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Abstract
Objectives
Thymidine kinase 2 deficiency (TK2d) is a rare autosomal recessive disorder that stems from a
perturbation of the mitochondrial DNA maintenance. Nucleoside treatment has recently
shown promise as a disease-modifying therapy. TK2d was initially associated with rapidly
progressive fatal myopathy in children featuring mitochondrial DNA depletion. Subsequently,
less severe variants of the disease were described, with onset of symptoms during adolescence
or adulthood and associated with the presence of multiple mtDNA deletions. These less severe
phenotypes have been reported in only 15% of the approximately 120 patients described
worldwide. However, some reports suggest that these juvenile and adult-onset presentations
may be more common. The objective of this study was to describe the clinical phenotype in a
sample of patients from Spain.

Methods
This study includes 53 patients harboring biallelic TK2 pathogenic variants, compiling data
retrospectively from 7 Spanish centers. We analyzed allele frequency, investigated the most
recent common ancestor of core haplotypes, and used the Runs of Homozygosity approach to
investigate variant coalescence.

Results
Symptom onset distribution revealed that 32 patients (60%) experienced symptoms beyond 12 years
of age. Approximately 30%of patients died of respiratory insufficiency, while 56%of surviving patients
needed mechanical ventilation. Genetic analysis identified 16 distinct variants in TK2. Two variants,
p.Lys202del and p.Thr108Met, exhibited significantly higher prevalence in the Spanish population
than that reported in gnomAD database (86-fold and 13-fold, respectively). These variants are
estimated to have originated approximately 16.8 generations ago for p.Thr108Met and 95.2 gener-
ations ago for p.Lys202del within the Spanish population, with the increase in frequency attributed to
various forms of inbreeding. In late-onset cases, 46.9% carried the p.Lys202del variant.
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Xenómica (FPGMX) (J. Amigo, A.C.); Genetic’s Group (J. Amigo, A.C.), Santiago de Compostela Research Institute (IDIS); Medicine Xenómica’s Group (J. Amigo, A.C.), Research Center for
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Discussion
The higher frequency of TK2d in Spain can be partially attributed to the increased prevalence of 2 variants and consanguinity.
Notably, in 60% of the cohort, the disease was late-onset, emphasizing the potential underdiagnosis of this subgroup of patients
in other regions. Raising awareness of this potentially treatable disorder is of utmost importance because early interventions can
significantly affect the quality of life and survival of affected individuals.

Introduction
Thymidine kinase 2 deficiency (TK2d) is a very rare auto-
somal recessive mitochondrial disorder that causes a myo-
pathic form of mitochondrial DNA (mtDNA) depletion/
multiple deletion syndrome (MIM # 609560).1 The TK2
enzyme plays a crucial role in the pyrimidine deoxynucleotide
salvage pathway by phosphorylating deoxythymidine (dThd)
and deoxycytidine (dCtd). When TK2 is deficient, the bal-
ance of mitochondrial deoxynucleoside triphosphates is dis-
rupted, causing impairments in mtDNA replication.2,3 TK2d
can manifest as either a mtDNA quantitative defect (mtDNA
depletion),4,5 a qualitative defect characterized by errors
during mtDNA replication that lead to multiple mtDNA de-
letions, or a combination of both.6 Disease severity is closely
related to the number of mtDNA copies in muscle tissue,
resulting in a continuous spectrum of clinical involvement.7,8

This spectrum spans from an infantile presentation with rapid
progression and ultimately fatal outcomes within a few
months to late-onset cases characterized by less severe phe-
notypes and variable rates of disease progression.7,8

Pathogenic variants in the TK2 gene were first identified in
20019 in 4 children who exhibited severe myopathy. The
symptoms appeared 6–36 months after an unremarkable early
development but rapidly progressed, leading to mechanical
ventilation (MV) or death within the first 4 years of life. In
these cases, the muscle’s mtDNA/nuclear DNA ratio was
markedly reduced to 16%–22% of the average value observed
in controls. In subsequent years, numerous patients with a
similar phenotype were reported, all characterized by mtDNA
depletion.10-13 Since 2010, less severe phenotypes have been
documented in patients experiencing symptom onset during
adolescence or adulthood. Patients exhibiting this less severe
phenotype are characterized by multiple mtDNA deletions in
the muscle without a significant reduction in mtDNA copy
number.10,14-18 A comprehensive literature review conducted
in 2018, including 2 studies and a total of 107 individuals,
revealed that only 17 of the reported patients experienced an
onset of the symptoms after 12 years of age.7,8 However,

recent cumulative reports of cases diagnosed in adulthood,
mainly from Spain, suggest that the frequency of juvenile and
adult presentations may have previously been
underestimated.19-22 In this study, we analyze epidemiologic
data and delve into the possible genetic factors that may
contribute to the remarkably high number of patients di-
agnosed with this disorder in Spain, in contrast to its rarity in
other countries sharing similar characteristics. In natural
populations, rare autosomal recessive variants’ prevalence
deviates from Hardy-Weinberg equilibrium due to increased
homozygosity from inbreeding. Consanguineous marriages,
more common in lower-prevalence diseases, contribute to this
phenomenon.23-25 Increased homozygosity arises from sys-
tematic (FIS) and panmictic (FST) inbreeding, each with
unique evolutionary implications.26 FIS results from consan-
guineous practices, causing deviations from Hardy-Weinberg
proportions. FST stems from endogamy and reduced effective
population size, leading to irreversible genetic diversity loss
without migration. Runs of homozygosity (ROH) analysis is
crucial for understanding variant coalescence in a population.
ROH represents continuous stretches of identical-by-descent
homozygous alleles.27 This study uses ROH to explore the
coalescent process of pathogenic variants in 53 patients with
TK2d in Spain, comparing them with a Spanish control pop-
ulation. In addition, we also extensively analyzed the clinical
data of our series to enhance our understanding of the clinical
spectrum of TK2d.

