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Abstract

Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is 

characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the 

brain, with associated loss of synapses and neurons, which eventually results in dementia. Many 

of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of 

these treatments in terms of slowing disease progression led to a change of strategy toward 

targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity 

than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-

tau therapies initially focused on post-translational modifications, inhibition of tau aggregation 

and stabilization of microtubules. However, trials of many potential drugs were discontinued 

because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in 

clinical trials are immunotherapies. In this Review, we provide an update on the results from the 

initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical 

development, as well as considering future directions for tau-targeting therapies.

Introduction

Since the publication of our previous review on tau-targeting therapies in 20181, the number 

of people in the USA with Alzheimer disease (AD) has increased from an estimated 5.4 
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million to 6.5 million, making it a major health issue2. Worldwide, around 57 million people 

are thought to have dementia, with AD probably contributing to 60–70% of these cases3. In 

addition to the direct impact on patients, AD and related illnesses cost hundreds of billions 

of dollars to care-givers and the health-care system2. As the population continues to age, the 

need for effective therapies will only increase.

Early efforts to find a disease-modifying therapies for AD focused on amyloid-β (Aβ), the 

main component of the extracellular plaques that accumulate in the brain in this condition. 

However, both immunotherapies and secretase modifiers have been largely ineffective or 

detrimental4,5. The main exceptions are lecanemab6,7 and donanemab8,9, both of which 

produced modest but significant slowing of cognitive decline in phase III trials. The limited 

success of Aβ-targeting therapies led to a change in focus towards the tau protein — 

the main component of the neurofibrillary tangles (NFTs) that comprise the other major 

pathological hallmark of AD. This decision was supported by the fact that tau pathology 

correlates better with the degree of dementia than does Aβ deposition10–17.

The presence of tau pathology in many conditions other than AD, including the primary 

tauopathies progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick 

disease, frontotemporal dementia (FTD), and primary age-related tauopathy18,19, makes it 

an appealing target for therapeutic development. The progression of tau lesions is thought 

to involve both loss and gain of function for the protein, offering multiple points for 

intervention. In this Review, we briefly discuss these aspects of tau pathology, highlighting 

data published since our previous Review1. We summarize the latest results from ongoing 

and completed clinical trials and provide information on trials that have recently been 

initiated. In addition, we discuss strategies for improving tau-targeting therapies, in 

particular immunotherapies, and future directions for the field.

Targetable aspects of tau pathology

Numerous aspects of tau pathology could be targeted in AD (Fig. 1). Phosphorylated tau 

(p-tau) pre-tangles and neuropil threads can be seen in brain tissue decades before the 

symptoms of AD manifest20. The pathology commonly begins in the entorhinal cortex and 

hippocampus and spreads in a stereotypical pattern; however, several atypical variants of AD 

exist, accounting for up to 45% of all cases21,22. Monomeric, oligomeric and aggregated tau 

species are observed in all tauopathies, although AD and the various primary tauopathies 

differ with regard to tau isoform composition and multimer morphology18,19,23,24.

Post-translational modifications

The pathological tau in AD is characterized in part by extensive post-translational 

modifications (Fig. 1). Here, we focus on the modifications that have been the 

subject of clinical development, namely, hyperphosphorylation, acetylation, truncation and 

glycosylation.

Hyperphosphorylation.—The tau hyperphosphorylation that is seen in AD results from 

increased activity of tau kinases25–30, combined with reduced activity of protein phosphatase 

2A (PP2A)31,32. Tau kinases have been shown to be activated directly or indirectly by 
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Aβ, and Aβ can induce tau phosphorylation and aggregation in vivo33–44. The outcome is 

increased occupancy at multiple phosphorylation sites, the prevelance of phosphorylation 

at specific sites and overall extent of phosphorylation changes with disease stage20,45–53. 

Patterns of phosphorylation also differ between tauopathies, and familial mutations in 

the tau-encoding gene MAPT can promote phosphorylation54–56. The consequences of 

increased phosphorylation include mislocalization of tau to the somatogenic compartment, 

decreased microtubule binding and promotion of tau misfolding57.

Acetylation.—Although not seen as consistently as hyperphosphorylation, enhanced tau 

acetylation in AD and other tauopathies can impair microtubule binding, decrease solubility, 

promote cleavage and impair degradation of the protein58–60. Salsalate and diflunisal reduce 

tau acetylation through inhibition of p300 acetyltransferase61,62, and were initially identified 

owing to their association with decreased incidence of AD in patients62–65.

Truncation.—The distribution of cleaved tau fragments is complex, with some species 

appearing in both AD and healthy individuals, some only in AD and other tauopathies others 

only in non-AD tauopathies66. Aβ can promote tau truncation through caspase activation 

but is not required for this process, as truncated tau is also found in non-AD tauopathies. 

Cleavage promotes tau assembly, reduces microtubule binding, promotes synaptic and 

organelle dysfunction, and acetylation of tubulin, and might promote tau secretion66,67. Two 

caspase inhibitors, minocycline and VX-765, have shown positive results in AD models68–

71, and minocycline has entered clinical trials in patients with AD (see below).

Glycosylation.—O-GlcNAcylation, a specialized protective type of O-glycosylation, 

promotes microtubule binding, prevents phosphorylation and reduces aggregation of tau, 

and is found to be reduced in AD60,72. By contrast, N-glycosylation and non-enzymatic 

glycosylation (glycation) are increased in AD and other tauopathies. These modifications 

promote tau phosphorylation and misfolding while impairing microtubule binding and 

protein digestion60. To date, O-GlcNAcylation is the only glycosylation mechanism to be 

targeted in clinical trials.

Tau aggregation

Tau multimers include small soluble aggregates, paired helical filaments (PHFs), straight 

filaments and twisted ribbons. Post-translational modifications and mutations influence the 

structure of these aggregates, which can be faithfully transmitted during seeding60,73–79.

Oligomeric tau has emerged as the primary pathogenic species, resulting in acute toxicity80–

83 as well as impairments in nuclear stability and gene transcription, mitochondrial 

health, neurotransmission, synaptic function and protein degradation80,81,83–86. Extracellular 

oligomers can initiate templated seeding of tau following uptake into naive cells80–84. Larger 

NFT aggregates might initially represent a compensatory protective mechanism, but in the 

longer term, NFT-bearing neurons exhibit changes in gene expression, as well as synapse 

loss, inhibition of axonal transport and energy deficits87–90. Multiple groups have developed 

small-molecule inhibitors with the goal of preventing or reversing tau aggregation and 

reducing the spread of pathology91–93.
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Cytoskeletal dysfunction

Compared with control neurons, NFT-bearing neurons from patients with AD show reduced 

tubulin expression, microtubule length and overall tubule numbers, as well as increased 

acetylation of tubulin90,94,95. Tubulin from patients with AD is slower to assemble and has 

increased GTPase activity compared with that from healthy controls96. In AD, the dynamic 

removal and restoration of the external tyrosine residues of tubulin are impaired leading, to 

a build-up of detyrosinated tubulin97,98. Together, these data point towards disruption of the 

microtubule network, resulting from the loss of tau binding and other pathological processes, 

as a potential target for therapeutic intervention.

Protein degradation pathway impairment

Defects in macroautophagy (autophagy), endosomal microautophagy and chaperone-

mediated autophagy have been observed in AD and other tauopathies99–101. Reduced 

expression of autophagy and endosomal microautophagy components, reduced chaperone-

mediated autophagy activity, impaired lysosomal fusion, decreased lysosomal activity, 

increased concentrations of ubiquitinated protein and disruption of key signalling pathways 

are all observed in AD58,99–107.

Once established, tau pathology can also affect its own clearance. Tau can inhibit autophagy 

induction and autophagosome formation, impair autophagosome–lysosome fusion, and 

sequester pathway components108–113., and can also prevent endosomal uptake of proteins 

and increase endosomal leakage114–119. These effects underscore the importance of 

removing tau aggregates from neurons.

Targeting tau pathology

Since our previous Review on tau-targeting therapies1, several trials have concluded or been 

initiated. In this section, we discuss strategies that target various aspects of tau pathology 

[Fig. 1], and in the next section, we focus specifically on immunotherapies, in particular, 

antibody-based therapies, which have been the subject of most of the clinical trials to date 

Fig. 2. Our group has worked extensively in the tau immunotherapy field from its infancy 

so we are ideally placed to provide an expert opinion on this topic. Figure 2 provides a 

breakdown of the different treatment strategies, and how far each has advanced in clinical 

testing. Supplementary Tables 1 and 2 list the non-immunotherapy and immunotherapy 

trials, respectively, and Table 1 lists the potential advantages and disadvantages of each 

treatment type.

Reducing tau expression

Tau antisense oligonucleotides (ASOs) target human MAPT mRNA to reduce the expression 

of tau120. In 2017, a phase Ib trial (NCT03186989) was initiated to study the safety, 

tolerability, pharmacokinetics and pharmacodynamics of the tau ASO MAPTRx (also known 

as BIIB080) in patients with mild AD. At a 2021 press conference, the drug was reported 

to be safe and to reduce total tau (t-tau) and p-tau levels in the cerebrospinal fluid 

(CSF) in a dose-dependent manner121. Additional data from phase I testing, presented in 

2023, showed dose-dependent decreases in t-tau and p-tau in the CSF122. PET scans from 
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participants who received a high dose of the drug showed a decrease in tau levels to below 

baseline values in all brain regions analysed122. Adverse events were predominately mild 

to moderate. In addition, reductions in tau phosphorylated at residue 181 (p-tau181), the 

inflammatory marker YKL40 and the ratio of t-tau to Aβ42 in the CSF were reported123. 

