections in a transmission chain (generation time 

intervals). Here we use the established form of a Gamma distribution with uniform mean 

τ and variance σ2 (i.e., with shape parameter k = τ2/σ2); deformations of this form will be 

discussed below. The clade-specific growth rate (absolute fitness) is then given by40,94
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F i(t) = τ
σ2 Ri

σ2/τ2(t) − 1 .

(S13)

For SARS-CoV-2, we use basic parameters τ = 5.0d and σ2 = 3.2d2 obtained from averaged 

literature values as reported in ref.95. In this parameter regime, the growth rate is well 

approximated by the form given in the main text,

F i(t) ≃ 1
τ logRi(t),

(S14)

as shown in Figure S3A. This form becomes exact in the limit of uniform generation time 

intervals σ2 0 .

Combining equations (S12) and (S14), we obtain the fitness model of the main text,

F i(t) = F0, i − ∑
k

γkCi
k(t),

(S15)

where F0, i = logR0, j/τ and F i
ag(t) = − ∑k γkCi

k(t) are the intrinsic and antigenic fitness 

components, respectively. Fitness differences (selection coefficients) between clades, 

sij(t) = F i(t) − F j(t), take the form

sij(t) = 1
τ log R0, i

R0, j
− 1

τ ∑
k

γk Ci
k(t) − Cj

k(t) .

(S16)

The minimal model has three simplifying properties. (i) Intrinsic and antigenic selection 

enter additively; i.e., there is no epistasis between these components. (ii) Antigenic fitness 

is additive in the immune classes. This is consistent with the assumption that in an infection 

chain, a viral lineage rapidly samples hosts randomly distributed over immune classes. (iii) 

Selection coefficients decouple from absolute growth, i.e., are invariant under a uniform 

rescaling R0, i aR0, j. This is important for the robustness of our inference method under 

non-pharmaceutical interventions, as discussed below.

Model validation—Multiple phenotypes and functions affect the viral life cycle, including 

the stability of viral proteins, binding to receptors of human cells, intra-cellular replication 

and defence against innate immunity, and transmission between hosts. All of these can be 

the target of intrinsic selection, by modulating the reproductive number and the distribution 

of generation intervals. Here we introduce three simple evolutionary deformations of the 

infection dynamics and analyse their consequences for the fitness model.
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i. Changes in reproductive number. A mutation of the virus increasing its 

transmissibility between hostscan be assumed to increase the basic reproductive 

number R, while keeping the generation parameters τ and σ2 invariant. In Figure 

S3A, we plot the selection coefficient s of a mutant clade with increased basic 

reproductive number, Rmut = 1.2Ranc, as a function of the antigenic selection under 

the minimal model, sag = (1/τ) log Rmut/R0, mut − log Ranc/R0, anc , for three values of 

Ranc (corresponding to three absolute rates of epidemic growth, F) with basic 

generation parameters τ = 5d and σ2 = 3.2d2. In good approximation, selection 

is seen to be additive and independent of absolute growth, s = s0 + sag with 

s0 = (1/τ)log R0, mut/R0, anc , as given by the minimal model, equation (S16).

ii. Changes in mean generation interval. A mutation increasing the rate of intra-host 

replication can shorten the time to the start of transmission, while keeping 

the infectious period unchanged. This type of change can approximately be 

described by a decrease of τ at constant σ2 and R (Figure S3B). The resulting 

selection coefficient remains approximately additive, s = s0 + sag, but the intrinsic 

selection coefficient becomes dependent on absolute growth. This coupling is 

not described by the minimal model and, if absolute growth depends on time, 

introduces a time-dependence of intrinsic selection.

iii. Correlated changes of infection parameters. Here we consider mutations that 

increase pathogenicity by prolonging the infectious period. This type of change 

can approximately be described by a correlated increase of τ, σ2 and R, such 

that the time to the start of transmission remains unchanged but the end of 

transmission is delayed (Figure S3C). The resulting selection coefficient is 

additive and consistent with the minimal model, s = s0 + sag, where s0 depends on 

the change in the infectious period, but is approximately independent of absolute 

growth.

Together, mutations between variants that affect the viral replication cycle can introduce 

a coupling between absolute growth and selection and, in turn, generate time-dependent 

intrinsic selection that confounds our inference of antigenic selection as the time-dependent 

component of the total selection coefficient. The magnitude of this effect depends on the 

detailed mechanistic effects of mutations between variants, which are in general unknown. 

