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Abstract Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and 
specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted 
by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This 
property, along with the abundance of exosomes in biological fluids makes them compelling candi-
dates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distin-
guish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we 
describe a novel machine learning-based computational method to distinguish cancers using a panel 
of proteins associated with exosomes. Employing datasets of exosome proteins from human cell 
lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy 
Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin 
(MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer 
exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying 
cancer subtypes employing random forest models. All the models using proteins from plasma, 
serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior 
performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian 
Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer 
exosomes with scalable machine learning capability for a sensitive and specific non-invasive method 
of cancer diagnosis.

eLife assessment
This important study introduces a novel AI method for the analysis of published data, with practical 
implications for early cancer diagnosis. The results are supported by compelling evidence.

Introduction
Tissue biopsies have traditionally been a definitive way to diagnose and stage cancer; however, a 
biopsy may not be easily accessible for many tumors such as those in the pancreas, lung, and brain 
(Distler et al., 2014; Morris et al., 2010; Suram et al., 2012; Mullerat et al., 2003; Hammes et al., 
2008). In addition, the small amount of biopsied tissue does not represent the entire heterogeneous 
pathological profile of the tumor (Oshi et al., 2021). In recent years, liquid biopsy has emerged as 
a plausible diagnostic and monitoring approach with the capability to detect tumor biomarkers in 
more accessible biological fluids such as plasma, serum and urine (Hu et al., 2022). Detectable tumor 
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biomarkers can include circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomes 
(Kalluri and LeBleu, 2020).

Exosomes are extracellular vesicles of endosomal origin that are between ~40 and 180 nm in diam-
eter and have been shown to mediate intercellular communication in health and disease (Kalluri and 
LeBleu, 2020; Johnstone et al., 1987; Maas et al., 2017). They can contain a variety of biomolecules 
including DNA, RNA, proteins, lipids, metabolites and other materials representative of the parent 
cell (Kalluri and LeBleu, 2020). Exosomes are present at high concentrations in biological fluids, 
which is a potential advantage as a biomarker (Colombo et al., 2014; Valencia and Montuenga, 
2021). Exosomal mRNAs and miRNAs have been investigated intensively as diagnostic biomarkers, 
and mounting evidence suggests that exosomal proteins circulating in biological fluids could be used 
for cancer diagnosis and monitoring cancer progression (Hu et al., 2022; Chen et al., 2017). Chal-
lenges that remain include standardization of methods for consistent exosome isolation from various 
tissues, identification of biomarkers that distinguish cancer and normal exosomes across different 
cancer types, and the identification of biomarkers that are unique to specific biological fluids (e.g. 
plasma, serum, urine, etc.).

In addition to accurately identifying exosomal protein biomarkers, it is also challenging to success-
fully utilize them to diagnose cancers due to intratumor and interpatient heterogeneity (Muluneh 
et al., 2014). Conventional diagnostic approaches predominantly rely on a single biomarker, which is 
often not specific or sensitive (Ballehaninna and Chamberlain, 2011; Singh et al., 2011). However, 
recent advances in machine learning algorithms connected to artificial intelligence provide an oppor-
tunity to construct a classifier that identifies a panel of exosomal protein biomarkers that would 
possess a more comprehensive ability to reflect the complex disease status of different patients and 
distinguish cancer samples from normal samples with significantly improved sensitivity and specificity.

Results
Unbiased proteomics analysis of exosomes identifies 18 abundant 
plasma membrane protein markers for various human cell lines
To identify universal exosomal protein biomarkers for differentiating cancer from non-cancer 
exosomes, we analyzed protein abundance data from 228 cancer and 57 control cell-line-derived 
exosomes, representing various cancer types (Figure 1A; Supplementary file 1). Because studies 
employ distinct isolation and mass spectrometry quantification techniques, the number of identified 

Figure 1. Overview of the study.
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proteins is different among the studies. To overcome the bias caused by such technical factors, we 
examined the proteins common to all studies and identified 1124 overlapping proteins (Figure 2A). 
To determine the heterogeneity among cancer and control cell-line-derived exosomes, we performed 
principal component analysis (PCA) using these 1124 proteins in 285 cancer and control cell line-
derived exosomes (Figure 2B). The PCA indicated that the exosomes derived from cancer and control 
cell lines are heterogeneous and show significant variation in protein expression across cell lines.