Methods
Patients
This is a multicenter historical cohort study of 53 Spanish pa-
tients diagnosed harboring biallelic TK2 pathogenic variants
between 2003 and 2022, conducted at “Hospital 12 de Octubre”
in Madrid, “Hospital de la Santa Creu i Sant Pau,” “Hospital San
Joan de Déu,” “Hospital de Bellvitge,” and “Hospital Vall
d’Hebron” in Barcelona, “Hospital La Fe” in Valencia, and
“Hospital Virgen del Roćıo” in Seville, all the National Reference
Centers for Rare Neuromuscular Diseases existing in Spain.

Glossary
CPEO = chronic progressive external ophthalmoplegia; NGS = next-generation sequencing; dCtd = deoxycytidine;
dThd = deoxythymidine; mtDNA = mitochondrial DNA; MRCA = most recent common ancestor; MV = mechanical
ventilation; LR-PCR = long-range PCR; qPCR = quantitative PCR; ROH = runs of homozygosity; TK2d = thymidine
kinase 2 deficiency; WES = whole-exome sequencing.
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Medical records were reviewed for demographic data, family
history, genetic results, age at disease onset, clinical manifesta-
tions, and treatment. Partial clinical data from several patients
were previously published elsewhere.16,19,21,28-31

Genetic Studies
The identification of variants in the TK2 gene was performed by
direct Sanger sequencing, with a customized next-generation
sequencing (NGS) panel associated with mtDNA maintenance
defects or by whole-exome sequencing (WES). Variants were
classified following the American College of Medical Genetics
(ACMG) criteria.32

Mitochondrial DNA Studies
Skeletal muscle DNA was isolated with the DNA Mini Kit
(Qiagen, Hilden, Germany). Multiple mtDNA deletions were
analyzed by Southern blot using mtDNA probes marked with
digoxigenin (Roche Diagnostics) and/or by long-range PCR
(LR-PCR) ofmtDNAusing LATaqDNAPolymerase (Takara
Bio, Kusatsu, Japan). Mitochondrial DNA content (mtDNA/
nuclear DNA ratio expressed as a percentage relative to an age-
matched control) was assessed by quantitative PCR (qPCR).

Allele Frequency
We analyzed the allele frequency of the 2 most frequent
variants identified in the cohort in a total of 21,846 clinical
exomes studied in 5 hospital genetic diagnostic centers lo-
cated in different regions of the country (2 inMadrid -Centre-
, and one in Valencia -Eastern-, Catalonia -North-eastern-, and
Galicia -North-western-, respectively). We compared it with
the allelic frequency described for these 2 variants in the
European population in the gnomAD database.

Age of the Most Recent Ancestor: Haplotype Analysis
A core haplotype was defined based on sharing among affected
individuals. Haplotype dating was performed using a published
method33 and R package. Through a gamma distribution, this
method estimates the age of the most recent common ancestor
(MRCA) by the maximum likelihood from whom the core
haplotype was inherited. This method can also be used for
individuals with shared “extended haplotypes,”who are likely to
have a more recent MRCA than that for the whole group. The
model can assume independent or correlated genealogies, i.e., a
“tree-like genealogy where subsets of the sample have common
ancestry earlier than the MRCA for the entire sample. This
approach has been widely used in the bibliography.34-36

ROH Analysis
Additional explanation for ROH analysis is included in the
eMethods.

Control Population

To contextualize patients in the Spanish population, 1,014
individuals from the BNADN data set (507 women and 507
men) were added. DNA samples were genotyped at CeGen-
FPGMX, Santiago de Compostela, Spain, using the Axiom
Spain Biobank Array with 757,836 variants for genomic,

disease, and functional allele coverage, capturing Spain’s re-
gional diversity. Genomic DNA (200 ng) was amplified,
fragmented, purified, and transferred to the GeneTitan Mul-
tichannel Instrument for automated processing. CEL files
were processed using the Axiom GT1 algorithm and Axiom
Analysis Suite v4.0.3.3. The population comprised individuals
with all 4 grandparents born in Spain. PAC analysis demon-
strated a lack of structure among patients and controls.

ROH Calling

ROH longer than 300 kb will be identified using PLINK v1.9
software37 with specific parameters: homozyg-snp 30 (mini-
mum number of variants required), —homozyg-kb 300
(sliding window length in kb), —homozyg-density 30 (min-
imum density for considering an ROH), —homozyg-
window-snp 30 (number of SNPs in the sliding window),
—homozyg-gap 1000 (length between 2 SNPs in different
segments),—homozyg-window-het 1 (allowed heterozygous
SNPs in a window), —homozyg-window-missing 5 (allowed
missing calls in a window), and —homozyg-window-
threshold 0.05 (proportion of overlapping window for de-
fining an SNP as “homozygous”). No linkage disequilibrium
pruning will occur. SNPs with minor allele frequencies <0.01
and those deviating fromH-W proportions (p < 0.001) will be
filtered. These conditions, validated in published studies,
identify ROH corresponding to autozygous segments where
all SNPs are homozygous-by-descent, even those that do not
present on the array.