Despite the decrease in CSF measures, however, no significant improvements in cognitive, 

functional, psychiatric or neurological impairments were observed123. Phase II testing has 

been initiated in patients with mild cognitive impairment (MCI) due to AD or with mild AD 

(NCT05399888), with cognitive changes as the primary outcome, and will run through to 

December 2026.

NIO752 is another tau ASO that is currently in two trials to examine safety, tolerability, and 

pharmacokinetics in people with PSP (NCT04539041), MCI or early AD (NCT05469360). 

The results are anticipated in 2023 and 2024, respectively.

Targeting tau protein modifications

Phosphatase modifiers.—As we outlined in our previous Review, memantine has 

various mechanisms of action, including enhancement of PP2A activity1,124. No updates 

on clinical trials of memantine in AD or other tauopathies have been provided since our 

earlier article.

Sodium selenate has been shown to reduce tau phosphorylation in animal models125–127, 

but in a clinical trial in people with mild-to-moderate AD, only modest benefits were 

detected on diffusion MRI128. A phase Ib open-label study (ACTRN12617001218381) in 

12 individuals with behavioural variant FTD was completed in 2021129. Small declines 

in MRI, cognitive and behavioural measures were observed, with no changes in t-tau, 

p-tau or the neurodegeneration biomarker neurofilament light chain (NfL) in the CSF. 

Two phase IIb trials are examining the safety, tolerability and efficacy of sodium selenate 

in FTD (ANZCTR12620000236998) and PSP (ACTRN12620001254987)130,131. Outcome 

measures will include tau levels in CSF, serum and plasma; tau PET; MRI for brain atrophy 

and midbrain mean diffusivity; and cognitive and functional measures. These studies are 

expected to be completed in 2025.

Kinase inhibitors.—Lithium chloride is widely used to treat bipolar disorder and has 

also been shown to inhibit glycogen synthase kinase 3β (GSK3β) — an enzyme that 

phosphorylates tau132,133. In a pilot study in patients with MCI (NCT02601859), no adverse 

reactions to lithium chloride treatment were reported, although GSK3β activity was not 

significantly changed, suggesting that the dose was too low to be effective 134. A phase 

II trial (NCT02862210) has been extended to 2023 to assess the effects of this drug on 

behavioural symptoms of FTD. Additional outcomes include changes in motor symptoms, 

adverse events and serum biomarkers. The results of this trial have yet to be reported.

Acetylation inhibitors.—Salsalate is a small-molecule non-steroidal anti-inflammatory 

drug that has been shown to inhibit tau acetylation 62. In a transgenic mouse model of 

tauopathy, this drug reduced levels of t-tau and acetylated tau, prevented hippocampal 

atrophy and reduced memory deficits 61. A phase I open-label study (NCT02422485) 

evaluated safety, tolerability and CSF biomarkers in patients with PSP who were 
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treated with salsalate135. The drug was well tolerated but failed to elicit any significant 

improvements. A second phase I trial in patients with AD (NCT03277573) is assessing 

adverse effects, changes in CSF biomarkers, and imaging and cognitive measures. Although 

the estimated completion date was December 2021, the results have yet to be reported.

Deglycosylation inhibitors.—O-GlcNAcylation of tau produces protective effects in 

tauopathies by preventing tau phosphorylation and aggregation136,137. ASN120290 is an 

O-GlcNAcase (OGA) inhibitor that was determined to be safe and well-tolerated in a phase 

I trial conducted in healthy adults138,139. Drug concentrations were comparable in the CSF 

and plasma, indicating that the compound readily enters the brain. In 2018, ASN120290 was 

given an orphan drug designation for the treatment of PSP. ASN-51 is a second-generation, 

longer-lasting version of ASN120290 that was assessed in a phase I trial (NCT04759365) 

aimed at evaluating its safety, tolerability, pharmacokinetics and pharmacodynamics in 

healthy individuals. The trial was terminated in August 2022 citing various logistic reasons, 

and the findings from enrolled patients have yet to be reported.

Through the use of PET radioligands, the OGA inhibitor LY3372689 was shown 

to efficiently penetrate the brain after a single dose in rats, and this research is 

now being extended to healthy volunteers with LY3372689 showing brain penetration 

and occupancy140,141. Additional studies of both single (NCT03819270) and multiple 

(NCT04106206) ascending doses in healthy volunteers have shown that LY3372689 is 

safe142–144. An ongoing phase II trial, which includes cognitive assessments and imaging, 

is determining the efficacy, safety and tolerability of this drug in patients with early AD 

(NCT05063539) will be completed in 2024.

Another OGA inhibitor, MK-8719 was discussed our previous Review1, but no further 

updates are available on this drug at present.

Caspase inhibitors.—A multicentre phase II study of two different doses of the caspase 

inhibitor minocycline (ISRCTN16105064) was conducted in patients over 50 years of age 

with mild AD145. The treatment failed to slow cognitive decline, and the higher dose was 

associated with increased adverse effects; and treatment was discontinued.

Tau aggregation inhibitors

Curcumin reduces tauopathy in animal models and prevents tau aggregation in vitro146–

148. A phase II clinical trial (NCT01383161) examined the effects of curcumin treatment 

in patients with MCI and healthy adults149. Improvements in long-term memory, visual 

memory and attention were noted in the individuals who received the drug. Furthermore, 

significant associations were observed between improved cognition and decreases in PET 

ligand binding to pathological tau and Aβ. A second phase II study (NCT01811381) is 

examining the effects of curcumin, alone or with yoga, in people with MCI or subjective 

cognitive impairment. The endpoints include blood-based biomarkers, changes on PET 

imaging and adverse events. The study was scheduled to be completed in 2020 but the 

results have yet to be released.
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LMTX (also known as TRx0237) is a derivative of methylene blue that crosses the 

blood–brain barrier (BBB), and In animal models, reduced tau aggregation and improved 

cognition150,151. Several phase III trials of this drug have been initiated in people with mild-

to-moderate AD, along with an open-label extension study for individuals who completed 

the earlier trials152–155. Although none of the trials produced positive results, a revised 

report was released that purported to show efficacy153,155,156. However, this report used 

statistical analysis based on a small subset of the total sample that lacked proper control 

groups154,155. The open-label extension study (NCT02245568) was terminated early.

A phase III trial of LMTX in patients with AD (NCT03446001) was completed in April 

2023 and will be followed by a 1-year open-label extension study. The primary outcomes are 

adverse events and changes in cognition and daily functioning. Additional outcomes include 

brain atrophy and findings on 18F-fluorodeoxyglucose-PET scans. The results have yet to be 

reported.

Tau Morphomer (also known as ACI3024) is a small-molecule inhibitor that selectively 

targets tau aggregates. A phase I trial (ISRCTN18150742) to examine safety and tolerability 

in healthy adults was completed in 2020. The drug was found to enter the brain and its levels 

in the CSF increased in a dose-dependent manner157. No further data or future clinical trial 

plans have been reported.

Microtubule stabilizers

TPI-287 (also known as abeotaxane) is a microtubule stabilizer that has been shown to 

be safe and effective in cancer trials158. Two phase I trials, one in people with in AD 

(NCT01966666) and the other in people with CBD or PSP (NCT02133846), were combined 

to examine the safety, tolerability, pharmacokinetics and pharmacodynamics of the drug159. 

The AD group had a lower maximum tolerated dose than the CBD and PSP groups. In 

the AD group, the treatment was associated with reduced cognitive decline compared with 

placebo, however the authors attributed this to the greater than expected cognitive decline in 

the placebo group. Although the patients with CBD or PSP patients tolerated a higher dose, 

the treated individuals showed increased falls and worsening dementia symptoms. Brain 

penetrance of TPI-287 could not be confirmed as it was not detected in the CSF 1 week after 

the final infusion. No trials of this drug are currently in progress.

NAP (also known as davunetide) is a neuroprotective peptide that has been shown 

to reduce tau and Aβ burden and improve cognition in animals160. A phase II trial 

(NCT01056965), examining its safety, tolerability, cognition, imaging and CSF biomarkers 

in various tauopathies, including PSP, FTD, CBD and non-fluent aphasia, was reported to be 

completed in 2012, but the results have yet to be released.

Tau immunotherapies

The first successful reports of vaccine and antibody therapies targeting tau were made by our 

group161–164. Subsequently, numerous papers have reported effective targeting of multiple 

tau epitopes, including the amino-terminus, the mid-domain, the microtubule-binding 
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region, misfolded tau, p-tau202, p-tau231, p-tau396/404, p-tau409, p-tau413, p-tau422 and 

oligomeric tau species57,165–172.

Immunotherapy can be active or passive and can function through extracellular or 

intracellular mechanisms (Fig. 3). Active immunotherapy delivers a tau immunogen as a 

vaccine, and the advantages of this approach are its low cost, promotion of a polyclonal 

antibody response and lasting efficacy. However, because tau is an endogenous protein, the 

potential exists for adverse and potentially irreversible autoimmune responses. Detrimental 

effects were seen in early mouse studies that used full-length recombinant tau with strong 

adjuvants that would never be approved for human use173,174. Multiple immunizations with 

the p-tau396/404 immunogen in alum adjuvant led to increased mortality in 3×Tg but 

not JNPL3 mice162,175. With fewer immunizations, 3×Tg mice showed a strong sustained 

antibody response with clearance of Aβ and tau and the animals remained healthy. No safety 

issues have been reported in other preclinical studies or ongoing clinical trials of active tau 

immunization.