We next investigated the frequency of the proteins detected in the exosomes from all cell lines, 
only the cancer cell lines and just the control cell lines. Commonly used exosome biomarkers (e.g. 
CD9, tetraspanins) were examined first, and from the 12 traditional exosome markers (Théry et al., 
2006; Kowal et al., 2016; Jeppesen et al., 2019), only eight proteins were detected among the 
1124 overlapping proteins from all cell lines. Six of eight proteins were detected in at least 90% of 
all samples, with CD9 and HSPA4 detected with the least frequency (Figure 2C). In addition, the 
frequency of FLOT1, FLOT2, and TSG101 proteins was higher in cancer cell-line-derived exosomes 
when compared to control cell-line-derived exosomes (Figure 2C).

To identify biomarkers detectable at a high frequency in all cancer and control cell-line-derived 
exosomes, we searched for the proteins that were detected in ≥90% of all samples (Supplementary 
file 2). We annotated these proteins using Ingenuity Pathway Analysis (IPA) and found that 78.0% 
of these proteins localize to the cytoplasm and 13.5% of proteins are associated with the plasma 
membrane (Figure 2D). Gene Ontology (GO) analysis revealed the enrichment of proteins from path-
ways related to vesicle-mediated transport, secretory vesicles, exocytosis, endocytosis, and other 
exosome-related pathways (Figure 2E). To further explore the utility of the proposed biomarkers, we 
examined the proteins located on the plasma membrane that met the threshold of detection in ≥90% 
of all samples (Figure 2F). Clathrin Heavy Chain (CLTC) was ranked as the top plasma membrane 
protein detected in 99.6% of all samples and 100% of control samples (Figure 2F). In addition, the 
scaffolding protein, Syntenin-1(SDCBP) was detected at a high frequency of 97.9% of all samples, 
corroborating previous findings (Kugeratski et al., 2021). Next, we sought to identify unique markers 
that can identify cancer cell-derived exosomes (cancer exosomes) by filtering out the proteins present 
in ≤10% of 57 control cell-line-derived exosomes. Interestingly, Ataxin 2 Like (ATXN2L), which has 
been reported to promote cancer cell invasiveness and resistance to chemotherapy, was uniquely 
detected in the cancer-cell-derived exosomes (Figure 3A; Lin et al., 2019). In total, we identified a 
set of 18 exosome protein markers that are present at a high abundance in all exosomes examined 
(Figure 2F).

Comparison of exosomal proteins derived from cell lines and tissues 
identified five universal plasma membrane protein markers
We next sought to investigate common biomarkers for the tissue-derived exosomes across cancer 
types. We calculated the detection frequency of commonly used exosome markers in the 157 samples 
(101 cancers; 56 controls). Two established exosome markers, CD63 and TSG101, were only detected 
in 33.1% and 45.9% of all samples, respectively (Figure 3B). To identify high-frequency biomarkers 
for exosomes derived from both cell lines and tissues, we examined the overlapping proteins that 
met a threshold of ≥90% in all samples for exosomes derived from cell lines and tissues and found 31 
common proteins (Figure 3C). Among the 31 proteins, there were five proteins that were detected in 
over 90% of all cell line and tissue-derived exosomes (Figure 3D). These include Clathrin Heavy Chain 
(CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN).