Estimating Inbreeding and Its Origin

Inbreeding can stem from a departure from panmixia, either
through systematic inbreeding (consanguinity or FIS) or ge-
netic isolation and a small effective population size (genetic
drift or FST), leading to panmictic inbreeding.26,38 The total
inbreeding coefficient FIT is the probability of an individual
receiving 2 alleles identical-by-descent: (1-FIT) = (1-FIS)
(1-FST).39,40 Traditionally assessed through extensive genea-
logical records, we utilized the genomic inbreeding coefficient
(FROH) as a proxy for FIT, while estimating FIS using single
nucleotide variants data. FIS represents the average single nu-
cleotide variants homozygosity within an individual compared
to the expected homozygosity of alleles randomly selected from
the population. PLINK uses the following expression:

FIS =
OðHOMÞ − EðHOMÞ

N − EðHOMÞ

Observed Hom represents the observed homozygous SNPs,
Expected Hom is the expected homozygous SNPs consider-
ing Hardy-Weinberg proportions, and N is the total number
of nonmissing genotyped SNPs. FIS gauges inbreeding in the
current generation, with FIS = 0 indicating random mating,
FIS >0 indicating consanguinity, and FIS <0 indicating in-
breeding avoidance. FROH measures the proportion of the
autosomal genome that is autozygous beyond a specified
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Table 1 Main Clinical and Genetic Characteristics of Patients With TK2 Deficiency

ID
Age at
onset Ambulant

Age at
Mv onset

Muscle
biopsy

Muscle
mtDNA
levels

Multiple
deletions

Genetics
(allele 1)

Genetics
(allele 2) Ns

Exitus
(age)

1 <12 mo — — 1 9% ND p.Arg130Trp p.Ile168ThrfsTer2 0 1

2 <12 mo — — 1 ND ND p.Thr108Met p.Leu233Pro 0 1 (4 y)

3 <12 mo — — 1 ND ND p.Arg254Ter p.Arg254Ter 0 1

4 <12 mo 1 0 1 18% 1 p.Thr108Met p.Thr108Met 1 0

5 12–36 mo 1 0 1 42% 1 p.Thr108Met p.Arg192Lys 0 —

6 12–36 mo — 27 y 1 ND 1 p.Tyr208Cys p.Tyr208Cys 0 1

7 12–36 mo 0 17 mo 1 17% 0 p.His121Asn p.Arg192Lys 1 0

8 12–36 mo 0 29 mo 1 15% 0 p.Tyr208Cys p.Arg130Trp 1 0

9 12–36 mo 1 0 1 17% 0 p.Thr108Met p.Arg192Lys 1 0

10 12–36 mo 1 0 1 25% 0 p.Asp177Tyr p.Lys202del 1 0

11 12–36 mo 0 21 y 1 45% 1 p.Thr108Met p.Thr108Met 1 0

12 12–36 mo 1 0 0 ND ND p.Thr108Met p.Thr108Met 1 0

13 12–36 mo 1 0 0 ND ND p.Lys202del p.Gln125Ter 1 0

14 12–36 mo 0 6 y 1 ND ND p.Lys202del p.Ser51Ilefs*99 0 1 (8 y)

15 12–36 mo 1 0 1 8% 0 p.Thr108Met p.Thr108Met 1 0

16 3–12 y 1 0 1 ND ND p.Thr108Met p.Pro227Serfs*9 1 0

17 3–12 y 0 14 y 1 <10% 1 p.Arg183Gly p.Lys202del 1 0

18 3–12 y 1 0 1 57% 1 p.Thr108Met p.Thr108Met 0 —

19 3–12 y 1 35 y 1 29% 1 p.Thr108Met p.Thr108Met 1 0

20 3–12 y — 0 1 ND ND p.Lys202del p.Lys202del 0 1 (29 y)

21 3–12 y 1 42 y 1 48% 1 p.Tyr208Cys p.Lys202del 0 0

22 12–40 y 0 38 y 1 ND 1 p.Thr108Met p.Thr108Met 0 1 (49 y)

23 12–40 y 1 56 y 1 ND 1 p.Thr108Met p.Thr108Met 1 0

24 12–40 y 1 32 y 1 17% 1 p.Thr108Met p.Thr108Met 1 0

25 12–40 y 1 0 1 48% 1 p.Thr108Met p.Thr108Met 0 0

26 12–40 y 1 0 1 ND 1 p.Tyr208Cys p.Tyr208Cys 1 0

27 12–40 y 1 0 1 ND 1 p.Lys202del p.Lys202del 0 0

28 12–40 y 1 38 y 1 ND 1 p.Thr108Met p.Thr108Met 0 0

29 12–40 y 1 28 y 1 39% 1 p.Thr108Met p.Thr108Met 1 1 (28 y)

30 12–40 y — 40 y 1 ND 1 p.Ser51Ilefs*99 p.Ala139Thr 0 0

31 12–40 y — — 1 ND ND p.Lys202del p.Lys202del 0 1

32 12–40 y 1 30 y 1 ND ND p.Thr108Met p.Thr108Met 0 1 (40 y)