The main advantage of passive immunotherapy is flexibility. Premade antibodies can target 

specific epitopes, which could allow treatment to be tailored to the disease stage. The 

antibodies can also be optimized, for example, by changing the IgG subclass or through 

modifications to improve uptake and/or alter tau binding. Passive immunotherapy is also 

relatively reversible as any adverse effects should subside following antibody clearance, with 

minimal to no T cell activation. Disadvantages include the high cost and the need for chronic 

administration, which increases the likelihood of an anti-idiotypic response and associated 

adverse effects. Monoclonal targeting might also be less effective than the active polyclonal 

response. Antibodies could prevent or clear tau pathology through several mechanisms, as 

reviewed extensively elsewhere167. In brief, antibodies can work extracellularly to sequester 

pathological tau or promote its clearance via the periphery or by microglia. Intracellularly, 

tau antibodies could promote disaggregation of tau polymers and their degradation through 

cellular clearance pathways.

In preclinical testing, pretreatment of pathological tau with antibodies or addition of an 

antibody and tau to cultures simultaneously dampened seeding of pathological tau176–186, 

possibly through the formation of tau–antibody complexes that prevented uptake of the 

tau seeds by neighbouring neurons. These complexes could be phagocytosed by microglia 

or cleared from the interstitial space via the BBB and/or the circumventricular organs. 

Antibody treatment can increase serum tau levels, which might indicate removal from the 

brain via Fc receptors or, more likely, the increased half-life of antibody bound tau187–189. 

Microglia also phagocytose antibody–tau complexes, typically in an Fc-dependent manner, 

with clearance being impaired by effectorless antibodies or fragments or by blocking the Fc 

receptors181,189–194.

Despite concerns about antibodies with effector functions promoting glial activation, either 

human IgG1 antibodies did not increase cytokine levels in cultured glia compared with tau 

alone, or the activation pattern was different from that induced by bacterial antigens191,192. 

However, glia might behave differently in culture than in situ, and differentiating the impact 

of antibody treatments from the effects of tau-induced cytokine production is difficult. 
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Furthermore, an effectorless tau antibody, gosuranemab, seemed to promote glial activation 

in humans, although the small number of patients prevents firm conclusions from being 

drawn195. Data from patients with tauopathy demonstrate the complexity of the glial 

response. Glial activation has been observed in early stages and is thought to be both a result 

and a mediator of pathology196–198. Activated glia are found in association with plaques and 

NFT-bearing cells, with some studies showing a stronger correlation of glial activation with 

tau pathology compared to Aβ196,199–203. In some studies, a progressive increase in glial 

activation was seen over time199. However, some reports suggest that increased baseline 

rates of glial tracer binding early in disease reflect a protective response, and other studies 

found distinct waves of glial activation in MCI and AD201,204–207. Ultimately, these data 

highlight the need for further research, ideally in vivo, into the role of glia in tauopathies.

Multiple groups have shown that antibodies can enter neurons and colocalize with 

pathological tau162,182–184,208–216. This uptake could occur through several different 

mechanisms (Fig. 3). Neurons express Fcγ receptors and tripartite motif containing 21 

(TRIM21), a high-affinity cytosolic Fc receptor162,208,212,217–226. Antibodies or antibody-

bound tau can bind to surface receptors, which facilitate uptake from the extracellular 

space in a clathrin-dependent manner and enable delivery to the endosomal–lysosomal 

system. Antibodies or antibody–tau complexes can also enter the cell via non-specific 

bulk endocytosis. Colocalization between antibodies and tau or other protein targets 

in this compartment has been shown in cell and animal models182,183,208,209,211,213–

215,227–230. Multiple groups have demonstrated neuronal uptake of therapeutic antibodies 

against other intracellular targets, and of autoantibodies and circulating IgGs228–242. Once 

internalized, antibodies might exert protective effects in the endosome or the cytosol. By 

binding to endosomal tau, antibodies could prevent tau-induced endosomal membrane 

disruption and promote disassociation of aggregates, thereby facilitating lysosomal enzyme 

access for digestion. Antibodies might also enter the cytosol following disruption of the 

endosomal membrane or through translocation. Endosomal–lysosomal membrane integrity 

is compromised in the presence of pathological tau, Aβ, exosomes or reactive oxygen 

species, and any increased permeability might also allow antibodies to escape114,117–119,243–

248 Antigens and antigen–antibody complexes are transported from the endosome to the 

cytosol in dendritic cells249–251, and a similar mechanism could exist in neurons.

Once in the cytosol, antibody-bound tau can be ubiquitinated for proteasomal degradation 

through its association with TRIM21194,212. Specifically, an antibody against p-tau422 has 

been shown to reduce the levels of insoluble tau in vivo, but its efficacy is lost in the 

absence of TRIM21, further highlighting the importance of antibody-mediated intracellular 

clearance of tau194. Both endosomal–lysosomal and proteasomal clearance can also be aided 

by antibody-mediated blockage or reversal of tau polymerization, as smaller aggregates or 

monomers are more easily cleared227,252–254.

In the sections that follow, we discuss the clinical trials of tau immunotherapies that have 

been initiated or published since our previous Review1.
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Active immunotherapy

AADvac1.—AADvac1 is an active vaccine designed to target N-terminally truncated tau 

fragments255,256. It consists of a synthetic peptide encompassing amino acids 294–305 

of the tau protein coupled to keyhole limpet hemocyanin with an aluminum hydroxide 

adjuvant. Four clinical studies of AADvac1 have been completed, three in patients with 

mild-to-moderate AD and the fourth in patients with non-fluent, agrammatic variant 

progressive aphasia (naPPA), the pathology of which resembles AD and FTD257.

In a phase I trial (NCT01850238) found that AADvac1 was safe and well tolerated in 

patients with AD256. No deleterious immunological responses were elicited. All but one 

of 30 patients developed an IgG response with no encephalitis or vasogenic oedema. 

Five patients in the treatment group experienced serious adverse events, with two patients 

from this group withdrawing from the trial with complications thought to be unrelated to 

treatment. Cognitive scores remained stable in all patients. Overall, AADvac1 had excellent 

immunogenicity and a favourable safety profile.

A follow-up phase I study (NCT02031198, FUNDAMANT) revealed a similar safety 

profile258. Antibody titres declined after the six-dose vaccination regimen, but booster 

doses restored IgG levels. Higher IgG titres were significantly correlated with reduced 

hippocampal atrophy and cognitive decline. An association between cognitive benefit and 

IgG titre was observed in patients with positive AD biomarkers.

A phase II trial (NCT02579252, ADAMANT) was conducted in patients with mild AD259–

261. AADvac1 was safe and well tolerated and induced a strong IgG response. The vaccine 

did not alter cognition or brain atrophy rates but was associated with a 58% attenuation of 

plasma NfL increase. In patients who provided CSF samples, levels of the p-tau217 epitope 

were significantly reduced, with trends for clearance of p-tau181 and t-tau, in the AADvac1 

group. In a subgroup of patients who were predicted to have both Aβ and tau pathology, 

AADvac1 reduced clinical and functional decline and plasma NfL levels260. These results 

suggested that larger stratified studies are needed to evaluate the clinical efficacy of this 

vaccine.

A separate 24-month open-label phase I pilot trial (NCT03174886) was conducted in 

patients with naPPA. The primary objective was to assess the safety of AADvac1 with 

immunogenicity as a second objective. Exploratory outcomes included clinical, cognitive, 

and biomarker readouts. The results have not yet been disclosed.

ACI-35.—ACI-35 is a liposome-based vaccine that targets the p-tau396/404 epitope262. 

A phase Ib study (ISRCTN13033912) completed in 2017 found ACI-35 to be safe and 

well tolerated in patients with mild-to-moderate AD. However, the immune response was 

weak, even after booster shots261. A second-generation vaccine, ACI-35.030, was developed, 

which included a second adjuvant and an epitope to activate T helper cells. The redesigned 

vaccine has better immunogenicity, and the antibodies generated specifically bind to p-tau 

and recognize PHFs from the brains of individuals with AD261.
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A phase Ib/IIa trial (NCT04445831) to test the safety and immunogenicity of ACI-35.030 

in early AD is ongoing. A separate arm was added to evaluate JACI-35.054, which uses the 

same p-tau396/404 peptide linked to a carrier protein. The primary outcomes are adverse 

events and plasma antibody titres, with cognition and behaviour as secondary outcomes. 

The interim results from the ACI-35.030 cohorts showed that all groups developed a 

potent antibody response that was specific for p-tau and PHFs263–267. The ACI-35.030-

induced immune response was sustained when boosted periodically for up to 72 weeks, 

with no clinically relevant safety concerns268. JACI-35.054 also generated encouraging 

interim safety, tolerability and immunogenicity results in the low-dose cohort266. However, 

ACI-35.030 has been selected for further development, given that its antibody response was 

stonger relative to JACI-35.054268.

Passive immunotherapy

APNmAb005.—APNmAb005 is an anti-tau IgG antibody (subclass not reported). 