An exosome proteome signature of 18 proteins can differentiate 
cancer exosomes from non-cancer exosomes across multiple cancer 
types
Plasma or serum is the most readily accessible source for non-invasive biopsies. We next sought 
to identify if exosome proteins in plasma and serum could differentiate cancer exosomes from 
non-cancer exosomes across multiple cancer types. We pooled exosome proteomics data derived 
from plasma or serum for 205 cancer and 51 control samples from five different studies (Hoshino 
et  al., 2020; Vykoukal et  al., 2017; Li et  al., 2021; Lin et  al., 2022; Hallal et  al., 2020), which 
included breast cancer, colorectal cancer, glioblastoma, lung carcinoma, liver cancer, neuroblastoma, 
and pancreatic cancer (Supplementary file 1). To account for differences in the methodologies of 

https://doi.org/10.7554/eLife.90390
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Figure 2. Proteomic characterization of exosomes derived from 285 cell lines from four studies. (A) Overlapped proteins from four different studies 
of cell-line-derived exosomes. (B) PCA plot of cancer and control cell line-derived exosomes. (C) Positivity for eight commonly used exosomal protein 
biomarkers in various cell lines. The percentage of samples expressing each protein is shown in the boxes. Darker red indicates a higher percentage. (D) 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.90390
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these studies, we first reviewed the proteins and identified 46 proteins that were detected in all the 
studies (Figure 4A). We then examined their abundances in the 205 cancer and 51 control samples 
(Figure 4B). Although we could detect differences between the exosomes derived from cancer and 
non-cancer samples, it was difficult to classify them robustly based on PCA (Figure 4—figure supple-
ment 1A). Therefore, we sought to employ the advanced machine learning algorithm to differentiate 
cancer exosomes from non-cancer exosomes. We first calculated the mutual information (MI) score 
for each protein and trained the random forest classifier using the different numbers of top proteins 
according to their MI score to determine the best set of proteins we should include in the classifier. We 
found that the model performed best using 18 proteins, where the performance was evaluated by the 
area under the curve of the receiver operating characteristic curve (AUROC; Figure 4C). Several key 
cancer-associated proteins were included among these 18 proteins. For example, apolipoprotein C1 
(APOC1), which was ranked as the top protein, is significantly decreased in samples of cancer patients 
(Figure 4—figure supplement 1B) and has been previously reported to be down-regulated in the 
non-small lung cancer, colorectal cancer, papillary thyroid carcinoma, and pediatric nephroblastoma 
(Zhang et al., 2011; Jin et al., 2019; Engwegen et al., 2008; Fan et al., 2009).

Employing all 18 proteins with five-fold cross-validation, we constructed a random forest clas-
sifier (Ho, 1995) to distinguish cancer and control samples and compared it with multiple popular 
machine learning models, including Support Vector Machine (SVM; Cortes and Vapnik, 1995), K 
Nearest Neighbor Classifier (K-NN; Fix and Hodges, 1989), and Gaussian Naive Bayes (Pedregosa, 
2011). Our random forest classifier demonstrated the highest AUROC (Figure  4D). More specifi-
cally, it yielded an AUROC of 0.96, with an accuracy of 0.92, a precision of 0.94, and a recall of 0.96 
(Figure 4E and F). When applied to the independent test set, the model yielded an AUROC of 0.99, 
an accuracy of 0.95, a precision of 0.96 and a recall of 0.98 (Figure 4G and H). Importantly, only one 
sample was misclassified in the independent test set, and 51 cancer samples were correctly classified. 
Taken together, our results showed the advantage and clinical potential of applying the random forest 
classifier model to plasma or serum exosome protein based liquid biopsy for cancer diagnosis.

Five plasma/serum exosomal proteins can reliably differentiate five 
common cancer types
We next sought to further enhance the clinical utility of the exosomes for differentiating cancer types. 
We analyzed proteomics data from plasma or serum-derived exosomes from patients across five 
common cancer types, including breast cancer, colorectal cancer, glioma, lung cancer, and pancre-
atic cancer. Initial PCA revealed differences in exosome levels among cancer patients but failed to 
distinguish the five cancer types (Figure  5A). We determined the crucial features for cancer-type 
classification by computing mutual information scores for 46 common proteins and built a random 
forest classifier to determine the optimal number of features to include in the final classifier. We ulti-
mately selected a set of five proteins based on AUROC scores (Figure 5B). We then increased the 
independent testing data size by utilizing 40% of the total samples and used the remaining 60% as the 
training set to minimize overfitting issues. Employing the five proteins with five-fold cross-validation 

Annotation of the proteins detected in more than 90% of all samples. (E) GO and KEGG pathway enrichment analysis of the proteins detected in more 
than 90% of all samples. (F) Plasma membrane proteins detected in more than 90% of all samples.