33 12–40 y 1 0 1 ND ND p.Tyr208Cys p.Tyr208Cys 1 0

34 12–40 y — — 1 ND ND p.Lys202del p.Lys202del 0 1 (42 y)

35 12–40 y 1 45 y 1 ND 1 p.Thr108Met p.Thr108Met 1 0

36 12–40 y 1 0 1 53% 1 p.Lys202del p.Lys202del 0 0

37 12–40 y 1 61 y 1 ND ND p.Lys202del p.Lys202del 0 0

Continued
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minimum length ROH threshold. Analyzing ROH>1.5 Mb,
FROH strongly correlates (r = 0.86) with inbreeding coeffi-
cients obtained from six-generation pedigrees.

FROH =
+n

i = 1ROH > 1:5Mb

3  Gb

Genomic Distribution of ROH: ROH Islands (ROHi)

ROH distribution in a population is nonrandom, with certain
genome regions exhibiting either a high prevalence or com-
plete absence of ROH.27,41,42 These regions, enriched with
protein-coding genes, suggest directional selection.43,44 In this
study, we focused on chromosome 16, specifically the TK2
gene, examining shared IBD haplotypes. ROHi, regions with a
higher-than-expected proportion of individuals with ROH,
were identified using a 100-kb sliding window. A binomial test
(p < 2 × 10−7) with Bonferroni correction for 2,500 windows

determined significant ROH enrichment across the pop-
ulation in specific genomic windows.

Statistical Analysis
The Fisher exact test was used to assess the potential association
between the common variants p.Lys202del and p.Thr108Met
when they are in the homozygous state (total of 18 patients) and
several clinical parameters: age at disease onset, ptosis, chronic
progressive external ophthalmoplegia (CPEO), dysphagia, and
onset of MV. A 2-sided p value <0.01 was considered significant.

Ethics Statement
All participants or their caregivers gave informed consent for
muscle biopsy and genetic analysis and for the use of ano-
nymized data for scientific purposes in accordance with the
ethical standards of the 1964 Declaration of Helsinki. Study
approval was obtained from ‘Hospital 12 de Octubre’ ethics
committee (project number 16/070).

Table 2 Main Clinical and Genetic Characteristics of Patients With TK2 Deficiency

ID
Age at
onset Ambulant

Age at
mv
onset

Muscle
biopsy

Muscle
mtDNA
levels

Multiple
deletions

Genetics
(allele 1)

Genetics
(allele 2) Ns

Exitus
(age)

41 >40 y 1 42 y 1 ND ND p.Gln125Ter p.Ala139Thr 0 0

42 >40 y 0 49 y 1 33% 1 p.Lys202del p.Lys202del 0 1 (68 y)

43 >40 y 1 50 y 1 66% 1 p.Lys202del p.Lys202del 1 0

44 >40 y 1 51 y 1 ND ND p.Ala139Thr p.Ser14Argfs*40 0 0

45 >40 y 1 65 y 1 ND ND p.Lys202del p.Lys202del 1 0

46 >40 y 1 55 y 1 ND 1 p.His121Asn p.Lys202del 0 0

47 >40 y 1 0 1 ND 1 p.Lys202del p.Lys202del 0 0

48 >40 y — UNK 1 ND 1 p.Ala139Thr p.His121Asn 0 1 (>70 y)

49 >40 y 1 58 y 1 ND 1 p.Arg130Trp p.Ala139Thr 0 1

50 >40 y — 72 y 1 ND 1 p.Ala139Thr p.His121Asn 0 1 (>70 y)

51 >40 y 1 0 1 ND 1 p.Lys202del p.Tyr208Cys 0 0

52 >40 y 1 53 y 1 ND 1 p.Tyr208Cys p.Tyr208Cys 0 0

53 >40 y 1 73 y 0 ND ND p.Lys202del p.Lys202del 1 0

Abbreviations: ID = identification number; MV =mechanical ventilation; ND = not done; UNK = unknown; 0 = No; 1 = yes;— = data not available. Patients with
onset of symptoms after the age of 40 years.

Table 1 Main Clinical and Genetic Characteristics of Patients With TK2 Deficiency (continued)

ID
Age at
onset Ambulant

Age at
Mv onset

Muscle
biopsy

Muscle
mtDNA
levels

Multiple
deletions

Genetics
(allele 1)

Genetics
(allele 2) Ns

Exitus
(age)

38 12–40 y 1 0 1 ND 1 p.Lys202del p.Lys202del 0 1

39 12–40 y 1 61 y 1 60% 1 p.Lys202del p.Lys202del 1 0

Abbreviations: ID = identification number; MV =mechanical ventilation; ND = not done; UNK = unknown; 0 = No; 1 = yes;— = data not available. Patients with
onset of symptoms before 1 year of age, between 1 and 3 years of age, between 3 and 12 years of age, and 12 and 40 years of age.
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Results
Clinical Characteristics
Clinical and genetic characteristics are summarized in Table 1
and Table 2 and presented in Figure 1. Of the 53 patients, 27
were women (50,9%). Four patients (7.5%) experienced

symptom onset within the first year of life, 11 patients
(20.8%) between 12 and 36 months of life, 6 patients (11.3%)
between 36 months and 12 years, and 32 patients beyond 12
years of age (60.3%), with 14 of them starting to experience
symptoms after the age of 40 years (26.4%), Figure 2.