For three major variants relevant for this study, changes in the mean generation interval have 

been reported, from τ = 5.5d for Alpha to τ = 4.7d for Delta49 and from τ = 3.8d for Delta 

to τ = 3.0d for BA.150. To estimate the growth-selection coupling directly from empirical 

data, we record the time-dependent total growth rate and its correlation with selection for 

the Alpha–Delta and the Delta–BA.1 shifts (Figure S3F, G). We infer absolute growth 

trajectories,

F (t) = d
dt logI(t),

(S17)
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where I(t) are reported incidence values and F (t) is to be interpreted as a population mean, 

F (t) = xinv(t)F inv(t) + xanc(t)F anc(t)(Figure S3F). From these trajectories, we estimate the region-

averaged temporal change, ΔF , over the duration of each clade shift; we find ΔF = 0.07 for 

Alpha–Delta and ΔF = − 0.02 for Delta–BA.1. Next, we evaluate the systematic co-variation 

of selection and growth by means of a linear regression, s(t) = cF (t) + …; we find c = 0.1
for Alpha–Delta and c = 0.2 for Delta– BA.1 (Figure S3G). Hence, only a small part of 

the time-dependence of selection, of order |cΔF | < 0.01, can be explained by the coupling 

to absolute growth induced by intrinsic selection. We conclude that antigenic changes are 

the dominant source of time-dependent selection, in accordance with the minimal selection 

model, equation (S15).

Non-pharmaceutical interventions—Such measures generate changes in social 

behaviour that affect viral transmission, modulating the reproductive number and the 

distribution of generation intervals uniformly for all circulating strains. Non-pharmaceutical 

interventions (NPI) can have two kinds of effects: (i) Reduction of reproductive numbers. 

Mask wearing or social distancing can reduce transmission rates and generate a uniform, 

time dependent modulation of reproductive numbers, R0, i a(t)R0, i, while keeping the 

generation parameters τ and σ2 invariant (Figure S3D).

(ii) Reduction of the infectious period. Surveillance and isolation measures can also reduce 

the effective infectious period, generating a uniform, correlated decrease of τ, σ2 and R0

(Figure S3E). Effects of this kind have repeatedly been reported during the SARS-CoV-2 

pandemic95,96.

For both kinds of interventions, we compute the selection coefficient s of an antigenic 

mutant clade against the corresponding selection coefficient under the minimal model, 

sag = (1/τ) log Rmut/R0, mut − log Ranc/R0, anc , for two values of the NPI constraint. We find that, 

while NPI can strongly affect absolute growth, selection coefficients are approximately 

independent of the NPI constraint. Hence, our selection inference is robust under time-

dependent changes of NPI measures.

Inference of fitness model parameters and selection coefficients—The free 

parameters γk(k = 1, …, n) measure the fitness effect of each cross-immunity component. 

These parameters calibrate the model to data of real populations with complex population 

structure, including incidence structure and variation of infection histories, as well as 

heterogeneity in the monitoring of infections. To avoid overfitting, we use a minimal 

model with just 2 global antigenic parameters: (i) A basic rate γvac = γbst = γbiv translates 

cross-immunity generated by vaccination into units of selection. We infer a value γ1 for the 

Alpha-Delta shift and a lower value γ2 for all later shifts (Table S2); this value is used for all 

predictions. This can be seen as a heuristic to account for the effect of double infections48, 

which increase cross-immunity and decrease cross-immunity differences between variants. 

(ii) A uniform rate for all infection classes, γk = bγvac, includes a weight factor b accounting 

for underreporting of infections relative to vaccinations. We infer an initial value b1 for 

all shifts up to BA.2 (inferred from data up to the completion of Delta–BA.1; the shift 
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BA1–BA.2 involves only small antigenic effects). For the post-BA/2 period, we infer a 

time-dependent factor b(t) from data in a sliding window [t − 120d, t]. This value is used for 

predictions from time t into the future (Figure 4, 5). The selection breakdown for individual 

shifts (Figure 3, S1, Data S1, Table S3) uses posterior values inferred from data until 

completion of each shift: b1 for pre-BA.2 shifts, b2 for BA.2–BA.4/5, b3 for BA.4/5–BQ.1 

(Table S2).