According to a preclinical preprint, the mouse version of this antibody preferentially 

recognized synaptic oligomeric and insoluble tau in brain lysates from individuals with 

AD and pathological tau in brain tissue from people with 3R and 4R tauopathies269. The 

antibody prevented tau seeding in culture and partially rescued synaptic and neuronal loss 

and increased tau levels in brain lysate in a mouse model of tauopathy, indicating that the 

antibody prevented toxicity in vivo without promoting tau clearance.

In May 2022, a phase I study (NCT05344989) was initiated to evaluate the safety profile of 

a single dose of APNmAb005 in healthy participants. The trial is expected to be completed 

in July 2024.

Bepranemab.—Bepranemab (UCB0107) is an IgG4 antibody that binds to amino acids 

235–250 of tau near the microtubule-binding region. The mouse version was found to block 

tau seeding in culture270 and in two mouse models of tauopathy when pre-incubated with tau 
271.

Three phase I trials evaluated the safety, tolerability and pharmacokinetics of bepranemab. 

The first trial (NCT03464227) in healthy individuals showed no drug-related safety issues 

or anti-drug antibodies, and a dose-dependent increase in UCB0107 levels was observed in 

serum and CSF272,273. A second phase I trial (NCT03605082), also in healthy individuals, 

had safety and pharmacokinetics as primary endpoints. The results have not been released. 

The third phase I trial (NCT04185415), in patients with PSP, raised no safety issues274. An 

open-label extension study (NCT04658199) was registered to evaluate the long-term safety 

and tolerability of UCB0107 in patients with PSP and is scheduled to run until 2025.

A phase II trial of bepranemab in patients with MCI or mild AD (NCT04867616) is 

ongoing and expected to run until 2025. The primary outcome is the cognitive score, 

and the secondary outcomes are adverse events, other cognitive measures, tau PET and 

pharmacokinetics.
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BIIB076.—BIIB076 is an IgG1 antibody that recognizes the mid-domain of tau. It was 

reported to block tau seeding in culture after immunodepletion and to inhibit tau propagation 

between neurons177.

A phase I trial of BIIB076 (NCT03056729) was conducted in healthy volunteers and 

individuals with mild or probable AD. In June 2019, the trial protocol was modified by 

eliminating the more advanced AD cohort and adopting adverse events as the sole primary 

outcome. Adverse events prompted the investigators to reduce the highest dose275,276. 

BIIB076 reduced mid-region-containing tau in CSF 1 week after infusion, suggesting target 

engagement275. However, the development of BIIB076 was terminated in July 2022 for 

business reasons277.

E2814.—E2814 is an IgG1 antibody that recognizes HVPGG motifs in the second and 

fourth repeats of the tau microtubule-binding domain and binds to extracellular tau178. This 

antibody (or its murine version) has been reported to prevent tau seeding and aggregation 

in vitro, attenuate deposition of tau aggregates in mice injected with tau fibrils, and reduce 

free tau containing the mid-domain in non-human primates178,278. Interestingly, in mice that 

had received intracerebral tau seed injections, a 3 week course of intraperitoneal injections 

of the mouse version of E2814 reduced insoluble tau levels on the contralateral but not the 

ipsilateral side of the seed injections, raising efficacy concerns178. A longer-term study using 

the same seeding method and peripheral antibody injections for 12 weeks showed significant 

reductions in insoluble tau on both the ipsilateral and contralateral sides at the highest dose, 

and target engagement in the CSF279. Neither study reported on soluble tau levels.

A phase I trial (NCT04231513) completed in 2020 tested the safety, tolerability and 

immunogenicity of E2814 in healthy individuals. No significant drug-related adverse events 

were reported, although two participants developed anti-E2814 antibodies. Serum and 

CSF pharmacokinetics were proportional to antibody dose, with a dose-related increase of 

antibody–tau association in the CSF, which persisted for at least 1 month278,280,281. In 2021, 

a multiple-ascending-dose phase was added to the study. The trial ended in March 2023, and 

the results have yet to be released.

In 2021, E2814 was chosen to be evaluated in the Dominantly Inherited Alzheimer’s 

Network Trials Unit (DIAN-TU) prevention trial, the participants of which carry pathogenic 

amyloid precursor protein or presenilin mutations282. A phase Ib/II trial (NCT04971733) 

aims to enroll thirteen DIAN patients with mild-to-moderate cognitive impairment. This 

trial will assess safety, tolerability, target engagement and pharmacokinetics, as well as 

anti-drug antibodies, and will run until April 2025. Preliminary results from this trial were 

presented at the Alzheimer’s Association International Conference (AAIC) in 2023283,284. 

The antibody was safe and well tolerated with favourable pharmacokinetics, and showed 

target engagement with tau in the CSF. After 3 months, the treated individuals showed 

a significant decrease in CSF tau 243–254, a tau fragment that strongly correlates with 

tau PET scan data283,285. Importantly, E2814 binds outside the 243–254 region, thereby 

ensuring that the CSF data are not confounded by the treatment itself283. In vivo, the 

antibody might bind to a larger tau fragment extracellularly and/or intracellularly.
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Further phase II/III trials (NCT05269394 and NCT01760005) will test E2814 treatment 

alone or concurrently with anti-Aβ treatment (lecanemab) in DIAN patients with early-onset 

AD. These trials will evaluate safety, tolerability, biomarkers and cognitive and other 

functional efficacy of E2814 alone or with lecanemab. Both trials are expected to be 

completed in October 2027.

Gosuranemab.—Gosuranemab (BIIB092) is an IgG4 antibody that binds human tau 

at residues 15–22286. It was raised against extracellular N-terminal tau fragments (eTau) 

isolated from human neurons differentiated from pluripotent stem cells derived from patients 

with familial AD186,287. The antibody was shown to decrease free tau in brain interstitial 

fluid and CSF in tauopathy mice after intraperitoneal injections but its potential effect on 

clearing tau in brain tissue was not reported186.

In a phase I trial to evaluate the safety of gosuranemab in healthy volunteers 

(NCT02294851), no severe adverse events were reported288. The antibody significantly 

decreased unbound tau in CSF, with sustained reduction of eTau fragments for up to 

12 weeks at higher doses. In a phase Ib trial in patients with PSP (NCT02460094), 

gosuranemab was safe and well tolerated, with mild-to-moderate adverse effects, and 

showed dose-dependent accumulation in serum and plasma289. All doses decreased free 

eTau by more than 90%, and this decrease was sustained for 85 days after treatment. An 

open-label extension (NCT02658916) was offered to phase Ib study participants to evaluate 

long-term safety and tolerability. However, this trial was terminated when a follow-up phase 

II trial (NCT03068468, PASSPORT) failed to meet its primary endpoint290. The phase II 

study was conducted to evaluate the efficacy of gosuranemab in 490 patients with PSP. In 

December 2019, it was announced that gosuranemab showed no efficacy, as assessed on the 

PSP Rating Scale, which measures movement difficulties. However, the antibody did reduce 

CSF free N-terminal tau fragments by 98%.

Gosuranemab also failed to show efficacy in a phase Ib ‘basket’ trial (NCT03658135) 

in four different primary tauopathies: Aβ PET-negative corticobasal syndrome, naPPA, 

frontotemporal lobar degeneration with MAPT mutation and traumatic encephalopathy 

syndrome287,291. No adverse events were reported and the treatment cleared most of the 

free eTau from the CSF but had no effect on exploratory measures of disease severity. Both 

this trial and the aforementioned phase II trial were terminated in December 2019291,292.

In a preliminary study of tissue from gosuranemab-treated individuals with primary 

tauopathies, treatment-related glial responses were reported, with no clearance of neuronal 

tau inclusions195. However, only a few individuals underwent autopsies and their treatment 

regimens and times to death following the last dose differed substantially.

Another phase II study (NCT03352557, TANGO) was conducted in patients with MCI or 

mild AD. This trial was designed to evaluate long-term safety and efficacy of three different 

doses of gosuranemab and generation of anti-drug antibodies. The treatment either failed to 

change or worsened cognitive scores275,293, and all three dose groups had poorer cognitive 

outcomes than the placebo group275. This trial and further development of gosuranemab 

were terminated293.
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JNJ-63733657.—JNJ-63733657 is an IgG1 antibody with a high affinity for p-tau217. It 

has been reported to neutralize tau seeds and inhibit pathological spreading in mouse models 

of tauopathy, but these data have not been peer reviewed294.

A phase I trial of JNJ-63733657 (NCT03375697) was conducted in healthy individuals and 

patients with prodromal or mild AD294,295. No safety or tolerability issues were raised. 

The pharmacokinetics were similar between healthy participants and those with AD, with 

dose-dependent reductions of p-tau217 in the CSF. Two other phase I trials (NCT03689153 

and NCT05407818) to assess the safety, tolerability and pharmacokinetics of JNJ-63733657 

in healthy participants have been completed but the results have not yet been published.

A phase II study (NCT04619420) is also ongoing to evaluate efficacy, safety, and tolerability 

of JNJ-63733657 in patients with early-stage AD who have a positive tau PET scan is also 

ongoing. The primary outcome is change in cognition, and secondary outcomes include 

other functional measures, brain tau burden, CSF tau, safety and pharmacokinetics. This trial 

will run until 2025.