We collected detailed clinical data from 44 patients within the
cohort, 16 with symptom onset before 12 years of age, 15 with
symptom onset between 12 and 40 years of age, and 13 with a
very late onset of the disease, that is, patients who remained
asymptomatic until their forties. Only 18.8% (3/16) of patients
with symptom onset before the age of 12 years exhibited ptosis
and CPEO, other 18.8% presented solely with ptosis (3/16),
while the majority, 62.5% (10/16), had no ptosis nor CPEO.
Among patients with symptom onset after the age of 12 years but
before 40 years of age, 40% (6/15) displayed ptosis and CPEO,
46.7% (7/15) had only ptosis, and merely 13.3% (2/16) pre-
sented without ptosis or CPEO. By contrast, all patients with the
onset of symptoms after the age of 40 years showed ptosis (13/
13), and 85% (11/13) had ptosis and CPEO. Most of the pa-
tients (80%) exhibited cervical and facial weakness, irrespective of
the age at which symptoms appeared. While we lack specific
details regarding the severity of muscle weakness, we collected
the ambulatory status of 43 patients of the cohort, and only 7 had
lost the ability to walk independently during data collection
(16.8%). In addition, 40%of patients experienced some degree of
dysphagia, although specific data on its severity were unavailable.
Notably, 3 patients (6.8%) only exhibited exercise intolerance,

Figure 1 Main Clinical Characteristics by Age at Onset

Relevant clinical characteristics in
different group of ages are repre-
sented; ptosis, progressive external
ophthalmoplegia (PEO), facial weak-
ness, cervical weakness, dysphagia,
and mechanical ventilation.

Figure 2 Distribution of Patients According to the Age at
Which the First Symptoms Appeared

Ages less than 1 year, between 1 and 12 years, between 12 and 40 years, and
more than 40 years.
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characterized by episodes of exertion-induced rhabdomyolysis,
without significantmuscle weakness. Ptosis and ophthalmoplegia
were absent in these cases, leading to initial suspicion of a met-
abolic muscle disorder as the primary diagnosis. Of the 34 pa-
tients with documented data who remain alive, 19 (55.8%)
required MV while maintaining ambulatory capacity.

In 50 of 53 cases (94.3%), a muscle biopsy was performed,
and in all these cases, the diagnosis of mitochondrial myop-
athy could be established based on the presence of signs of
mitochondrial proliferation and dysfunction. All muscle bi-
opsies were reported as pathologic. We were able to review 30
in more detail. Samples were taken from different muscles
(deltoid, biceps, or quadriceps) and showed varying degrees
of ragged-red fibers (2%–18% of total fibers) and cytochrome
C oxidase–negative fibers (4%–40% of the total fibers). Fur-
thermore, as previously described,16 we found myopathic
changes in 93% of cases (necrotic fibers in 48%, fiber size
variability in 93%, nuclear internalization in 50%, and fibrosis
in 52%). The performance of electron microscopy was an-
ecdotal and did not provide additional relevant information.

Treatment With Oral Deoxynucleosides
Regarding treatment, 23 of 53 patients (43.4%) received
treatment with deoxynucleosides (dThd and dCtd). The ad-
ministration of deoxynucleosides was facilitated either through
compassionate use29 or within a clinical trial (ClinicalTrials.gov
ID NCT03845712). Specifically, in the group with symptom
onset before the age of 12 years, 12 patients (57.2%) un-
derwent treatment, whereas in the group with symptom onset
after the age of 12 years, 11 patients (34.4%) received treat-
ment. The comprehensive analysis of treatment response is
beyond the scope of this study. For further insights into the
treatment outcomes, interested readers may refer to the com-
passionate use results, available in ref 29.

By the end of this study (September 2023), 16 patients (30%)
from the cohort have died. Among patients with symptom onset
before 12months, 3 of 4 (75%) died before the availability of the
treatment, while the 1 still alive is currently receiving treatment.
In the subset with onset of symptoms between the ages of 12 and
36 months, we do not have data for 1 case, while 2 of the 10
patients (20%) have died, none of whomhad received treatment.
There were 7 patients with symptom onset before the age of 12
years who had never received treatment. All except one of them
have died (85.7%). The only patient alive did not have muscle
mtDNA depletion. However, it is worth noting that all patients
with symptom onset before the age of 12 years who initiated
treatment remain alive (12 patients). Among the patients with
symptom onset after the age of 12 years, 10 have died, and only
one of them received treatment. All patients, regardless of the age
at onset, died due to respiratory failure.

Genetic Results
In 40 of 53 patients (75.4%), genetic diagnosis was achieved
through NGS of a panel of nuclear genes associated with mtDNA
maintenance defects. Thirty-one of these patientswere included in
the panel after the presence of multiple mtDNA deletions in
muscle tissue was detected. In 9 patients (17%), the diagnosis was
reached through direct Sanger sequencing of theTK2 gene, and in
4 patients (7.5%), the diagnosis was obtained through WES.