The model parameters are trained on regional trajectories of selection coefficients for the 

majority clades. We infer the ML fitness model by aggregation of log likelihood scores 

evaluated for these trajectories. We use the score function

L(s, s) = ∑
i = 1

n s ti − s ti
2

σ2 ti
,

(S18)

for a single empirical selection trajectory s and its model-based counterpart s. The 

expected square deviation is σ2 ti = σs
2 ti + σ0

2; the first term describes the sampling error of 

sequence counts, which enters frequency and empirical selection estimates, the second term 

summarises fluctuations unrelated to sequence counts. The total log likelihood score is the 

sum L = ∑L(s, s), which runs over all shifts in a given time interval and all included regions. 

We evaluate the ML score L and the corresponding BIC score97 relative to a null model 

of time-independent selection (Table S2). The 95% confidence intervals of the inferred 

parameters are computed by resampling the empirical selection data with fluctuations 

σ2. We infer a decrease in the ML vaccination parameter (γ2 = aγ1 with a < 1), which is 

consistent with the interpretation of the parameter a as weighting factor accounting for 

double-infections. Similarly, we infer a ML infection weight parameter b > 1; the function 

b(t) gradually increases in 2022, interpolating between the end-of-shift values b1 < b2 < b3. 

This pattern is consistent with b accounting for underreporting (see above). The ML 

selection components resulting from our inference are reported in Figure 3B and Table 

S3.

The inference procedure works as follows: (i) For the pre-BA.2 clade shifts, which are 

characterised by strong data heterogeneity between regions, we decompose model-based 

and empirical selection trajectories into temporal mean and change, s(t) = s + Δs(t) and 

s(t) = s + Δs(t), where brackets denote time averages over the trajectory for a given 

region. In a first step, we infer the ML antigenic parameters γvac and b from the within-

region selection changes Δs(t), using the partial score L(Δs, Δs). Importantly, this inference 

step yields the ML antigenic model parameters and the resulting ML antigenic selection 

components, sag(t) = Σksk(t), independently of intrinsic selection. In a second step, we infer 

the intrinsic selection for each shift as the difference between empirical selection and 

ML antigenic selection, s0 = s − sag , where the double brackets denote averaging over 

time and regions. (ii) For the post-BA.2 clade shifts, where frequency tracking data are 

less heterogeneous between regions, we can use a singlestep inference procedure with 

the score function (S18). On the other hand, reported incidence numbers become highly 
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heterogeneous in this period. Therefore, we average the population immunity functions Ci
k(t)

for infection-derived immune classes kinf over the included regions. The post-BA.2 data 

turn out to be well described by a ML antigenic fitness model s0 = 0 . This is important 

for predictions: computing the initial fitness of an emerging variant involves tracking data 

only of previous variants (Figure 4B, 5F). Predictive analysis in this period uses a weight 

factor b(t) inferred from data in the time window [t − 120d, t] with daily updates from 

t = 2022 − 05 − 09 (start of the clade shift BA.2–BA.4/5); window segments before this date 

are weighed in proportionally with the initial value b1.

Significance analysis of the fitness model—To assess the statistical significance of 

our inference, we compare four fitness models of the form of equation (2): the full model 

used in the main text (VAC+INF: antigenic selection by vaccination and infection, intrinsic 

selection), two partial models (VAC: antigenic selection only by vaccination, intrinsic 

selection; INF: antigenic selection only by infection, intrinsic selection), and a null model 

(0: intrinsic selection only). We infer conditional ML parameters for each model and we 

rank models by their ML score difference to the null model, ΔL = L − L0 (Table S2). An 

alternative ranking by BIC score97, which contains a score penalty for the number of model 

parameters, leads to the same result. Both scores are reported separately for the pre-BA.1 

period and for the full inference period.

We obtain the following results: (i) The antigenic fitness models VAC+INF and INF have 

significantly higher scores than the null model, which shows that the empirical selection 

data are incompatible with time-independent selection. (ii) The full model has a significantly 

higher score than any of the other models. Hence, both vaccination and infection are 

significant components of antigenic selection. (iii) The partial antigenic model VAC has a 

higher score than INF for the pre-BA.1 shifts, but a lower score than the null model in the 

post-BA.2 period. Hence, vaccinations explain a substantial part of the pre-BA.1 pattern, but 

vaccinations alone do not capture the later data.