Lu AF87908.—Lu AF87908 is an IgG1 antibody raised against p-tau396/404. The 

mouse version, C10.2, reduced tau seeding in vitro and in mice when pathological tau 

was pre-incubated with or immunodepleted by the antibody179. In cultured microglia, 

C10.2 promoted tau uptake and lysosome-mediated degradation191. The humanized version 

showed highly specific and sensitive tau binding in post-mortem brain tissue from people 

with AD or primary tauopathies296. A phase I study (NCT04149860) to test the safety, 

tolerability and pharmacokinetics of Lu AF87908 in healthy individuals and patients with 

AD concluded in July 2023.

MK-2214.—The precise epitope for MK-2214 has not been reported, but this antibody 

might be derived from a mouse antibody that recognizes p-tau413 and was found to 

bind AD tau and showed efficacy in animal models297,298. Two phase I trials have been 

initiated to examine its safety, tolerability, pharmacokinetics and pharmacodynamics in 

healthy individuals (jRCT2031220627) or patients with MCI or mild-to-moderate AD 

(NCT05466422), and are expected to be completed in 2024298.

PNT001.—PNT001 recognizes cis p-tau231 which is reported to be a highly neurotoxic 

form of pathological tau 214,299. Cis p-tau231 has been detected in brain tissue from people 

with AD or traumatic brain injury (TBI) and was shown to have a role in tau aggregation and 

neurodegeneration214,300–302. Preclinical studies indicated that peripheral anti-cis p-tau231 

treatment cleared pathological tau from the brain and ameliorated neuronal degeneration 

and some cognitive impairments in mouse models of tauopathy, vascular dementia and 

TBI214,300,303.

A phase II study (NCT04096287) evaluated the safety and tolerability of PNT001 in 

healthy individuals. The antibody was well tolerated, with dose-dependent serum and 

CSF exposure274. Another phase I trial (NCT04677829) to examine safety and tolerability 

in patients with acute TBI was also registered, but was terminated soon after the first 

participant enrolled and no results have been disclosed.
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PRX005.—PRX005 is an IgG1 antibody targeting the microtubule-binding region in both 

the 3R and 4R tau isoforms304,305. According to a conference presentation, PRX005 

recognizes both unphosphorylated and phosphorylated tau, and NFTs and dystrophic 

neurites in AD brain tissue304,305. It blocks binding of tau to heparan sulfate proteoglycan, 

thereby preventing tau transmission between cells, and was also shown to inhibit tau 

aggregation and p-tau accumulation in mouse models of tauopathy and amyloidosis.

A phase I study to evaluate the safety and tolerability of PRX005 is ongoing. The top-line 

results from a single-ascending-dose study in healthy individuals was announced in a press 

release and in poster at the AAIC in 2023305,306. The antibody was shown to be safe, with 

dose-dependent plasma and CSF exposure. A multiple-ascending-dose study in patients with 

AD has been initiated.

RG7345.—RG7345 targets p-tau422, and, preclinical studies, chronic administration 

reduced tau pathology in transgenic mice211. A phase I trial (NCT02281786) was initiated 

in healthy individuals to assess the safety, tolerability and pharmacokinetics of this antibody. 

Presumably it did not assess target engagement because the pSer422 epitope is found at very 

low levels or not at all in healthy individuals45,307,308. This trial was discontinued, probably 

because of unfavourable pharmacokinetics, and the results have not been published309.

Semorinemab.—Semorinemab (RO7105705) is an IgG4 antibody that targets the N-

terminus of monomeric and oligomeric tau. The mouse version was shown to target 

extracellular tau and reduced one phospho-tau epitope on brain sections, but had no effect 

on tau in western in a mouse model of tauopathy193,310. Effects on insoluble tau and 

on behaviour were not reported. Interestingly, the version of semorinemab with effector 

function cleared tau at a lower dose than the effectorless version, and neither antibody 

subclass increased astrogliosis or microgliosis193,310. Nevertheless, the effectorless version 

was selected for clinical trials, presumably because unlike the version with effector function, 

its mouse version does not cause fragmentation of microtubule-associated protein 2 — 

a protein that is important for microtubule assembly and stabilization in neurons in 

culture193,310.

A phase I trial of semorinemab (NCT02820896) was conducted in healthy individuals and 

patients with mild-to-moderate AD. All dosing and administration paradigms were safe and 

well tolerated311. No severe adverse effects were reported, and dose-dependent plasma and 

CSF antibody exposure was observed.

A phase II trial (NCT03289143, TAURIEL) was conducted in patients with prodromal 

or mild AD. The antibody was safe; however, it missed both the primary and secondary 

efficacy endpoints312. Antibody administration also failed to slow NFT accumulation, 

although its pharmacokinetics were dose-proportional274.

Another phase II trial (NCT03828747, LAURIET) enrolled patients with moderate AD. This 

study was completed in August 2023. The primary outcome was change in cognitive scores, 

and secondary outcomes include additional cognitive tests and behaviour, adverse events, 

serum concentration and immunogenicity. The top-line results showed that semorinemab 

Congdon et al. Page 15

Nat Rev Neurol. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT02281786
https://clinicaltrials.gov/ct2/show/NCT02820896
https://clinicaltrials.gov/ct2/show/NCT03289143
https://clinicaltrials.gov/ct2/show/NCT03828747


treatment slowed decline on one cognitive test, but no changes in other cognitive and 

functional outcomes were noted313, and tau burden based on PET signal was not altered 

although CSF tau was reduced313,314. A decision on phase III testing is pending.

Tilavonemab.—Tilavonemab (CN2–8E12) is an IgG4 antibody that recognizes an 

N-terminal tau epitope comprising residues 25–30 and has been reported to work 

extracellularly180,181,185,315. In culture, tilavonemab blocked tau seeding and prevented 

propagation of tau pathology when preincubated with the tau seeds181,185. In a mouse model 

of tauopathy, the drug substantially reduced levels of p-tau and insoluble tau and rescued 

contextual fear conditioning deficits180. A second study showed reduced levels of insoluble 

tau and decreased brain atrophy, as well as improved motor function, in mice treated with 

tilavonemab189.

In a phase I trial in patients with PSP (NCT02494024), tilavonemab was shown to be 

safe316. The drug had a serum half-life of 27–37 days and dose-dependent blood exposure. 

An open-label extension study (NCT03413319) was performed to determine the long-term 

safety and tolerability of the drug, as well as the eligibility of participants for a subsequent 

phase II trial.

A phase II trial (NCT02985879) to evaluate the safety and efficacy of tilavonemab 

was conducted in patients with PSP. A 4-year extension (NCT03391765) was initiated 

in participants who had completed the placebo-controlled treatment phase. Tilavonemab 

provided no benefit over placebo, although it had target engagement and a favourable 

tolerability profile317,318. The extension studies, as well as an expanded access programme 

in patients with CBD, were subsequently halted317,319.

Another phase II trial of tilavonemab (NCT02880956) was conducted in patients with early-

stage AD. An extension study (NCT03712787) on long-term safety and tolerability was 

offered to participants who completed the initial testing. In the extension study, which ended 

in July 2021, the treatment did not halt cognitive decline or improve functional outcomes, 

nor did it slow brain atrophy or lower plasma NfL levels275,320. Given the lack of efficacy in 

all trials, development of tilavonemab was terminated315.

Zagotenemab.—Zagotenemab (LY3303560) is a humanized form of the MC1 antibody, 

which recognizes an early form of misfolded tau321,322. In preclinical testing in tau 

transgenic mice, chronic injections of zagotenemab reduced insoluble p-tau levels in the 

spinal cord and p-tau immunoreactivity in brainstem and spinal cord, and improved motor 

phenotypes321. The single-chain variable fragment (scFv) of the antibody also reduced tau 

pathology in mice when administered in an AAV construct as a gene therapy323.

Two phase I trials assessed the safety and pharmacokinetics of zagotenemab. The first 

(NCT02754830) evaluated safety and serum drug concentration in healthy individuals 

and patients with MCI or mild-to-moderate AD. A second trial (NCT03019536) assessed 

multiple ascending doses in the same AD cohort. Adverse effects and pharmacokinetics 

were evaluated. The results have not been published.
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A phase II efficacy trial of zagotenemab (NCT03518073) was also conducted in patients 

with gradual and progressive memory decline. Primary outcomes included changes in 

cognition and secondary outcomes were additional functional measures and anti-drug 

antibodies. This trial missed its primary endpoint, and development of zagotenemab was 

discontinued324.

Factors influencing antibody efficacy

The results from human testing raise the issue of how to maximize antibody efficacy. 

Multiple factors affect antibody efficacy, including mechanism of action, IgG subclass, 

epitope and the patient population being treated.

Tilavonemab, gosuranemab, semorinemab, and zagotenemab which were found in 

preclinical testing to work only extracellularly and to solely or partially target the N-

terminus of tau, have not provided functional benefits in clinical trials, suggesting that 

extracellular targeting of tau epitopes will not be sufficient. Although tau spreading is a 

valid clinical target, extracellular tau is only a small proportion of the tau in AD325,326. 