The online version of this article includes the following source data for figure 2:

Source data 1. Related to Figure 2A.

Source data 2. Related to Figure 2B.

Source data 3. Related to Figure 2C and F.

Source data 4. Related to Figure 2D.

Source data 5. Related to Figure 2E.

Figure 2 continued

https://doi.org/10.7554/eLife.90390
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Figure 3. Proteomic characterization of exosomes derived from cell lines and tissues. (A) Proteins detected at higher frequency in cancer cell line-
derived exosomes. (B) Positivity for 11 commonly used exosomal protein biomarkers in various tissues. (C) Overlapping proteins (>90% frequency) 
between cell line- and tissue-derived exosomes. (D) Positivity of five plasma membrane proteins detected in more than 90% of both cell line- and tissue-
derived exosomes.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.90390
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to train the random forest classifier, the model achieved a very high accuracy of 0.99 (Figure 5C), and 
when applied to the independent test set, the model consistently yielded a high accuracy of 0.94 
(Figure 5D). The abundance of the five protein features varied across the five cancer types, reflecting 
the potential roles of these proteins in specific cancers (Figure 5E). For example, Histidine-rich glyco-
protein (HRG), which was abundant in the colorectal cancer plasma-derived exosomes, has been 
reported to promote the tumor migration of colorectal cancer patients (Bogoevska et al., 2017). 
Overall, our results demonstrated that this exosome protein-based classification model can reliably 
differentiate between cancer types and further enhance the diagnostic value of our approach.

A urinary exosome proteome signature consisting of 17 proteins 
detects cancer exosomes across multiple cancer types
Urine is emerging as a superior non-invasive marker for urologic cancers, as its composition directly 
reflects the physiological changes in the urogenital system (Dhondt et al., 2020). To test the use of 
urinary exosome proteins in cancer diagnosis, we collected data from 261 cancer patient samples and 
124 control samples from four studies, including bladder cancer, prostate cancer, and renal cancer, 
lung cancer, cervical cancer, colorectal cancer, esophageal and gastric cancer (Supplementary file 1; 
Dhondt et al., 2020; Zhang et al., 2018; Øverbye et al., 2015; Suh et al., 2022). Upon examination 
of proteins common across all four studies, 229 proteins were identified (Figure 6A). PCA revealed the 
variance between samples but failed to differentiate between cancer and control samples (Figure 6B). 
As described earlier, we next employed the random forest classifier to differentiate cancer and control 
samples based on their exosomal proteomic profiles. To reduce the feature space and select the most 
relevant features, we utilized the mutual information score to rank the 229 protein features and then 
trained the random forest classifier using varying numbers of the top-ranking proteins (Figure 6C). 
Based on the AUROC scores of including the different number of features, we selected 17 features 
that resulted in the highest AUROC score (Figure  6C). A majority of these 17 proteins displayed 
significant variations in abundance between cancer and control samples (Figure 6D). By training a 
random forest classifier with the 17 protein features and five-fold cross-validation, the model achieved 
an AUROC of 0.96, an accuracy of 0.90, a precision of 0.92, and a recall of 0.93 (Figure 6E and F). 
When tested on an independent set, the model produced an AUROC of 0.91, an accuracy of 0.82, 
a precision of 0.83, and a recall of 0.92 (Figure 6G and H). To summarize, our findings indicated the 
promising clinical potential of using urinary exosome proteins for the diagnosis of urologic cancers as 
well as other non-urologic cancer types.

Discussion
Liquid biopsy has numerous benefits in the early detection of cancer, categorizing cancer types, 
tracking cancer progression, and monitoring response to treatment (Nikanjam et al., 2022). Exosomes 
found in biological fluids can provide a forensic view of their cells of origin. Despite previous studies 
proposing common protein biomarkers to identify exosomes, a comprehensive set of exosome 
biomarkers derived from different biological materials has not been established, owing to limita-
tions in isolation and quantification methods (Castillo et al., 2018; Gangoda et al., 2017; Hurwitz 
et al., 2016; Ji et al., 2013). Additionally, a reliable diagnostic tool based on proteins associated with 
exosomes that can be applied across all cancers is yet to be identified.