In summary, we infer a statistically significant fitness model with few, global parameters 

from sequence and epidemiological data aggregated over a set of regions and combined 

with antigenic data. The model describes common time-dependent patterns of selection 

in these regions and serves three main purposes: to provide a breakdown of selection in 

intrinsic and antigenic components (Figure 3), to infer ML antigenic parameters used in the 

prediction of short-term frequency turnover (Figure 4), and to compute antigenic profiles for 

emerging variants (Figure 5). Our inference procedure rests on stringent criteria for the joint 

availability of sequence and epidemiological data in each of these regions (as listed above). 

The results are robust under variation of the inclusion criteria for regions. In particular, the 

signal of antigenic selection in data and model is broadly distributed over regions (Data 

S1). Hence, the selection averages reported in Figure 3 and Table S3 are reproducible in 

subsampled sets of regions.

Prediction of frequency trajectories—In the post-BA.2 evolutionary regime, we 

predict short-term relative frequency changes, W i(t, t + τ) = xi(t + τ)/xi(t), with a prediction 
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period τ = 60d, for the variants BA.2, BA.4/5, BA.4.6, BF.7, BQ.1, BN.1, XBB, CH.1. By 

integrating equation (3) to leading order in the prediction period, we write

W i t, t′ = 1
Z t, t′ exp t′ − t fi(t) ,

(S19)

where fi(t) is evaluated at the start of prediction and Z t, t′  is a normalisation factor 

0 ≤ t′ ≤ t + τ . Here we use only the antigenic fitness, fi
ag(t), as given by equations (1) and 

(2). Short-term predictions are shown in Figure 4B for all longitudinally tracked regions 

and up to 6 starting points on each regional trajectory, together with the posterior changes 

W i(t, t + τ) = xi(t + τ)/xi(t) obtained by tracking of frequency trajectories.

Longer-term predictions of frequency changes serve to flag likely shifts of majority clades 

driven by emerging variants. These predictions start when a new variant has reached a global 

frequency x(t) = 0.01 and extend over a prediction period of τ = 200d, using again equation 

(S19). The resulting trajectories yi t′ = W t, t′ xi(t) 0 ≤ t′ ≤ t + τ  are to be interpreted as 

reduced frequencies in the set of variants present at the start of predictions, ignoring variants 

that emerge later. Predicted and posterior region-averaged trajectories are shown in Figure 

4C. A likely predominance shift is flagged if an emerging variant reaches a predicted 

frequency y t′ > 0.5 within the prediction period (thick lines in Figure 4C).

The prediction procedure has the following specifics: (i) We use tracking data up to the 

start of predictions. Smoothened empirical frequencies xi(t) include submitted sequences 

in the period [t − 15, t + 15] days. Therefore, we choose an integration period τ′ = τ + 15d
to obtain a genuine prediction over a period τ into the future. (ii) We use fitness model 

parameters inferred prior to the start of predictions, as detailed above (specifically, infection 

parameters b(t − 15d)). (iii) The population immunity functions, Ci
k(t), for infection-derived 

immune classes are averaged over regions, taking into account the heterogeneity of tracking 

across regions in the prediction period. (iv) We include predictions for all variants that 

reach 5% regional frequency after 2022–04-01 in at least 1 of 13 longitudinally tracked 

regions. Predictions of this study end at a cutoff date 2023–03-01 (one month before the 

download date of data). (v) For short-term predictions, up to 6 starting points are chosen on 

each regional trajectory at the following frequencies: xi = 0.01, 0.2, 0.4 (ascending segment), 

xi/xi, max = 1, 0.5, 0.25 (descending segment). (vi) Longer-term predictions start when a new 

variant reaches a region-averaged frequency threshold xi(t) = 0.01. If further variants emerge 

at the same threshold within 14 days, the prediction windows are merged. In this way, 

we obtain 4 prediction windows starting on 2022–07-12 (emerging variants BA.4.6 and 

BF.7), 2022–09-06 (emerging variant BQ.1), 2022–10-22, (emerging variants BM.1.1, BN.1, 

and XBB), and 2022–12-08 (emerging variant CH.1). (vii) Statistical errors are calculated 

by resampling the number of observed sequences of each of the competing variants. 