Most tau, including its pathological forms, is found within neurons. Therefore, removing 

extracellular tau is unlikely to reverse intracellular pathology, although the extracellular and 

intracellular pools might exist in equilibrium. In addition, in the CSF patients with AD or 

primary tauopathy, N-terminal tau is found at much lower levels than tau containing the 

mid-domain327–330. Furthermore, tilavonemab and gosuranemab were tested in patients with 

PSP, who, unlike patients with AD, do not have elevated CSF tau levels328,331–336. These 

factors could all have contributed to the lack of efficacy of the antibodies. Patients with 

primary tauopathy were shown to have decreased CSF levels of the microtubule-binding 

region of tau337, suggesting that extracellular antibodies against this region would not be 

beneficial in these individuals.

The optimal tau epitopes to target in AD remain open to debate. Mass spectroscopy has 

revealed relatively low levels of carboxy-terminal tau in the CSF in AD, indicating that 

extracellular antibodies targeting this region are likely to be ineffective280,328–330,337,338. 

Mid-domain tau (approximately aa 150–250) comprises the largest fraction of tau in the 

CSF, suggesting that this region would be a better target327,328; however, as stated above, 

even the largest fraction of extracellular tau is a minuscule proportion of the tau in the brain.

Intracellularly, the N-terminus might not be the optimal target for immunotherapies339. 

Preventing or reversing aggregation of tau can reduce seeding and make the protein easier 

to digest; therefore, selecting epitopes from the core of aggregates could be more beneficial, 

but these epitopes often have limited accessibility owing to their hydrophobic nature. Cryo-

electron microscopy has clarified the core structure and sequence of filaments from different 

tauopathies55,340–342. Although the structures differ, they all consist of the microtubule-

binding region and C-terminus of the molecule. Thus, antibodies targeting epitopes in these 

regions might be appealing candidates, assuming that they can work intracellularly. Like 

C-terminal tau, the microtubule-binding region of tau is primarily found intraneuronally. 

An additional challenge for immunotherapies that target phospho-epitopes is the shifting 

prevalence of these epitopes over time, with some being more prominent in early-stage 

disease and others increasing during disease progression.
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In addition to differences in CSF tau, the pathology seen in primary tauopathies and 

AD differs in many respects, including the brain regions affected and the types of tau 

lesions18,19. Therefore, these patient populations should not be considered interchangeable 

during the development and testing of immunotherapies. Tau filaments can assume 

different morphologies with unique core structures, and phospho-epitope profiles might 

also vary between and within tauopathies 54,55,340–343. In addition to neuronal tau, primary 

tauopathies also feature glial tau deposits. These inclusions, such as oligodendrocyte 

coiled bodies and tufted astrocytes, are distinct from the pathological tau that is seen 

in neurons. The type of astrocytic pathology is also disease-dependent18,344, which 

has consequences for synaptic function, provision of trophic support, inflammation and 

maintenance of myelination344,345. Glial tau pathology might propagate independently of 

neurons346,347. Targeting of non-neuronal inclusions with immunotherapies is unlikely to 

be straightforward, as the optimal epitopes might be different from those in neurons, and 

antibodies optimized for neurons may not be internalized by glia. Clearing this pool of 

tau may require a more direct focus, such as using gene therapy to specifically express 

antibodies in glial cells323.

Current human trials utilize either IgG1 or IgG4 antibody subclasses. Unlike IgG1, IgG4 

antibodies mostly lack effector function, which might increase safety but reduce their 

efficacy. Although Lee at al. argued that effector function was unnecessary, their antibody 

with effector functions promoted tau clearance at a lower dose than its effectorless 

counterpart193,310. Mukadam et al. showed that in slice cultures, an antibody mutated to 

lack Fc binding, which mediates effector function, was less effective than its unmodified 

counterpart194. In cultured microglia, a direct comparison between humanized IgG1 and 

IgG4 versions of the same antibody showed that the IgG1 variant was more efficacious at 

promoting tau phagocytosis192. When the same tau binding region was cloned into all four 

mouse IgG subclasses (IgG1, IgG2a, IgG2b and IgG3), IgG1 and IgG2a (the human IgG1 

analogue) were the most effective at preventing tau toxicity and promoting tau clearance, 

and the effectorless variant IgG3 (human IgG4 analogue) was the least effective348. Some 

of those efficacy differences might relate to variable Fc-mediated neuronal uptake of the 

IgG subclasses. In addition to Fc binding, the IgG subclass influences antibody catabolism 

rates, self-association and stability349–352, and changing the IgG subclass can affect antigen 

binding even when the variable regions are unchanged182,348,353–368. These findings could 

have major implications for antibodies that underwent preclinical testing before being 

humanized, sometimes into a different subclass. IgG4 can also split and form heterodimers 

with other IgG4 antibodies, and it is unclear whether this possibility was considered for the 

antibodies reviewed above 369,370.

Thorough testing of humanized antibodies in mouse models is not feasible because species 

differences increase the likelihood of development of anti-idiotypic antibodies and related 

adverse effects. These problems could be minimized to some extent by using mouse 

models with humanized immune systems crossed with tauopathy models, although no such 

hybrid models have been described in the literature. Some humanized antibodies have been 

examined in non-human primates, but they have limited utility as these animals are not 

prone to develop tau pathology.
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Antibody charge and affinity should also be considered during antibody design, although. 

affinity for the antigen and efficacy do not necessarily correspond. For example, a lower-

affinity antibody against p-tau396/404 was more efficacious than a higher affinity antibody 

against the same epitope182,183,348,371. Though not directly comparable, the low-affinity 

MC1 antibody showed greater efficacy in vivo than a higher-affinity antibody against a 

different tau epitope372. However, such findings are not universal, as a higher-affinity 

antibody specific for tau truncated at Asp421 was more effective than a lower-affinity 

antibody against the same epitope (E.E.C., E.M.S. et al, unpublished work). Charge 

also influences every aspect of antibody function, including binding, uptake into cells 

or across the BBB, what cell type the antibody targets, and how quickly the antibody 

is degraded182,373–378. Of note, an antibody’s ability to prevent tau seeding does not 

necessarily relate to its ability to prevent tau toxicity182,325.

These findings highlight the need for further research into optimal antibody design and 

demonstrate the challenge of translating results from the laboratory to human patients. 

Many of these questions have been explored more thoroughly in other fields, notably in 

the development of cancer immunotherapies, and merit greater study. In the sections that 

follow, we discuss how antibodies and their fragments might be modified to enhance tau 

clearance379–402.

New immunotherapy approaches

Antibody fragments

Currently, only whole IgGs are being tested in clinical trials, but antibody fragments show 

potential as therapeutic and imaging agents. scFvs and single-domain antibodies (sdAbs) 

are much smaller (approximately 25 kDa and 13 kDa, respectively) than whole IgGs (150 

kDa). The smaller size could enable enhanced BBB penetration and targeting of cryptic 

epitopes that are inaccessible to whole antibodies. In addition, sdAbs are stable and easier to 

produce in large quantities than whole antibodies. Preclinical testing of scFvs and sdAbs in 

cell and animal models has shown that they can prevent the formation of tau polymers, 

act as imaging agents and reduce tau pathology215,252,254,323,348,403–409. One potential 

complicating factor for using unmodified antibody fragments as long-term therapies is 

that they can have a half-life in the order of hours, compared with 1–3 weeks for whole 

antibodies. However, we have observed fluorescent signal from tau scFvs and sdAbs in the 

brains of tauopathy mice several days after injection215,407. Thus, with a sufficient quantity 

of target to bind, antibody fragments seem to be retained in tissue. Moreover, scFvs and 

sdAbs can be delivered as gene therapies, which have been shown to reduce polymerization 

and clear tau in vivo253,254,404,408,410. Antibody fragment gene therapy is also supported by 

results from other neurodegenerative disease models410–414.

Modified immunotherapy

Tau antibodies and antibody fragments can be incorporated into molecular complexes to 

promote targeted tau degradation through the proteasome or the endosomal–lysosomal 

system. Whole IgGs and antibody fragments have been used as the binding agents 

for extracellular, surface-bound or intracellular targets (Fig. 4). Although no modified, 
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multivalent sdAbs have yet been used to target tau in clinical trials, some have been tested 

for the treatment of cancer, as well as infectious and autoimmune diseases415,416.

Targeted protein degradation via the ubiquitin–proteasome system.—scFvs and 

sdAbs can be modified to enhance target ubiquitination and proteasomal clearance. Gallardo 

et al. developed anti-tau scFv chimaeras by fusing scFvs to ubiquitin at either Lys48 or 

Lys63, which directs proteins to the proteasome or lysosome, respectively389. Both scFvs 

reduced intracellular tau levels in culture but only the proteasome-targeting scFv was 

effective in vivo.

Proteolysis-targeting chimaeras (PROTACs) are hetero-bivalent complexes comprised of 

a target binder (small molecule or antibody), a short linker and an E3 ligase-recruiting 

molecule. The complex brings the target protein and ubiquitination machinery into close 

proximity, leading to polyubiquitination and proteasome-mediated degradation of the 

protein. Small-molecule-based and peptide-based PROTACs have been shown to degrade 

tau in cultured cells384–388. In mouse models of AD and tauopathy, a tau-targeting PROTAC 

reduced t-tau and p-tau levels, preserved dendritic arborization and improved cognitive 

performance384,388. Several studies have successfully incorporated sdAbs as the target 

binding portion of the PROTAC to rapidly degrade a range of proteins381–383.