The online version of this article includes the following source data for figure 3:

Source data 1. Related to Figure 3A, B and D.

Source data 2. Related to Figure 3C.

Figure 3 continued

https://doi.org/10.7554/eLife.90390
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Figure 4. Identification of the signature proteins of plasma or serum-derived exosomes and the evaluation of random forest classifier. (A) Overlapping 
exosome proteins detected in the plasma and serum of 205 cancer and 51 control samples from five studies. (B) Heat map of 46 overlapping exosome 
proteins in cancer and control plasma or serum samples. (C) AUROC score of the random forest classifier on including various numbers of protein 
features. (D) AUROC of different models in comparison. (E) Classification error matrix of the 75% training set using a random forest classifier for the 18 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.90390
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Here, we generate a comprehensive proteomics profile of exosomes derived from cell lines, 
tissues, plasma, serum, and urine from 1083 cancer and control samples. An extensive analysis of 
these samples showed that several widely used exosome markers, such as CD63, CD81, HSP70, and 
HSPA8, are absent in exosomes derived from a subset of cell lines. Further, FLOT1, FLOT2, TSG101, 
and CD63 are present at low levels (<60%) in all exosomes derived from tissues, indicating a need 
for the identification of additional universal markers for both cell line- and tissue-derived exosomes. 
Our study identifies five highly abundant universal exosome biomarkers-CLTC, EZR, TLN1, CAP1, and 
MSN- that were present in over 90% of all cell line- and tissue-derived samples. Additionally, we found 
that ATXN2L was only present in cancer exosomes and absent in non-cancer exosomes. In this regard, 
GPC1 which was identified in many studies identified as cancer exosomes specific marker, was not 
identified here as many of datasets did not pick up this protein in analysis.

Here, we describe a novel computational approach using the random forest classifier method to 
define exosome protein panels that serve as effective biomarkers specifically for plasma, serum, or 
urine across cancer types. By training the random forest model and testing with independent data-
sets, our model yields excellent scores in AUROC, sensitivity, and specificity for differentiating cancer 
exosomes from non-cancer exosomes. We show that this approach can also be used to classify, with 
high accuracy, five common cancer types based on their exosome protein signatures.

A majority of the protein makers identified in this study have demonstrable biological relevance 
in cancer. As an example, ITIH3, which was identified among the protein features for the plasma 
or serum-based classifier and highly abundant in cancer samples, was reported to be more highly 
expressed in the plasma of gastric cancer samples compared to the control (Chong et al., 2010) and 
increased with tumor staging of clear cell renal cell carcinoma patients (Chang et al., 2021). Impor-
tantly, the biomarker panels identified for cell lines, tissues, plasma/serum, and urine overcome the 
bias associated with the isolation and quantification method as well as the inter-patient variability 
inherent to the complex process of cancer. These panels are designed to be applied to a variety of 
cancers.

Collectively, our results demonstrate that exosome protein features can be utilized as reliable 
biomarkers for the early detection of cancer, classification of cancer types, and potentially for diag-
nosing tumors of undetermined origin. These results have the potential to advance the develop-
ment and standardization of innovative and optimized methods for the isolation of exosomes and 
the implementation of routine plasma, serum- and urine-based exosome screening in clinical settings.

Methods
Public exosome proteomics data
We collected publicly available exosome protein data from cell lines, plasma, serum, and urine from 
previous studies as summarized in Hoshino et al., 2020; Vykoukal et al., 2017; Li et al., 2021; Lin 
et al., 2022; Hallal et al., 2020; Dhondt et al., 2020; Zhang et al., 2018; Øverbye et al., 2015; Suh 
et al., 2022; Hurwitz et al., 2016; Rontogianni et al., 2019; Supplementary file 1. We obtained 

selected proteins. The number of samples is indicated in each box. (F) AUROC score of the random forest classifier trained using 75% of the dataset. 
Other metrics are indicated on right. (G) Classification error matrix of 25% testing set using a random forest classifier for the 18 selected proteins. 
The number of samples is indicated in each box. (H) AUROC score of the random forest classifier tested using 25% of the dataset. Other metrics are 
indicated on right.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Related to Figure 4.