This reflects the uncertainty of the empirical frequency trajectories, xi(t), which set the 

uncertainty in the initial condition for predictions. The error bars in Figure 4B indicate one 

standard deviation.
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Antigenic selection profiles—To predict the likely direction of antigenic evolution, 

we compute the antigenic selection profile, sag(t) = ∑k sk(t), for a hypothetical “standard” 

mutant emerging at time t and competing against the majority background variant present at 

that time (Figure 5). We use again the fitness model, sag(t) = ∑k γk Cmut
k (t) − Canc

k (t)  with cross-

immunity functions given by equation (1). In the computation of cross-immunity, we assume 

the mutant has an antigenic advance, or neutralisation titer drop, T anc
k − Tmut

k = 2 in all relevant 

immune classes k. These assumptions are supported by observations. The circulating viral 

population has sufficient supply of mutations for timely response to antigenic selection 

pressures, which justifies the assumption of a broad response across immune classes (Figure 

5F). The amplitudes of antigenic advance assumed for the standard mutant are similar to 

the observed values of successful mutants (Figure 5A-E). The computation of the antigenic 

selection profile sag(t) uses model parameters inferred up to time t (as detailed above), as 

well as epidemiological, frequency tracking, and antigenic data up to time t. Importantly, the 

computation does not depend on antigenic data of the emerging mutant itself. Hence, the 

antigenic selection profiles can be evaluated prior to the emergence of an actual escape 

mutant. These profiles predict likely antigenic characteristics of high-fitness antigenic 

variants conditional on their emergence time (Figure 5F).

For the observed escape mutants, we can compare antigenic and fitness effects obtained 

from our analysis with deep mutational scanning (DMS) data. For example, Cao et al.10 

performed DMS of recent SARS-Cov-2 variants different in immune backgrounds and 

obtained normalised, weighted escape scores for individual point mutations in the receptor 

binding domain (RBD). For the RBD mutations that distinguish the variants BA.4.6, BF.7, 

BQ.1, and XBB from their recent ancestor BA.4/5, we list the normalised, averaged DMS 

escape scores against BA.4/5 breakthrough infections (data from ref. [10]):

346T 368I 444T 445P 446S 452R 460K 490S Total score

BA.4.6 0.30 - - - - 0.0 - - 0.30

(S20)
BF.7 0.30 - - - - 0.0 - - 0.30

BQ.1 0.30 - 1.0 - - 0.0 0.04 - 1.34

XBB 0.30 0.0 - 0.29 0.30 - 0.04 0.01 0.94

Each of these variants has between 2 and 6 point mutations in the listed set of RBD 

positions. We compute the resulting total score as the sum of the scores of individual 

mutations, which ranks these variants in their escape potential from immunity induced by 

BA.4/5 breakthrough infections. The variants BA.4.6, BF.7, BQ.1 compete on the antigenic 

background of the major variant BA.4/5, the variant XBB competes later against the major 

variant BQ.1 (main text, Figure 5F). The DMS score ranking is in accordance with the 

large antigenic advance of BQ.1 in immune class k = BA.4/5 (Figure 5C) and the resulting 

fitness advantage against BA.4.6 and BF.7, as found in our analysis (Figure 4C). This 

example shows how DMS data can serve as input for antigenic selection profiles and fitness 

predictions. However, the score ranking does not reproduce the initial antigenic advance and 

the resulting fitness gain of the recombinant variant XBB against BQ.1 (Figures 5D, 4C). 
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This may indicate epistasis between some of these mutations or reflect the admixture of 

other immune classes in the antigenic selection profiles (Figure 5F).

Quantification and statistical analysis

Statistical analyses were performed using Scipy version 1.10.1 and are described in the 

figure legends and in the Method Details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. SARS-CoV-2 variants compete on a fitness landscape shaped by population 

immunity

2. Immune-induced fitness is computable from genetic, epidemic, and cross-

protection data

3. A fitness model predicts viral frequency changes and predominance shifts

4. Time-dependent selection windows constrain the antigenic profile of 

emerging variants
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Figure 1. Evolutionary, epidemiological, and immune tracking of SARS-CoV-2.
(A) Cumulative population fractions of infections and of primary, booster, and bivalent 

booster vaccinations; data from all longitudinally tracked regions of this study (thin lines) 

and region-averaged trajectories (thick lines). A list of regions and selection criteria are 

given in Methods.

(B) Frequency trajectories for the ancestral clade (1), 7 major variant clades (Alpha, Delta, 

BA.1, BA.2, BA.4/5, BQ.1, XBB), and 5 global minor variant clades (BA.4.6, BA.7, 
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BM.1.1, BN.1, CH.1); regional data (thin lines) and region-averaged trajectories (thick 

lines). Color bars mark the succession of major variants.