A third strategy fuses the PEST (Proline (P), Glutamic Acid (E) / or Aspartic Acid (D), 

Serine (S), and Threonine (T)) proteasome-targeting motif to the antibody fragment of 

interest. This modification enhanced the efficacy of an anti-huntingtin scFv in transgenic 

mice390. sdAbs fused to the same PEST motif prevented α-synuclein-induced toxicity in 

cultured cells and reduced α-synuclein pathology in vivo379,380.

Targeted protein degradation via the endosomal–lysosomal system.—Cell-

surface lysosome-targeting receptors (LTRs) such as the cation-independent mannose-6-

phosphate receptor (CI-M6PR) have been reported to facilitate transport of proteins to 

lysosomes417. CI-M6PR shuttles cargo to pre-lysosomal compartments, where the cargo 

dissociates and progresses to the lysosome while the receptor is recycled. CI-M6PR has been 

targeted to treat lysosomal storage disorders418 and is highly expressed in neurons419–421. 

Tau-targeting antibodies could be modified to bind to CI-M6PR to enhance tau clearance.

So-called sweeping antibodies have a modified pH-sensitive variable domain that releases 

the target protein into acidic compartments to be digested, and the unbound antibody is 

recycled back to the cell surface391. The constant domain of the antibody can be modified to 

enhance Fc binding, which protects it from being degraded and enhances cellular uptake of 

the antibody–protein complexes. This approach could enhance the ability of tau antibodies 

to clear tau from the extracellular space through microglial phagocytosis.

Lysosome-targeting chimaeras (LYTACs) consist of an antibody or small molecule fused to 

a synthetic mannose-6-phosphonate glycopeptide that acts as an LTR ligand. The LYTAC 

molecule can simultaneously bind to a membrane-bound or extracellular target protein and 

the LTR. Once the antibody–target complex has been endocytosed, the target protein is 

released and the LYTAC is recycled back to the cell surface392,393.
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Antibody-based PROTACs (AbTACs) are antibody derivatives that promote lysosomal 

degradation. One arm of the engineered bispecific AbTAC antibody binds to an extracellular 

or membrane target and the other arm binds to a membrane-bound E3 ligase such as ring 

finger protein 43. As proof of concept, an AbTAC targeting programmed death ligand 1 

successfully promoted lysosomal targeting and clearance of the protein397.

Targeted protein degradation via the autophagy–lysosomal pathway.—The 

autophagy targeting chimaera (AUTAC) complex is composed of a cGMP-based degradation 

tag, a linker and a small molecule or antibody to bind to the target394,395. The 

use of a cGMP derivative was based on findings that 8-nitro-cGMP promoted Lys63 

polyubiquitination and, thus, clearance through the autophagy–lysosomal system396. This 

method was successfully used to promote the autophagic degradation of mitochondria in 

human fibroblasts395.

AUTOTACs, a second type of autophagy-targeting chimaera, are bidirectional complexes 

consisting of a module that interacts with the autophagy cargo receptor p62/SQSTM1 and a 

portion that binds the target399. This arrangement creates a link between the target and p62, 

leading to the oligomerization and activation of p62 and, in turn, target degradation by the 

autophagy–lysosome pathway. Using a modified 4-phenylbutyric acid molecular chaperone 

as a tau binder, AUTOTACs have successfully targeted misfolded tau in cells and tauopathy 

mice.

The tauopathy-homing and autophagy-activating nanoassembly (THN) has a magnetic 

mesoporous silica nanoparticle core embedded with PEGylated cerium oxide bound to the 

AT8 tau antibody401. AT8 binds to p-tau202/205 and cerium oxide promotes autophagy400. 

In cultured cells, THN particles colocalized with autophagosomes and promoted clearance 

of tau, and in a tauopathy rat model, THN particles were internalized by neurons and bound 

to pathological tau401. The treated animals showed amelioration of cognitive deficits.

Enhancing tau dephosphorylation.—Dephosphorylation-targeting chimaeras 

(DEPTACs) contain a tau-binding portion connected to a PP2A recruiter via a linker, 

with an added motif to increase cellular uptake402. This arrangement brings tau in close 

proximity to PP2A, thereby facilitating dephosphorylation. In tauopathy mice, treatment 

with a β-tubulin peptide-based DEPTAC lowered pathological tau levels while improving 

memory and microtubule assembly and increasing dendritic spine density. This approach 

would also avoid the dephosphorylation of unrelated proteins that could result if PP2A was 

targeted globally.

Conclusions

In our previous Review on tau-targeting therapies1, we stated that the outcomes of pending 

trials would provide a clearer picture of the landscape of these therapies. Some therapies that 

showed promise in preclinical testing have failed to translate into benefits for patients. Other 

drugs have advanced to or within trials. Of the non-immunotherapy approaches, sodium 

selenate, lithium chloride and some OGA inhibitors have ongoing clinical trials, but many 
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others have either failed or not advanced. In addition, several candidates completed clinical 

trials but no results were released.

Among the recent clinical trials that were reported, ASOs produced promising results, 

safely reducing CSF tau levels below baseline in patients with mild AD123. Other measures, 

such as clinical presentation and brain volume, were not significantly different between 

the placebo and treatment groups; however, this study was relatively short (23 weeks) and 

had a small number of participants, with safety and pharmacokinetics being the principal 

endpoints. A larger multi-year phase II study is underway, with a focus on cognitive 

outcomes, the results are eagerly awaited.

The failure of some anti-tau antibodies might be attributed to several factors, including the 

choice of epitope, the study population and the mechanism of action, as well as limited 

information on how the properties of humanized antibodies relate to the mouse prototypes. 

Many studies have focused on N-terminal-tau-targeting antibodies that act extracellularly, 

despite the fact that over 99% of tau is intracellular and few N-terminal tau fragments are 

found in the extracellular space. In addition, these antibodies were trialed in patients with 

primary tauopathy even though extracellular tau levels are not increased in these individuals. 

Multiple groups, including ours, have highlighted the unsuitability of the N-terminus of tau 

as a therapeutic target325,339,422–424. The C-terminus of tau might also be an inappropriate 

target for extracellular antibodies.

The microtubule-binding region and C-terminus of tau are appealing targets for intracellular 

antibodies, as these regions make up the core of tau polymers. The efficacy of targeting 

specific phospho-epitopes might depend on the disease stage. Further development of 

peripheral and imaging biomarkers to identify the disease stage before treatment could allow 

antibody treatments to be tailored to the pathology of individual patients.

Immunotherapies and non-immunotherapy candidates face several common challenges. Both 

antibodies and small molecules must cross the BBB and enter neurons. Studies must also 

be long enough for the clinical benefits of the therapies to become apparent. Moreover, the 

choice of outcome measures must be carefully considered.

The failed immunotherapy candidates highlight the need for more research into how to select 

and optimize antibodies. We have long argued that to maximize efficacy, antibodies should 

be able to target both intracellular and extracellular pathological tau. Our group and others 

have demonstrated the importance of neuronal uptake of antibodies, and data on the role 

of TRIM21 further supports intracellular mechanisms182–184,194,209,211,212,214,227,348,425. 

Antigen binding, charge and cellular uptake can all be altered by changing constant domains 

— either swapping between murine IgGs or from murine to human — even if the variable 

region remains the same182,348. Following humanization, antibodies must be thoroughly 

re-evaluated, which is feasible in culture models but difficult in vivo owing to a lack of 

suitable human-like animal models.

Combination trials of therapies targeting both tau and Aβ should become more common 

in the near future. However, such approaches might not be applicable to all patients; 

for example, individuals who carry the apolipoprotein E ε4 have an increased risk of 
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amyloid-related imaging abnormalities after treatment with lecanemab or donanemab. We 

also expect modified antibody approaches, as well as antibody-based gene therapies and/or 

gene-editing strategies, to enter trials. Advances in tau biomarkers should enable suitable 

patient populations to be identified at earlier stages of the disease, thereby increasing the 

likelihood of a positive outcome.

Progress in the field of tau-targeting therapies has not been as rapid as we had hoped. 

However, the intracellular location, size and complexity of tau makes it a more challenging 

target than Aβ, and it took nearly 40 years from the discovery of Aβ to an approved 

therapy (which, notably, is an antibody). We believe that it is time for tau-targeting therapies 

to receive a similar degree of support to their Aβ-targeting counterparts. Watching large 

companies with extensive resources periodically scale back their research into therapies for 

neurodegeneration has been worrying, but is understandable to some extent in view of the 

difficulty and high cost of these studies. As always, more basic research is needed, both 

to test potential therapies, and to explore the pathological mechanisms of AD and other 

tauopathies, which will help us to determine how best to optimize existing candidates and to 

identify new targets for intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

Therapies targeting expression, post-translational modifications, aggregation and 

clearance of tau have advanced to human testing. These have been largely safe and well 

tolerated.

Clinical efficacy of tau targeting therapies has yet to be established and some trials have 

failed. However, multiple trials are ongoing and new candidates continue to enter trials.

Antisense oligonucleotides have recently shown promising results in human testing in 

reducing tau expression. Larger studies will determine whether this translates into clinical 

benefits.

Most of the ongoing trials are immunotherapies. These can target tau intra- and/or 

extracellularly, but targeting tau only extracellularly is less likely to be effective.