Figure supplement 1. Machine learning models for plasma-derived exosomes.

Figure 4 continued

https://doi.org/10.7554/eLife.90390
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Figure 5. Identification of signature proteins expressed by plasma or serum-derived exosomes for classifying five common cancer types and evaluation 
of random forest classifier. (A) PCA plot of plasma or serum-derived exosomes from five cancer types. (B) AUROC score of the random forest classifier by 
including various number of protein features. (C–D) Classification error matrix of a 60% training set and 40% testing set to classify the five cancer types 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.90390
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the raw spectral count and intensity data from the original paper or directly from the authors through 
communication. The obtained data was log normalized accordingly.

Feature selection and machine learning algorithm
We employed mutual information scores to evaluate the importance of protein features for each 
prediction, quantifying the amount of uncertainty reduction for one variable given the knowledge 
of another variable. We calculated the mutual information score for each protein with a target label 
(cancer/control) using SelectKBest from the scikit-learn 1.1.1 Python library.

The mutual information score quantifies the decrease in uncertainty of one variable when the value 
of the other variable is known. We performed the mutual information score calculation twenty times 
and computed the average score for each protein as the ultimate score. According to the sample 
size and characteristics of the data collected for plasma and urine-derived exosomes, we selected a 
customized number of best features for each prediction. To select the optimum number of proteins to 
include in the prediction, we ranked the protein features based on the mutual information score and 
built a random forest classifier to evaluate performance on including a range of number of features.

The random forest model can decrease the probability of over-fitting and enhance the resilience 
towards outliers and input data noise. The area under the curve of the receiver operating charac-
teristic curve (AUROC) was employed to evaluate the performance of the classifier. We also calcu-
lated accuracy, precision and recall for comprehensive evaluation. All models were evaluated using 
five-fold cross-validation with stratified train-test splits that preserved the percentage of samples 
for the prediction target. We also tested the performance of alternate machine learning algorithms 
including support vector classifier, K nearest neighbor classifier and Gaussian Naive Bayes. Overall, 
the random forest classifier achieved the best performance in our analysis (Figure 4D). To visualize 
high-dimensional datasets, kernel PCA from scikit-learn 1.1.1 Python library was employed to perform 
PCA and plots were generated using the scatterplot function from seaborn 0.11.2 Python library.

Gene ontology and pathway enrichment analysis
The WebGestalt 2019m (Liao et al., 2019) online tool was used to perform the gene ontology and 
pathway enrichment analysis of the selected proteins. The biological process, cellular component and 
molecular function were all selected for gene ontology analysis and the Kyoto Encyclopedia of Genes 
and Genomes Pathways database was selected for pathway analysis. with FDR <0.05 were considered 
significant. IPA analysis was conducted by QIAGEN Ingenuity Pathway Analysis software. The protein 
list was uploaded to the software and then annotated with the default settings.

Statistical analysis
All statistical analyses were conducted using R 4.2.1 software. Significance was determined by 
the Wilcoxon rank-sum test unless specified otherwise. Significance was concluded if the p-value 
was <0.05, while in pathway analysis, significance was concluded if the FDR was <0.05 after correction 
for multiple comparisons.
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Figure 6. Identification of signature proteins expressed by urine-derived exosomes and evaluation of random forest classifier. (A) Overlapping exosome 
proteins detected in the urine from 261 cancer and 124 control samples from four studies. (B) PCA plot of cancer and control urine-derived exosomes. 
(C) AUROC score of the random forest classifier by including a various number of protein features. (D) Protein abundance of 17 selected protein features 
in 261 cancer- and 124 control urine-derived exosomes. (E) Classification error matrix of 75% training set using a random forest classifier for the 17 

Figure 6 continued on next page
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