Among the 53 patients, 16 distinct variants in the TK2 gene
were identified, all of which were present in a biallelic form
(either homozygous or compound heterozygous). Additional
data are listed in eTable 1. The most frequent pathogenic
variants in our series were c.604_606del (NM_004614;
p.Lys202del), found in 21 patients (35 alleles), and c.323C>T
(p.Thr108Met), identified in 18 patients (32 alleles). Among
the 32 late-onset cases, 15 patients harbored the (p.Lys202del)
variant in at least 1 allele, accounting for 46.9% in this subgroup.

Figure 3 TK2 Gene Variants Distribution

TK2 representation showing the distribution of the variants identified in our cohort and the number of alleles identified for each variant (red background for
>20 alleles, yellow background for 5–20 alleles, and blue background for ≤4 alleles).
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In addition to these variants, we also identified 2 other re-
current TK2 pathogenic variants: c.623A>G (p.Tyr208Cys)
and c.415G>A (p.Ala139Thr), which both were found in 6
patients, encompassing 11 and 6 alleles, respectively.

Pathogenic variants were identified across the entire TK2 gene,
except for exons 3 and4. It is noteworthy the clustering ofmissense
variants within the protein region spanning amino acids 100–141,
which plays a crucial role in Mg2+ and ATP binding, essential for
the proper functioning ofTK2.45 Furthermore, a variety of variants,
including predicting in-frame, frameshift, and stop-gain alterations,
were observed throughout the entire protein (Figure 3).

The only variant that had not been previously reported as
pathogenic was c.503del (p.Ile168ThrfsTer2). It is predicted to
be pathogenic according to ACMGclassification because it fulfils
3 criteria of very strong and moderate pathogenicity: (1) it is a
null variant (frameshift) in a gene where loss of function (LOF)
is a known mechanism of disease (the gene has several docu-
mented pathogenic LOF variants) (PVS1); (2) it is absent in
population databases such as the Genome Aggregation Data-
base (gnomAD), Exome Sequencing Project, and 1000 Ge-
nomes Project and (PM2); and (3) it was detected in transwith
another pathogenic variant in an autosomal recessive disorder.
Of note, the variants (p.Asp177Tyr), (p.Pro227Serfs*9), and
(p.Leu14Argfs*41) had been previously first reported by
Spanish research groups in patients included in this cohort.19,21

Frequency of the p.Thr108Met and p.Lys202del
Alleles in the Spanish Population
The frequency of the p.Lys202del variant in the Spanish genetic
databases analyzed was 0.034% compared with 0.0004% de-
scribed in gnomAD (86-fold higher). Within gnomAD, the
subpopulation with the highest frequency was the Latino pop-
ulation, exhibiting a frequency of 0.0029%, with the Spanish
frequency also being 12 times higher than this.

The frequency of p.Thr108Met, which is the most frequent
pathogenic variant reported in TK2d,8 was 0.062% in the
Spanish databases and 0.0046% in gnomAD (13-fold differ-
ence). The frequency was higher in the Northern Spain area
(Galicia), reaching 0.176%, which accounts for 38-fold the
frequency registered in gnomAD. This variant is also more
frequent in the gnomADLatino subpopulation, being 0.022%.

Haplotype Analysis
We used genetic lengths of haplotypes containing p.Thr108Met
and p.Lys202del and a model-free Gamma method to estimate
the most common recent ancestor (MCRA). Assuming a de-
pendent genealogy, as is shown in the eFigure 1, MCRA of the
individuals with p.Thr108Met variant lived 425 (125-1,550) years
ago and theMCRAof the individuals with p.Lys202del lived 2,375
(1,212 to 3,532) years ago (additional data are listed in eTable 2).

ROH Analysis
Figure 4 summarizes key findings on ROH distribution and
origin in affected individuals and the general population. In

(A), there are significant differences in ROH longer than 8Mb
between affected individuals and the general population
(ANOVA p value = 5.78E-11). (B) and (C) analyze the origin of
ROH. In (B), we can discern a rightward shift in individuals from
families practicing consanguinity. Specifically, 3 individuals car-
rying the p.Thr108Met variant exhibit a pronounced right shift.
(C) displays a plot of systematic inbreeding coefficient (FIS)
against FROH, revealing 3 regions related to inbreeding: indi-
viduals near the diagonal line, like p.Thr108Met-affected indi-
viduals, exhibit systematic inbreeding (FIS), indicating that the
overall inbreeding coefficient (FIT) in this population mainly
stems from consanguinity. Those near FIS = 0 experience pan-
mictic inbreeding due to genetic drift and consanguinity. Neg-
ative FIS values signal low effective population size, isolation, and
significant genetic drift, contributing to FIT and strong FST.
Finally, in Figure 4, (C), we observe the physical positioning of
ROH on chromosome 16 in affected individuals, with a con-
centration of ROH evident in the region where the TK2 is
located.

ROH islands in the TK2 gene region on chromosome 16,
including shared haplotypes from affected individuals used in
MRCA analysis, are summarized in eTable 3. When consid-
ering unaffected individuals, an ROHi of 2.3 Mb (Chr16:
66480000–68850000) is found in 42% of all individuals.
Notably, 100% of the p.Thr108Met-affected individuals ex-
hibit an ROHi of 0.6 Mb in (Chr16: 66120000–66810000);
no statistically significant ROHi in this region was observed in
p.Lys202del-affected individuals. By contrast, shared haplo-
types are longer for affected individuals: 6.4 Mb for
p.Thr108Met and 0.3 Mb in p.Lys202del.