Choice of epitope, antibody subclass and its charge, patient population, and mechanism 

of action must all be carefully considered when selecting antibodies and vaccines for 

clinical trials. Ideally, antibodies should be thoroughly retested after humanization, as this 

process may alter their properties.
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Figure 1 |. Tau-related therapeutic targets.
The figure shows the various tau-targeting approaches that are in preclinical or clinical 

development for the treatment of Alzheimer disease and primary tauopathies. Antisense 

oligonucleotides can be used to reduce tau expression. Inhibitors of tau aggregation include 

curcumin and the methylene blue derivative LMTX. Microtubule stabilizers such as TPI-287 

and NAP can be used to compensate for loss of the normal microtubule-stabilizing 

function of tau. Clearance of pathological tau can be enhanced using modulators of 

autophagy or proteasomal degradation. Active and passive immunotherapies use antibodies 

to target pathological tau intracellularly or extracellularly and promote its degradation and 

clearance. Pathological tau is characterized by extensive post-translational modifications, 

including hyperphosphorylation, acetylation, truncation. Glycosylation can be protective or 

detrimental. The inset shows various inhibitors that target the enzymes involved in these 

modifications. Ac, acetyl group, Gly, glycosyl group; OGA, O-GlcNAcase; P, phosphate. 

Adapted from ref.1
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Figure 2 |. Current status of clinical trials of tau-targeting drugs.
At the time of writing, the most active field is tau immunotherapy, with two active vaccines 

(AADvac1 and ACI-35) and nine antibodies (APNmAb005, E2814, JNJ-63733657, Lu 

AF87908, MK-2214, PNT001, PRX005, semorinemab and bepranemab) in ongoing clinical 

trials. Several of the other compounds in trials have complex or incompletely defined 

mechanisms of action; in this diagram, these compounds are categorized according to their 

presumed tau-related mode of action. X indicates trials that, to our knowledge, have been 

halted or terminated, as detailed in the main text, although their current status is sometimes 

difficult to determine, ? reflects uncertainty about the current status of trials. Adapted from 

ref.1.
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Figure 3 |. Proposed modes of action of anti-tau antibodies.
a | Tau antibodies can consist of whole IgGs (~150 kDa) antibody fragments such 

as antigen-binding fragments (50 kDa), single-chain variable fragments (~25 kDa), and 

single-domain antibodies (~13 kDa). b | Antibodies might target tau intracellularly 

or extracellularly, and should ideally act in both compartments to maximize efficacy. 

Extracellularly, antibodies could sequester tau aggregates, prevent tau aggregation, promote 

microglial phagocytosis of tau–antibody complexes and/or facilitate removal of tau to the 

periphery. These mechanisms would all reduce the spread of tau between neurons and 

subsequent pathological seeding. Antibodies, with or without tau, can also be internalized 

by neurons through either receptor-mediated or bulk endocytosis. Inside the neuron, these 

antibodies can bind to tau aggregates within the endosomal–lysosomal system. There, 

they can promote disassembly of tau aggregates, allowing greater access for lysosomal 

enzymes. Formation of tau–antibody complexes within the endosomal–lysosomal system 

might also prevent tau from disrupting endosomal membranes and escaping back into 

the cytosol, thereby aiding complete tau degradation. Some antibodies might also enter 

the cytosol, where they can sequester misfolded tau or promote proteasomal clearance 

through tripartite motif containing 21 (TRIM21) binding, thereby enhancing clearance 

and preventing tau secretion. Antibodies bound to larger tau aggregates could be cleared 

via the autophagosome. Antibody fragments, either administered or encoded by adeno-

associated virus (AAV) vectors, also have therapeutic potential. Astrocytic tau pathology 
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can presumably be targeted using the same mechanisms of action, although experimental 

confirmation is required.
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Figure 4 |. Modified immunotherapy strategies.
a | Targeted protein degradation via the ubiquitin–proteasome system. Proteolysis-targeting 

chimaeras (PROTACs) are hetero-bivalent complexes comprising a target binder (single-

domain antibody (sdAb) or single-chain variable fragment (scFv)), a short linker and an 

E3 ligase-recruiting molecule. These complexes bring the target protein (in this case, tau) 

and E3 ligase into close proximity and trigger proteasome-based degradation. b | Targeted 

protein degradation via the endosomal–lysosomal degradation pathway. Lysosome-targeting 

chimaeras (LYTACs) are hetero-bivalent complexes are comprising a target binder (sdAb 

or scFv), a short linker and a ligand for the lysosome-targeting receptor (LTR). They 

shuttle extracellular tau into the neuron for degradation. c | Targeted protein degradation 

via the autophagy–lysosomal degradation pathway. Autophagy-targeting chimaeras are 

hetero-bivalent complexes comprising a target binder (sdAb, or scFv), a short linker and 

a degradation tag, which can enhance tau degradation through the autophagy–lysosomal 

degradation pathway. CI-M6PR, cation-independent mannose-6-phosphate receptor; RING, 

really interesting new gene; Ub, ubiquitin.
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Table 1|

Advantages and disadvantages tau-targeting therapies

Drug type Advantages Disadvantages

Antisense 
oligonucleotides

Lowering total tau levels might lead to dissociation of 
aggregates and reduce pathology
Specifically targets tau
Safe and well tolerated in human testing
Reduces CSF tau levels below baseline in humans

Also reduces levels of non-pathological tau, which might 
have unforeseen consequences
Tau knockdown or knockout produces cognitive and motor 
deficits in some animal models

Phosphatase 
activators

Dephosphorylation increases tau–microtubule binding 
and makes tau less prone to aggregation
PP2A is responsible for most tau dephosphorylation

PP2A is also involved in metabolism, gene expression, 
signal transduction, apoptosis and cell cycle entry, so global 
inhibition might have off-target effects
In mild-to-moderate AD, PP2A inhibition does not reduce 
AD biomarker levels in CSF

Kinase inhibitors Reduced phosphorylation increases tau–microtubule 
binding and makes tau less prone to aggregation
The kinase inhibitor lithium is already approved for 
humans and is widely used for other conditions

The targeted kinases are involved in other signalling 
pathways; for example, GSK3β affects metabolism, 
autophagy, DNA repair and apoptosis, so global inhibition 
might have off-target effects
Long-term lithium use has serious adverse effects
Low doses of lithium produced no change in GSK3β activity

Acetylation 
inhibitors

Reduced acetylation increases tau–microtubule binding, 
regulates phosphorylation and promotes tau cleavage, 
making tau less prone to aggregation
The acetylation inhibitor salsalate reduceds acetylated 
and total tau levels, prevents hippocampal atrophy and 
improves memory in tauopathy mice, and is safe and 
well tolerated in humans

Inhibiting acetylation will affect various molecules with 
unknown consequences
Salsalate failed to improve cognition, prevent reductions in 
volumetric imaging and reduce AD biomarker levels in CSF 
in humans
Salsalate is not tau-specific

Deglycosylation 
inhibitors

O-glcNAcylation of tau is protective and prevents 
phosphorylation and aggregation
OGA inhibitors showed good brain penetration and 
safety in clinical trials

OGA inhibitors does not just target tau; they are involved in 
metabolic and signalling functions
The biological relevance of O-glcNAcylation to other 
proteins is unknown

Caspase inhibitors Blocking tau truncation promotes its binding to 
microtubules, thereby inhibiting tau aggregation and 
toxicity and resulting in improved function of synapses 
and organelles

The targeted caspases do not just cleave tau; for example, 
caspase 1 is involved in cytokine activation and apoptosis 
and caspase 3 affects tissue regeneration and differentiation 
as well as apoptosis
The caspase inhibitor minocycline produces adverse effects, 
particularly with long-term treatment

Tau aggregation 
inhibitors

Overall, reduced tau aggregation diminishes tau toxicity
Small molecules might be easier and cheaper to 
synthesize than antibodies
Medicinal chemistry can be used to modify tau binding 
and brain uptake

Small-molecule tau aggregation inhibitors with efficacy in 
culture often show toxicity and/or lack of blood–brain 
barrier permeation in vivo 
These compounds typically bind to β-sheets that are found in 
various proteins, including normal ones
To some extent, tau aggregation might be a defence 
mechanism to prevent toxicity of smaller aggregates such 
as oligomers

Microtubule 
stabilizers

Stabilizing microtubules improves axonal transport and 
supports the maintenance of neuronal processes and 
dendritic spines

Microtubule stabilizers have primarily been used for cancer 
treatment and have a narrow therapeutic window and 
substantial toxicity
The microtubule stabilizer TPI-287 was poorly tolerated 
in human testing and was shown to worsen dementia 
symptoms; its brain penetrance could not be confirmed

Active 
immunotherapy

Specifically targets tau
Active immunotherapy is more cost-effective and 
longer lasting than passive immunotherapy
Inducing a polyclonal response in patients might further 
improve efficacy

Possible adverse immune responses, which could be 
irreversible 
Antibodies generated might not target optimal epitopes

Passive 
immunotherapy

Specifically targets tau
Antibodies can be designed to target specific 
pathological epitopes, and treatment can potentially be 
tailored to disease stage
Antibodies or antibody fragments can be further 
modified to enhance clearance
Adverse effects are likely to be reversible because the 
antibodies will be cleared if treatment is stopped

Possible adverse immune response 
Choice of epitope is important, as not all epitopes are present 
at any given time
Optimal efficacy requires both extracellular and intracellular 
clearance
Humanization might change antibody properties
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AD, Alzheimer disease; CSF, cerebrospinal fluid; GSK3β, glycogen synthase kinase 3β; OGA, O-GlcNAcase;PP2A, protein phosphatase 2A.
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