(C) Timed, global strain tree of SARS-CoV-2 with strains colored by variant. Variants are 

annotated at the inferred time of their emergence.

(D) Neutralisation titers, T i
k, for test strains of different variants (i = Alpha, …, CH.1) 

assayed in different immune classes of infection (k = Alpha, ... BA.4/5) and vaccination 

(k = vac, bst, biv). Numerical values are given in Table S1; the inference procedure is 

described in Methods.
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Figure 2. Population immunity trajectories.
The time-dependent population immunity, Ci

k(t), is shown for the major variants, i
(coloured lines), and the immune classes, k (indicated by pictograms), relevant for 

this study. Trajectories for each immune class start at the dashed line (top: vaccination-

derived immune classes, k = vac, bst, biv; bottom: infection-derived immune classes, 

k = Alpha, Delta, … . , BQ.1). Thin lines show region-specific, thick lines region-averaged 

trajectories.
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Figure 3. Fitness trajectories and selection breakdown for major clade shifts.
(A) Relative fitness of successive major variants in 7 completed clade shifts (1–Alpha, ... 

BA.4/5–BQ.1). Model-based trajectories for each variant, fi(t) (lines) are shown in the time 

interval between origination and loss; empirical fitness values, fi(t) (dots) are inferred from 

the frequency trajectories of Figure 1B. All trajectories are averaged over 13 regions; see 

Figure S1 for regional trajectories. Color bars mark the succession of major variants.

(B) Breakdown of selection for each clade shift. Intrinsic selection coefficients, s0 (black), 

and antigenic selection coefficients in marked immune classs, sk (coloured), as inferred 

from the ML fitness model (bars: region- and time-averaged value for each crossover; 

arrows: region-averaged rms temporal change, Δsk
2 1/2

, with marked direction; confidence 

intervals are given in Table S3).
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Figure 4. Predicting short-term evolution.
(A) Strain tree of BA.2 and descendent variants; strains are colored by model-based, clade- 

and time-dependent relative fitness, fi(t).
(B) Short-term frequency change. We compare predicted changes, W i(t, t + τ) = xi(t + τ)/xi(t), 
with posterior empirical changes, W i(t, t + τ) = xi(t + τ)/xi(t), over periods τ = 60d in all 

longitudinally tracked regions for 8 variants i with initial frequencies xi = 0.01, 0.2, 0.4
(ascending segments), xi/xi, max = 1, 0.5, 0.25 (descending segments).

(C) Predominance shifts. We compare predicted and posterior trajectories of reduced fitness, 

yi(t) (dashed) and y i(t) (solid), over periods τ = 200d, starting from the emergence of new 

variants (marked above each panel); see text. Bold lines highlight variants predicted to 
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outcompete all other variants co-existing at their time of emergence (i.e., to reach reduced 

frequencies y > 0.5).
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Figure 5. Antigenic selection profiles constrain emerging variants.
(A–E) Antigenic landscapes. Each family of landscapes shows neutralisation titers and 

cross-immunity factors, T i
k, ci

k  (dots), for a given majority variant as antigenic background 

and competing minority variants, in all immune classes relevant for the next clade shift. 

Yellow circles mark a “standard” mutant, as described in the text; data of the background 

variant and the standard mutant are joined by lines.

(F) Antigenic selection profiles. Predicted antigenic selection trajectories of the standard 

variant against the background majority variant and their breakdown into immune classes, 

sag(t) = ∑k sk(t) (stacked areas), are shown for successive background variants (horizontal 

color bars). Posterior selection profiles of observed variants are shown at their time of 

emergence (stacked bars). The last panel shows the predicted profile for the future clade 

shift away from XBB.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

SARS-CoV-2 sequence data GISAID EpiCov Database http://www.gisaid.org

Infection and vaccination rates Ourworldindata https://www.ourworldindata.org

Infection and vaccination rates CDC COVID Data Tracker https://www.covid.cdc.gov/covid-datatracker

Antigenic Data References [3,7,8,10,29-32,52,53,71-91] Supplementary Materials 1

Software and Algorithms

MAFFT v7.490 Katoh and Standley [64] https://mafft.cbrc.jp

IQTree Minh et al. [65] http://www.iqtree.org/

TreeTime Sagulenko et al. [67] https://github.com/neherlab/treetime
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