Association of Phenotypes With the Variants
p.Lys202del and p.Thr108Met
A statistically significant association (p < 0.01) was identified
between the frequent variants p.Lys202del and p.Thr108Met
and the age of initiation ofMV. Specifically, the 6 patients who
were homozygous for the p.Lys202del variant started MV
after the age of 40 years. Conversely, among the 9 patients
homozygous for the p.Thr108Met variant, 78% started MV
within the 12- to 40-year age range, while only 22% required
MV after the age of 40 years.

Furthermore, all 7 homozygous patients for the p.Lys202del
variant displayed ptosis, while only 64% of homozygous carriers
(11 patients) of the p.Thr108Met variant showed ptosis. The age
at disease onset also exhibited interesting patterns, with all in-
dividuals homozygous for the p.Lys202del variant experiencing
onset during the 12- to 40-year-old period or later, in comparison
with homozygous carriers of the p.Thr108Met variant, where
onset occurred during the 12- to 40-year-old period or earlier.

Discussion
In this study, we conducted a comprehensive analysis of both
genetic and clinical characteristics of TK2d, using data
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retrospectively collected from a cohort of 53 Spanish patients
with biallelic TK2 variants. Notably, this compilation stands as
themost extensive series documented on this disorder in a single
country. Our objective was to elucidate the factors contributing
to the high number of patients diagnosed in Spain and to refine
our understanding of the clinical spectrum of this deficiency.

In previous studies that compiled all published cases with
TK2d, it was reported that the proportion of patients with
symptom onset after the age of 12 years accounted for only
approximately 15% of the total cases.7,8 However, in our series,
which encompasses more than half of all reported cases
worldwide, 60% of patients had not presented symptoms be-
fore the age of 12 years, and 26% had remained asymptomatic

until the fifth decade of life. These findings suggest a potential
underdiagnosis of adult patients with this disorder, although
the high frequency of the milder variant p.Lys202del in Spain
also might contribute to this phenomenon.

Notably, we found that 33% of the identified alleles carried the
p.Lys202del variant, which had been exclusively identified in pa-
tients of Spanish or Hispanic origin19 and associated with later-
onset cases, presentingwith a less severe phenotype.7,16Our results
also support these conclusions because homozygous individuals
for this variant in our cohort showed a later onset and requiredMV
from the age of 40 years. In addition, approximately 30% of the
mutated alleles were attributed to the p.Thr108Met variant, the
most prevalent variant reported worldwide. Of interest clinical

Figure 4 ROH Exploratory Analysis

Different runsof homozygosity (ROH) exploratoryanalysesarepresented in this figure. (A) ROHsizedistributionbyvariant.Average total sumsarepresentedover
6 classes of ROH lengths: 0.3 ≤ ROH > 0.5 Mb, 0.5 ≤ ROH > 1 Mb, 1 ≤ ROH > 2 Mb, 2 ≤ ROH > 4 Mb, 4 ≤ ROH > Mb, and ROH ≥8 Mb. (B) Average number and
cumulative length of ROH (Runs of Homozygosity) exceeding 1.5Mb for each individual. The diagonal line on the graph is generated through regression analysis,
plotting the number of ROH against the total ROH length. Data for this analysis come from ASW and ACB populations in the 1000 Genomes Project, which are
representative of admixed and relatively outbred populations.47 Consanguinity practices in preceding generationsmanifest as a rightward shift. Simulated data
for thenumber and total lengthof ROH (ROH>1.5Mb) in the offspring resulting fromvarious consanguineousmatings are alsodisplayed. Points of varying colors
represent offspring from different consanguineous relationships: green for second cousins, yellow for first cousins, orange for avuncular (including uncle-niece,
aunt-nephew, anddouble first cousins), and red for incestuous relationships (such asbrother-sister andparent-offspring). Each type of consanguineousmating is
depicted through 5,000 simulations. Simulations do not account for genetic drift. However, the extent of the rightward shift can be extrapolated to scenarios
where there is some degree of autozygosity due to genetic drift. (C) Population analysis and components of the inbreeding coefficient. Systematic inbreeding
coefficient (FIS) vs the inbreeding coefficient obtained from ROH (FROH). In this context, FIS is the average SNP homozygosity within an individual relative to the
expectedhomozygosityof alleles randomlydrawn from thepopulation. Thediagonal broken line represents FIS = FROH.Thehorizontal broken line represents FIS
= 0. (D) Representation of the ROH physical distribution in the Chr 16 of affected individuals. The broken line shows the TK2 gene physical location.
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correlations have not been established for this variant because it is
found in clinical forms spanning the entire spectrum of severity.
The remaining one-third of cases were associated with 14 different
variants, many of which were private and found in isolated cases.

We conducted an analysis to assess the prevalence of the 2 most
recurrent variants of the Spanish population, p.Lys202del and
p.Thr108Met. Noteworthy, the gnomAD database indicates that
these 2 variants are more common in the Latino population
subset. Notably, the p.Lys202del variant was found to be 86 times
more frequent in the Spanish population and the p.Thr108Met
13 times more frequent than their reported frequency in gno-
mAD. Remarkably, this later variant was even more prevalent in
the northern region of Spain, where it was observed to be 38
times more frequent than in gnomAD. The higher frequency in
the northern area could be attributed to the higher consanguinity
index observed in this region, which arises from its specific geo-
graphical characteristics. It is important to highlight that our
analyses were based on exome variant databases obtained from
patients with very heterogeneous clinical indications for genetic
diagnostic purposes, rather than being collected from a general
population. This distinction is important to consider because it
may influence the prevalence rates and cannot be directly com-
pared with data derived from healthy individuals.

The high frequency of 2 variants prompted a haplotype study to
estimate the MRCA. While literature often associates MRCA
estimation with founder events, it is crucial to distinguish this
from classical genetics’ founder effect. Founder effects result
from a small founding population or significant subdivision with
reproductive isolation. Genetic drift, not selection, predomi-
nates, leading to variant frequency increase.46 Attributing dif-
ferences to a founder effect requires detailed population
structure analysis, and conclusions may be speculative without
pedigree records. Moreover, analysis requires additional in-
formation about the population’s demographic history to de-
termine its founder origin or even the variant’s age.47 Clear
founder effects are evident in studies of Ashkenazi and other
isolated populations globally.48 In this study, we used the ROH
approach to explore the coalescent process of analyzed variants.
Our analysis revealed that affected individuals have a significantly
higher number of larger ROH, correlated with their recent origin
within the last 5 to 10 generations. The origin of these ROH
varies among affected individuals, with consanguinity and ge-
netic drift playing roles, particularly for the p.Thr108Met variant.
Inbreeding, regardless of origin, appears to underlie the elevated
prevalence of both variants in affected individuals. Analysis of
ROH islands highlighted a shorter island across theTK2 gene for
p.Thr108Met. Both variants likely emerged in the Spanish
population approximately 16.8 and 95.2 generations ago for
p.Thr108Met and p.Lys202del, respectively, with subsequent
frequency increase through various forms of inbreeding.

The identification of 14 additional distinct variants suggests
that a high diagnostic capacity might also have contributed to
the elevated number of identified cases with TK2d, particularly
among those with an onset in the juvenile or adult population.

In this regard, performing a muscle biopsy at the early stages of
the diagnostic process facilitates the use of targeted ancillary
tests and expedites the overall diagnostic journey. In our series,
a muscle biopsy was performed in 94% of the patients except
for a recently diagnosed pediatric case where a WES was pri-
oritized. Because our series includes patients diagnosed over 20
years, it remains to be determined whether this high number of
biopsies will be maintained, especially among pediatric cases.

From the analysis of the available clinical information within this
cohort, we can infer a higher frequency of ptosis and CPEO in
cases presenting in adulthood (Figure 1), without any other
distinct clinical features. Notably, respiratory failure is consis-
tently the cause of mortality in all cases, confirming our previous
emphasis on the early and prominent involvement of the di-
aphragm in this condition.16,28 This aspect is highly relevant for
diagnosis and monitoring, even in patients with milder pheno-
types, such as those with apparent isolated CPEO.14,18,49 Of
interest, besides the classical phenotype, this cohort includes 3
patients with isolated exercise intolerance and rhabdomyolysis
episodes, one of them previously reported in detail.15 This
manifestation could represent the milder end of the severity
spectrum and a diagnostic challenge, because mitochondrial
disorders rarely present with isolated rhabdomyolysis.50 In these
cases, the muscle biopsy was critical to reach the final diagnosis.

TK2d is a severe disease with high mortality in the absence of
treatment. Among the 28 untreated patients whose vital status
were available, 7 presented with symptoms before the age of
12 years, and 86% died. Among the 21 untreated patients who
developed symptoms after the age of 12 years, 6 died (29%)
and 67% required MV. However, it is noteworthy that all
patients receiving treatment (23), except for 1, are still alive
regardless of the age at disease onset.

In conclusion, the elevated prevalence of this disorder in Spain
can be attributed to several factors, including the higher fre-
quency of 2 specific variants (p.Thr108Met and p.Lys202del),
as well as consanguinity. Notably, the p.Lys202del variant is
associated with a less severe phenotype characterized by later
onset and slower disease progression. Nonetheless, it is es-
sential to recognize that a third of the cases within this extensive
cohort are attributed to other genetic variants, indicating that a
high diagnostic capability is also a contributing factor. In ad-
dition, a noteworthy proportion of this cohort (60%) com-
prises patients with late-onset TK2d, a subgroup that could be
underdiagnosed in other regions. This observation emphasizes
the critical need to increase awareness of this potentially
treatable disease within this specific population.

The data sets generated and analyzed during this study are
available from the corresponding author on reasonable request.
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Maŕıa Rabasa Pérez Hospital de
Fuenlabrada

Neurologist Collect relevant
clinical information
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Raúl Juntas Hospital Vall
d’Hebron

Neurologist Collect relevant
clinical information

Juan Carlos León Hospital La
Candelaria

Neurologist Collect relevant
clinical information

12 Neurology: Genetics | Volume 10, Number 2 | April 2024 Neurology.org/NG

http://neurology.org/ng


References
1. El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and

updates of genetic basis, manifestations, and therapeutic options. Neurother J Am Soc
Exp Neurother. 2013;10(2):186-198. doi:10.1007/s13311-013-0177-6
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91-105. doi:10.1007/978-3-0348-8510-2_9

27. Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity:
windows into population history and trait architecture. Nat Rev Genet. 2018;19(4):
220-234. doi:10.1038/nrg.2017.109
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